[1] DOBRYNIN A V, RUBINSTEIN M. Theory of polyelectrolytes in solutions and at surfaces [J]. Progress in Polymer Science, 2005, 30(11): 1049-1118.
[2] BUDD P M. Comprehensive Polymer Science and Supplements [M]. Amsterdam: Pergamon. 1989: 215-230.
[3] ISRAELACHVILI J N. Intermolecular and Surface Forces[M]. 3rd ed. San Diego: Academic Press. 2011: 291-340.
[4] MANNING G S. Limiting Laws and Counterion Condensation in Polyelectrolyte Solutions I. Colligative Properties [J]. The Journal of Chemical Physics, 1969, 51(3): 924-933.
[5] SATGé C, GRANET R, VERNEUIL B, et al. Synthesis and properties of new bolaform and macrocyclic galactose-based surfactants obtained by olefin metathesis [J]. Carbohydrate Research, 2004, 339(7): 1243-1254.
[6] GUAN W, ZHOU W, LU C, et al. Synthesis and Design of Aggregation-Induced Emission Surfactants: Direct Observation of Micelle Transitions and Microemulsion Droplets [J]. Angewandte Chemie International Edition, 2015, 54(50): 15160.
[7] MARTIN N, SHARMA K P, HARNIMAN R L, et al. Light-induced dynamic shaping and self-division of multipodal polyelectrolyte-surfactant microarchitectures via azobenzene photomechanics [J]. Scientific Reports, 2017, 7(1): 41327.
[8] MARCIEL A B, SRIVASTAVA S, TIRRELL M V. Structure and rheology of polyelectrolyte complex coacervates [J]. Soft Matter, 2018, 14(13): 2454.
[9] COMERT F, DUBIN P L. Liquid-liquid and liquid-solid phase separation in protein-polyelectrolyte systems [J]. Advances in Colloid and Interface Science, 2017, 239: 213-217.
[10] YEWDALL N A, ANDRé A A M, LU T, et al. Coacervates as models of membraneless organelles [J]. Current Opinion in Colloid & Interface Science, 2021, 52: 101416.
[11] BLOCHER MCTIGUE W C, PERRY S L. Protein Encapsulation Using Complex Coacervates: What Nature Has to Teach Us [J]. Small, 2020, 16(27): 1907671.
[12] MARGOSSIAN K O, BROWN M U, EMRICK T, et al. Coacervation in polyzwitterion-polyelectrolyte systems and their potential applications for gastrointestinal drug delivery platforms [J]. Nature Communications, 2022, 13(1): 2250.
[13] DOMPé M, CEDANO-SERRANO F J, VAHDATI M, et al. Underwater Adhesion of Multiresponsive Complex Coacervates [J]. Advanced Materials Interfaces, 2020, 7(4): 1901785.
[14] YIN Y, NIU L, ZHU X, et al. Non-equilibrium behaviour in coacervate-based protocells under electric-field-induced excitation [J]. Nature Communications, 2016, 7(1): 10658.
[15] BRACHA D, WALLS M T, BRANGWYNNE C P. Probing and engineering liquid-phase organelles [J]. Nature Biotechnology, 2019, 37(12): 1435.
[16] SHIN Y, BRANGWYNNE C P. Liquid phase condensation in cell physiology and disease [J]. Science, 2017, 357(6357).
[17] ALBERTI S, HYMAN A A. Biomolecular condensates at the nexus of cellular stress, protein aggregation disease and ageing [J]. Nature Reviews Molecule Celll Biology, 2021, 22(3): 196-213.
[18] CHOLLAKUP R, BECK J B, DIRNBERGER K, et al. Polyelectrolyte Molecular Weight and Salt Effects on the Phase Behavior and Coacervation of Aqueous Solutions of Poly(acrylic acid) Sodium Salt and Poly(allylamine) Hydrochloride [J]. Macromolecules, 2013, 46(6): 2376.
