中文版 | English
题名

聚丙烯酸-Bola型表面活性剂复合物的制备以及形态转变的研究

其他题名
PREPARATION AND MORPHOLOGY TRANSFORMATION OF POLY(ACRYLIC ACID) - BOLAAMPHIPHILE COMPLEX
姓名
姓名拼音
SHI Zhihui
学号
12032069
学位类型
硕士
学位专业
070305 高分子化学与物理
学科门类/专业学位类别
07 理学
导师
陈忠仁
导师单位
化学系
外机构导师单位
SUSTech
论文答辩日期
2023-05-28
论文提交日期
2023-06-26
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

聚电解质与带相反电荷的聚电解质或表面活性剂通过静电作用形成的聚电解质复合物(PECs),具有固态沉淀和液态复凝聚物两种形态。研究PECs不同形态之间的转变条件与机理,不仅是物理化学领域的重要课题,还对生命体中的相分离现象有重大意义。研究发现复合物在一定条件下会发生玻璃化转变,但尚未结合形貌学上观测到的复合物固态沉淀到液态复凝聚物的转变进行讨论,而这两种转变都明显受到水分子和离子强度的影响。此外,对于PECs内部复杂的网络结构,目前仍缺少高效的表征手段,这制约了对形成固态沉淀/液态复凝聚物的作用机制的研究。本论文设计由聚丙烯酸(PAA)和含有四苯基乙烯基团的Bola型阳离子表面活性剂(DBON)形成的PECs体系,研究PECs的形成受混合电荷比、pH值、DBON浓度的影响,并探索PECs形态转变与盐浓度、温度和PAA分子量的关系。结合显微观测法、浊度分析法、荧光特性表征和热分析法,明确了盐/温度驱动的复合物从固态沉淀到液态复凝聚物的转变机理。研究发现,在玻璃化转变温度附近复合物发生了从固态沉淀到液态复凝聚物的热诱导形态转变,表明这两个过程之间存在很强的相关性。其中,PAA分子量越大,热诱导形态转变温度越高。DBON作为PEC本征的荧光标记物,不仅具有聚集诱导发光效应从而提高形貌表征分辨率,而且可以通过测试荧光寿命变化反映复合物网络结构变化,这丰富了PECs形态转变作用机制的表征方法。基于DBON的光热效应,研究发现了紫外光诱导下的固态沉淀到液态复凝聚物的转变,这一特性为制备功能性PECs材料提供了一个绝佳的平台。

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2023-06
参考文献列表

[1] DOBRYNIN A V, RUBINSTEIN M. Theory of polyelectrolytes in solutions and at surfaces [J]. Progress in Polymer Science, 2005, 30(11): 1049-1118.
[2] BUDD P M. Comprehensive Polymer Science and Supplements [M]. Amsterdam: Pergamon. 1989: 215-230.
[3] ISRAELACHVILI J N. Intermolecular and Surface Forces[M]. 3rd ed. San Diego: Academic Press. 2011: 291-340.
[4] MANNING G S. Limiting Laws and Counterion Condensation in Polyelectrolyte Solutions I. Colligative Properties [J]. The Journal of Chemical Physics, 1969, 51(3): 924-933.
[5] SATGé C, GRANET R, VERNEUIL B, et al. Synthesis and properties of new bolaform and macrocyclic galactose-based surfactants obtained by olefin metathesis [J]. Carbohydrate Research, 2004, 339(7): 1243-1254.
[6] GUAN W, ZHOU W, LU C, et al. Synthesis and Design of Aggregation-Induced Emission Surfactants: Direct Observation of Micelle Transitions and Microemulsion Droplets [J]. Angewandte Chemie International Edition, 2015, 54(50): 15160.
[7] MARTIN N, SHARMA K P, HARNIMAN R L, et al. Light-induced dynamic shaping and self-division of multipodal polyelectrolyte-surfactant microarchitectures via azobenzene photomechanics [J]. Scientific Reports, 2017, 7(1): 41327.
[8] MARCIEL A B, SRIVASTAVA S, TIRRELL M V. Structure and rheology of polyelectrolyte complex coacervates [J]. Soft Matter, 2018, 14(13): 2454.
[9] COMERT F, DUBIN P L. Liquid-liquid and liquid-solid phase separation in protein-polyelectrolyte systems [J]. Advances in Colloid and Interface Science, 2017, 239: 213-217.
[10] YEWDALL N A, ANDRé A A M, LU T, et al. Coacervates as models of membraneless organelles [J]. Current Opinion in Colloid & Interface Science, 2021, 52: 101416.