[19] MENG S, TING J M, WU H, et al. Solid-to-Liquid Phase Transition in Polyelectrolyte Complexes [J]. Macromolecules, 2020, 53(18): 7944-53.
[20] WANG Q, SCHLENOFF J B. The Polyelectrolyte Complex/Coacervate Continuum [J]. Macromolecules, 2014, 47(9): 3108.
[21] ALI S, BLEUEL M, PRABHU V M. Lower Critical Solution Temperature in Polyelectrolyte Complex Coacervates [J]. ACS Macro Letters, 2019, 8(3): 289-293.
[22] YE Z, SUN S, WU P. Distinct Cation–Anion Interactions in the UCST and LCST Behavior of Polyelectrolyte Complex Aqueous Solutions [J]. ACS Macro Letters, 2020, 9(7): 974-979.
[23] LOVE C, STEINKüHLER J, GONZALES D T, et al. Reversible pH-Responsive Coacervate Formation in Lipid Vesicles Activates Dormant Enzymatic Reactions [J]. Angewandte Chemie International Edition, 2020, 59(15): 5950.
[24] MARTIN N, TIAN L, SPENCER D, et al. Photoswitchable Phase Separation and Oligonucleotide Trafficking in DNA Coacervate Microdroplets [J]. Angewandte Chemie International Edition, 2019, 58(41): 14594.
[25] MU W, JI Z, ZHOU M, et al. Membrane-confined liquid-liquid phase separation toward artificial organelles [J]. Science Advances, 2021, 7(22) eabf9000.
[26] SHIN Y, BERRY J, PANNUCCI N, et al. Spatiotemporal Control of Intracellular Phase Transitions Using Light-Activated optoDroplets [J]. Cell, 2017, 168(1-2): 159.
[27] NAKASHIMA K K, BAAIJ J F, SPRUIJT E. Reversible generation of coacervate droplets in an enzymatic network [J]. Soft Matter, 2018, 14(3): 361.
[28] AUMILLER W M, KEATING C D. Phosphorylation-mediated RNA/peptide complex coacervation as a model for intracellular liquid organelles [J]. Nature Chemistry, 2016, 8(2): 129.
[29] PRIFTIS D, TIRRELL M. Phase behaviour and complex coacervation of aqueous polypeptide solutions [J]. Soft Matter, 2012, 8(36): 9396.
[30] KIZILAY E, KAYITMAZER A B, DUBIN P L. Complexation and coacervation of polyelectrolytes with oppositely charged colloids [J]. Advances in Colloid and Interface Science, 2011, 167(1): 24-37.
[31] MICHAELS A S, MIEKKA R G. POLYCATION-POLYANION COMPLEXES: PREPARATION AND PROPERTIES OF POLY-(VINYLBENZYLTRIMETHYLAMMONIUM) POLY-(STYRENESULFONATE) [J]. The Journal of Physical Chemistry, 1961, 65(10): 1765.
[32] KABANOV V A, ZEZIN A B. A new class of complex water-soluble polyelectrolytes [J]. Die Makromolekulare Chemie, 1984, 6(S19841): 259-276.
[33] ZHAO X, SHANG Y, LIU H, et al. Complexation of DNA with cationic gemini surfactant in aqueous solution [J]. Journal of Colloid and Interface Science, 2007, 314(2): 478-483.
[34] ZHOU S, XU C, WANG J, et al. Phase Behavior of Cationic Hydroxyethyl Cellulose−Sodium Dodecyl Sulfate Mixtures: Effects of Molecular Weight and Ethylene Oxide Side Chain Length of Polymers [J]. Langmuir, 2004, 20(20): 8482.
[35] ASTORICCHIO E, ALFANO C, RAJENDRAN L, et al. The Wide World of Coacervates: From the Sea to Neurodegeneration [J]. Trends in Biochemical Sciences, 2020, 45(8): 706-717.
[36] MENGER F M, PERESYPKIN A V, CARAN K L, et al. A Sponge Morphology in an Elementary Coacervate [J]. Langmuir, 2000, 16(24): 9113.
[37] 闫琳, 任永硕, 王雪靖, et al. 凝聚体及其在人造细胞领域中的应用 [J]. 化学学报, 2020, 78(11): 1150.
[38] ALBERTI S, GLADFELTER A, MITTAG T. Considerations and Challenges in Studying Liquid-Liquid Phase Separation and Biomolecular Condensates [J]. Cell, 2019, 176(3): 419-434.
[39] NOTT T J, PETSALAKI E, FARBER P, et al. Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles [J]. Mol Cell, 2015, 57(5): 936-947.
[40] ZHENG C, NIU L, PAN W, et al. Long-term kinetics of DNA interacting with polycations [J]. Polymer, 2014, 55(10): 2464-71.
[41] 何平笙. 新编髙聚物的结构与性能 [M]. 北京: 科学出版社, 2009.
[42] YANOVSKY Y G. Polymer Rheology: Theory and Practice [M]. Berlin, Germany:Springer 1993.
[43] LU X, ISACSSON U. Effect of Binder Rheology on the Low-Temperature Cracking of Asphalt Mixtures [J]. Road Materials and Pavement Design, 2001, 2(1): 29-47.
[44] MANOJ LALWANI S, ENEH C I, LUTKENHAUS J L. Emerging trends in the dynamics of polyelectrolyte complexes [J]. Physical Chemistry Chemical Physics, 2020, 22(42): 24157.
[45] CHEN Y, YANG M, SCHLENOFF J B. Glass Transitions in Hydrated Polyelectrolyte Complexes [J]. Macromolecules, 2021, 54(8): 3822.
[46] YILDIRIM E, ZHANG Y, LUTKENHAUS J L, et al. Thermal Transitions in Polyelectrolyte Assemblies Occur via a Dehydration Mechanism [J]. ACS Macro Letters, 2015, 4(9): 1017.
[47] ZHANG Y, LI F, VALENZUELA L D, et al. Effect of Water on the Thermal Transition Observed in Poly(allylamine hydrochloride)–Poly(acrylic acid) Complexes [J]. Macromolecules, 2016, 49(19): 7563.
[48] FU J, ABBETT R L, FARES H M, et al. Water and the Glass Transition Temperature in a Polyelectrolyte Complex [J]. ACS Macro Letters, 2017, 6(10): 1114.
[49] ZHANG Y, BATYS P, O’NEAL J T, et al. Molecular Origin of the Glass Transition in Polyelectrolyte Assemblies [J]. ACS Central Science, 2018, 4(5): 638-644.
[50] YANG M, DIGBY Z A, SCHLENOFF J B. Precision Doping of Polyelectrolyte Complexes: Insight on the Role of Ions [J]. Macromolecules, 2020, 53(13): 5465.
[51] SHAMOUN R F, HARIRI H H, GHOSTINE R A, et al. Thermal Transformations in Extruded Saloplastic Polyelectrolyte Complexes [J]. Macromolecules, 2012, 45(24): 9759.
[52] KAWATA S, KAWATA Y. Three-Dimensional Optical Data Storage Using Photochromic Materials [J]. Chemical Reviews, 2000, 100(5): 1777.
[53] MINKIN V I. Photo-, Thermo-, Solvato-, and Electrochromic Spiroheterocyclic Compounds [J]. Chemical Reviews, 2004, 104(5): 2751.
[54] BORISOV S M, WOLFBEIS O S. Optical Biosensors [J]. Chemical Reviews, 2008, 108(2): 423-461.
[55] LEE Y-T, CHIANG C-L, CHEN C-T. Solid-state highly fluorescent diphenylaminospirobifluorenylfumaronitrile red emitters for non-doped organic light-emitting diodes [J]. Chemical Communications, 2008, (2): 217-219.