[11] BLOCHER MCTIGUE W C, PERRY S L. Protein Encapsulation Using Complex Coacervates: What Nature Has to Teach Us [J]. Small, 2020, 16(27): 1907671.
[12] MARGOSSIAN K O, BROWN M U, EMRICK T, et al. Coacervation in polyzwitterion-polyelectrolyte systems and their potential applications for gastrointestinal drug delivery platforms [J]. Nature Communications, 2022, 13(1): 2250.
[13] DOMPé M, CEDANO-SERRANO F J, VAHDATI M, et al. Underwater Adhesion of Multiresponsive Complex Coacervates [J]. Advanced Materials Interfaces, 2020, 7(4): 1901785.
[14] YIN Y, NIU L, ZHU X, et al. Non-equilibrium behaviour in coacervate-based protocells under electric-field-induced excitation [J]. Nature Communications, 2016, 7(1): 10658.
[15] BRACHA D, WALLS M T, BRANGWYNNE C P. Probing and engineering liquid-phase organelles [J]. Nature Biotechnology, 2019, 37(12): 1435.
[16] SHIN Y, BRANGWYNNE C P. Liquid phase condensation in cell physiology and disease [J]. Science, 2017, 357(6357).
[17] ALBERTI S, HYMAN A A. Biomolecular condensates at the nexus of cellular stress, protein aggregation disease and ageing [J]. Nature Reviews Molecule Celll Biology, 2021, 22(3): 196-213.
[18] CHOLLAKUP R, BECK J B, DIRNBERGER K, et al. Polyelectrolyte Molecular Weight and Salt Effects on the Phase Behavior and Coacervation of Aqueous Solutions of Poly(acrylic acid) Sodium Salt and Poly(allylamine) Hydrochloride [J]. Macromolecules, 2013, 46(6): 2376.
[19] MENG S, TING J M, WU H, et al. Solid-to-Liquid Phase Transition in Polyelectrolyte Complexes [J]. Macromolecules, 2020, 53(18): 7944-53.
[20] WANG Q, SCHLENOFF J B. The Polyelectrolyte Complex/Coacervate Continuum [J]. Macromolecules, 2014, 47(9): 3108.
[21] ALI S, BLEUEL M, PRABHU V M. Lower Critical Solution Temperature in Polyelectrolyte Complex Coacervates [J]. ACS Macro Letters, 2019, 8(3): 289-293.
[22] YE Z, SUN S, WU P. Distinct Cation–Anion Interactions in the UCST and LCST Behavior of Polyelectrolyte Complex Aqueous Solutions [J]. ACS Macro Letters, 2020, 9(7): 974-979.
[23] LOVE C, STEINKüHLER J, GONZALES D T, et al. Reversible pH-Responsive Coacervate Formation in Lipid Vesicles Activates Dormant Enzymatic Reactions [J]. Angewandte Chemie International Edition, 2020, 59(15): 5950.
[24] MARTIN N, TIAN L, SPENCER D, et al. Photoswitchable Phase Separation and Oligonucleotide Trafficking in DNA Coacervate Microdroplets [J]. Angewandte Chemie International Edition, 2019, 58(41): 14594.
[25] MU W, JI Z, ZHOU M, et al. Membrane-confined liquid-liquid phase separation toward artificial organelles [J]. Science Advances, 2021, 7(22) eabf9000.
[26] SHIN Y, BERRY J, PANNUCCI N, et al. Spatiotemporal Control of Intracellular Phase Transitions Using Light-Activated optoDroplets [J]. Cell, 2017, 168(1-2): 159.
[27] NAKASHIMA K K, BAAIJ J F, SPRUIJT E. Reversible generation of coacervate droplets in an enzymatic network [J]. Soft Matter, 2018, 14(3): 361.
[28] AUMILLER W M, KEATING C D. Phosphorylation-mediated RNA/peptide complex coacervation as a model for intracellular liquid organelles [J]. Nature Chemistry, 2016, 8(2): 129.
[29] PRIFTIS D, TIRRELL M. Phase behaviour and complex coacervation of aqueous polypeptide solutions [J]. Soft Matter, 2012, 8(36): 9396.
[30] KIZILAY E, KAYITMAZER A B, DUBIN P L. Complexation and coacervation of polyelectrolytes with oppositely charged colloids [J]. Advances in Colloid and Interface Science, 2011, 167(1): 24-37.
[31] MICHAELS A S, MIEKKA R G. POLYCATION-POLYANION COMPLEXES: PREPARATION AND PROPERTIES OF POLY-(VINYLBENZYLTRIMETHYLAMMONIUM) POLY-(STYRENESULFONATE) [J]. The Journal of Physical Chemistry, 1961, 65(10): 1765.