[56] WANG J, ZHAO Y, DOU C, et al. Alkyl and Dendron Substituted Quinacridones: Synthesis, Structures, and Luminescent Properties [J]. The Journal of Physical Chemistry B, 2007, 111(19): 5082.
[57] LIM S-F, FRIEND R H, REES I D, et al. Suppression of Green Emission in a New Class of Blue-Emitting Polyfluorene Copolymers with Twisted Biphenyl Moieties [J]. Advanced Functional Materials, 2005, 15(6): 981-988.
[58] LUO J, XIE Z, LAM J W Y, et al. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole [J]. Chemical Communications, 2001, (18): 1740.
[59] MEI J, LEUNG N L C, KWOK R T K, et al. Aggregation-Induced Emission: Together We Shine, United We Soar! [J]. Chemical Reviews, 2015, 115(21): 11718.
[60] WANG C, CHI W, QIAO Q, et al. Twisted intramolecular charge transfer (TICT) and twists beyond TICT: from mechanisms to rational designs of bright and sensitive fluorophores [J]. Chemical Society Reviews, 2021, 50(22): 12656.
[61] LI Y, LIU S, HAN T, et al. Sparks fly when AIE meets with polymers [J]. Materials Chemistry Frontiers, 2019, 3(11): 2207.
[62] LIU J, ZHANG H, HU L, et al. Through-Space Interaction of Tetraphenylethylene: What, Where, and How [J]. Journal of the American Chemical Society, 2022, 144(17): 7901.
[63] WELLER A. Innermolekularer Protonenübergang im angeregten Zustand [J]. Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie, 1956, 60(9-10): 1144.
[64] SHAMOUN R F, REISCH A, SCHLENOFF J B. Extruded Saloplastic Polyelectrolyte Complexes [J]. Advanced Functional Materials, 2012, 22(9): 1923.
[65] LIU Y, MOMANI B, WINTER H H, et al. Rheological characterization of liquid-to-solid transitions in bulk polyelectrolyte complexes [J]. Soft Matter, 2017, 13(40): 7332.
[66] VIEREGG J R, LUECKHEIDE M, MARCIEL A B, et al. Oligonucleotide–Peptide Complexes: Phase Control by Hybridization [J]. Journal of the American Chemical Society, 2018, 140(5): 1632.
[67] KöHLER K, SHCHUKIN D G, SUKHORUKOV G B, et al. Drastic Morphological Modification of Polyelectrolyte Microcapsules Induced by High Temperature [J]. Macromolecules, 2004, 37(25): 9546.
[68] CHOLLAKUP R, SMITTHIPONG W, EISENBACH C D, et al. Phase Behavior and Coacervation of Aqueous Poly(acrylic acid)−Poly(allylamine) Solutions [J]. Macromolecules, 2010, 43(5): 2518.
[69] TONG H, HONG Y, DONG Y, et al. Fluorescent “light-up” bioprobes based on tetraphenylethylene derivatives with aggregation-induced emission characteristics [J]. Chemical Communications, 2006, (35): 3705.
[70] ROPER D K, AHN W, HOEPFNER M. Microscale Heat Transfer Transduced by Surface Plasmon Resonant Gold Nanoparticles [J]. The Journal of Physical Chemistry C, 2007, 111(9): 3636.
[71] XU Y, WANG Z-G. Coil-to-Globule Transition in Polymeric Solvents [J]. Macromolecules, 2021, 54(23): 10984.
[72] FARES H M, GHOUSSOUB Y E, DELGADO J D, et al. Scattering Neutrons along the Polyelectrolyte Complex/Coacervate Continuum [J]. Macromolecules, 2018, 51(13): 4945.
[73] HUGLIN M B, REGO J M, GOODA S R. Comments on thermal transitions in some polyelectrolyte complexes [J]. Macromolecules, 1990, 23(26): 5359.
修改评论