[32] KABANOV V A, ZEZIN A B. A new class of complex water-soluble polyelectrolytes [J]. Die Makromolekulare Chemie, 1984, 6(S19841): 259-276.
[33] ZHAO X, SHANG Y, LIU H, et al. Complexation of DNA with cationic gemini surfactant in aqueous solution [J]. Journal of Colloid and Interface Science, 2007, 314(2): 478-483.
[34] ZHOU S, XU C, WANG J, et al. Phase Behavior of Cationic Hydroxyethyl Cellulose−Sodium Dodecyl Sulfate Mixtures:  Effects of Molecular Weight and Ethylene Oxide Side Chain Length of Polymers [J]. Langmuir, 2004, 20(20): 8482.
[35] ASTORICCHIO E, ALFANO C, RAJENDRAN L, et al. The Wide World of Coacervates: From the Sea to Neurodegeneration [J]. Trends in Biochemical Sciences, 2020, 45(8): 706-717.
[36] MENGER F M, PERESYPKIN A V, CARAN K L, et al. A Sponge Morphology in an Elementary Coacervate [J]. Langmuir, 2000, 16(24): 9113.
[37] 闫琳, 任永硕, 王雪靖, et al. 凝聚体及其在人造细胞领域中的应用 [J]. 化学学报, 2020, 78(11): 1150.
[38] ALBERTI S, GLADFELTER A, MITTAG T. Considerations and Challenges in Studying Liquid-Liquid Phase Separation and Biomolecular Condensates [J]. Cell, 2019, 176(3): 419-434.
[39] NOTT T J, PETSALAKI E, FARBER P, et al. Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles [J]. Mol Cell, 2015, 57(5): 936-947.
[40] ZHENG C, NIU L, PAN W, et al. Long-term kinetics of DNA interacting with polycations [J]. Polymer, 2014, 55(10): 2464-71.
[41] 何平笙. 新编髙聚物的结构与性能 [M]. 北京: 科学出版社, 2009.
[42] YANOVSKY Y G. Polymer Rheology: Theory and Practice [M]. Berlin, Germany:Springer 1993.
[43] LU X, ISACSSON U. Effect of Binder Rheology on the Low-Temperature Cracking of Asphalt Mixtures [J]. Road Materials and Pavement Design, 2001, 2(1): 29-47.
[44] MANOJ LALWANI S, ENEH C I, LUTKENHAUS J L. Emerging trends in the dynamics of polyelectrolyte complexes [J]. Physical Chemistry Chemical Physics, 2020, 22(42): 24157.
[45] CHEN Y, YANG M, SCHLENOFF J B. Glass Transitions in Hydrated Polyelectrolyte Complexes [J]. Macromolecules, 2021, 54(8): 3822.
[46] YILDIRIM E, ZHANG Y, LUTKENHAUS J L, et al. Thermal Transitions in Polyelectrolyte Assemblies Occur via a Dehydration Mechanism [J]. ACS Macro Letters, 2015, 4(9): 1017.
[47] ZHANG Y, LI F, VALENZUELA L D, et al. Effect of Water on the Thermal Transition Observed in Poly(allylamine hydrochloride)–Poly(acrylic acid) Complexes [J]. Macromolecules, 2016, 49(19): 7563.
[48] FU J, ABBETT R L, FARES H M, et al. Water and the Glass Transition Temperature in a Polyelectrolyte Complex [J]. ACS Macro Letters, 2017, 6(10): 1114.
[49] ZHANG Y, BATYS P, O’NEAL J T, et al. Molecular Origin of the Glass Transition in Polyelectrolyte Assemblies [J]. ACS Central Science, 2018, 4(5): 638-644.
[50] YANG M, DIGBY Z A, SCHLENOFF J B. Precision Doping of Polyelectrolyte Complexes: Insight on the Role of Ions [J]. Macromolecules, 2020, 53(13): 5465.
[51] SHAMOUN R F, HARIRI H H, GHOSTINE R A, et al. Thermal Transformations in Extruded Saloplastic Polyelectrolyte Complexes [J]. Macromolecules, 2012, 45(24): 9759.
[52] KAWATA S, KAWATA Y. Three-Dimensional Optical Data Storage Using Photochromic Materials [J]. Chemical Reviews, 2000, 100(5): 1777.
[53] MINKIN V I. Photo-, Thermo-, Solvato-, and Electrochromic Spiroheterocyclic Compounds [J]. Chemical Reviews, 2004, 104(5): 2751.
[54] BORISOV S M, WOLFBEIS O S. Optical Biosensors [J]. Chemical Reviews, 2008, 108(2): 423-461.
[55] LEE Y-T, CHIANG C-L, CHEN C-T. Solid-state highly fluorescent diphenylaminospirobifluorenylfumaronitrile red emitters for non-doped organic light-emitting diodes [J]. Chemical Communications, 2008, (2): 217-219.
[56] WANG J, ZHAO Y, DOU C, et al. Alkyl and Dendron Substituted Quinacridones:  Synthesis, Structures, and Luminescent Properties [J]. The Journal of Physical Chemistry B, 2007, 111(19): 5082.
[57] LIM S-F, FRIEND R H, REES I D, et al. Suppression of Green Emission in a New Class of Blue-Emitting Polyfluorene Copolymers with Twisted Biphenyl Moieties [J]. Advanced Functional Materials, 2005, 15(6): 981-988.
[58] LUO J, XIE Z, LAM J W Y, et al. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole [J]. Chemical Communications, 2001, (18): 1740.
[59] MEI J, LEUNG N L C, KWOK R T K, et al. Aggregation-Induced Emission: Together We Shine, United We Soar! [J]. Chemical Reviews, 2015, 115(21): 11718.
[60] WANG C, CHI W, QIAO Q, et al. Twisted intramolecular charge transfer (TICT) and twists beyond TICT: from mechanisms to rational designs of bright and sensitive fluorophores [J]. Chemical Society Reviews, 2021, 50(22): 12656.
[61] LI Y, LIU S, HAN T, et al. Sparks fly when AIE meets with polymers [J]. Materials Chemistry Frontiers, 2019, 3(11): 2207.
[62] LIU J, ZHANG H, HU L, et al. Through-Space Interaction of Tetraphenylethylene: What, Where, and How [J]. Journal of the American Chemical Society, 2022, 144(17): 7901.
[63] WELLER A. Innermolekularer Protonenübergang im angeregten Zustand [J]. Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie, 1956, 60(9-10): 1144.
[64] SHAMOUN R F, REISCH A, SCHLENOFF J B. Extruded Saloplastic Polyelectrolyte Complexes [J]. Advanced Functional Materials, 2012, 22(9): 1923.
[65] LIU Y, MOMANI B, WINTER H H, et al. Rheological characterization of liquid-to-solid transitions in bulk polyelectrolyte complexes [J]. Soft Matter, 2017, 13(40): 7332.
[66] VIEREGG J R, LUECKHEIDE M, MARCIEL A B, et al. Oligonucleotide–Peptide Complexes: Phase Control by Hybridization [J]. Journal of the American Chemical Society, 2018, 140(5): 1632.
[67] KöHLER K, SHCHUKIN D G, SUKHORUKOV G B, et al. Drastic Morphological Modification of Polyelectrolyte Microcapsules Induced by High Temperature [J]. Macromolecules, 2004, 37(25): 9546.
[68] CHOLLAKUP R, SMITTHIPONG W, EISENBACH C D, et al. Phase Behavior and Coacervation of Aqueous Poly(acrylic acid)−Poly(allylamine) Solutions [J]. Macromolecules, 2010, 43(5): 2518.
[69] TONG H, HONG Y, DONG Y, et al. Fluorescent “light-up” bioprobes based on tetraphenylethylene derivatives with aggregation-induced emission characteristics [J]. Chemical Communications, 2006, (35): 3705.
[70] ROPER D K, AHN W, HOEPFNER M. Microscale Heat Transfer Transduced by Surface Plasmon Resonant Gold Nanoparticles [J]. The Journal of Physical Chemistry C, 2007, 111(9): 3636.
[71] XU Y, WANG Z-G. Coil-to-Globule Transition in Polymeric Solvents [J]. Macromolecules, 2021, 54(23): 10984.
[72] FARES H M, GHOUSSOUB Y E, DELGADO J D, et al. Scattering Neutrons along the Polyelectrolyte Complex/Coacervate Continuum [J]. Macromolecules, 2018, 51(13): 4945.
[73] HUGLIN M B, REGO J M, GOODA S R. Comments on thermal transitions in some polyelectrolyte complexes [J]. Macromolecules, 1990, 23(26): 5359.

所在学位评定分委会
化学
国内图书分类号
中国
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/543990
专题理学院_化学系
推荐引用方式
GB/T 7714
史志辉. 聚丙烯酸-Bola型表面活性剂复合物的制备以及形态转变的研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032069-史志辉-化学系.pdf(5138KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[史志辉]的文章
百度学术
百度学术中相似的文章
[史志辉]的文章
必应学术
必应学术中相似的文章
[史志辉]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。