[1] NASROLLAHZADEH M, SAJADI S M, SAJJADI M, et al. Chapter 1 - an introduction to nanotechnology [M]// NASROLLAHZADEH M, SAJADI S M, SAJJADI M, et al. Interface science and technology. Elsevier. 2019: 1-27.
[2] LONG Y-Z, LI M-M, GU C, et al. Recent advances in synthesis, physical properties and applications of conducting polymer nanotubes and nanofibers[J]. Progress in Polymer Science, 2011, 36(10): 1415-1442.
[3] BHADRA S, KHASTGIR D, SINGHA N K, et al. Progress in preparation, processing and applications of polyaniline[J]. Progress in Polymer Science, 2009, 34(8): 783-810.
[4] BAKER C O, HUANG X, NELSON W, et al. Polyaniline nanofibers: Broadening applications for conducting polymers[J]. Chemical Society Reviews, 2017, 46(5): 1510-1525.
[5] ZHANG Y, RUTLEDGE G C. Electrical conductivity of electrospun polyaniline and polyaniline-blend fibers and mats[J]. Macromolecules, 2012, 45(10): 4238-4246.
[6] STEJSKAL J, TRCHOVá M, BOBER P, et al. Conducting polymers: Polyaniline[M]. Encyclopedia of polymer science and technology. 2015: 1-44.
[7] WANG Y. Preparation and application of polyaniline nanofibers: An overview[J]. Polymer International, 2018, 67(6): 650-669.
[8] WANG X-X, YU G-F, ZHANG J, et al. Conductive polymer ultrafine fibers via electrospinning: Preparation, physical properties and applications[J]. Progress in Materials Science, 2021, 115: 100704.
[9] GENIèS E M, BOYLE A, LAPKOWSKI M, et al. Polyaniline: A historical survey[J]. Synthetic Metals, 1990, 36(2): 139-182.
[10] LIN C-W, XUE S, JI C, et al. Conducting polyaniline for antifouling ultrafiltration membranes: Solutions and challenges[J]. Nano Letters, 2021, 21(9): 3699-3707.
[11] LUTHRA V, SINGH R, GUPTA S K, et al. Mechanism of dc conduction in polyaniline doped with sulfuric acid[J]. Current Applied Physics, 2003, 3(2): 219-222.
[12] WATANABE A, MORI K, MIKUNI M, et al. Comparative study of redox reactions of polyaniline films in aqueous and nonaqueous solutions[J]. Macromolecules, 2002, 22(8): 3323-3327.
[13] BHADRA S, CHATTOPADHYAY S, SINGHA N K, et al. Improvement of conductivity of electrochemically synthesized polyaniline[J]. Journal of Applied Polymer Science, 2008, 108(1): 57-64.
[14] BHADRA S, SINGHA N K, CHATTOPADHYAY S, et al. Effect of different reaction parameters on the conductivity and dielectric properties of polyaniline synthesized electrochemically and modeling of conductivity against reaction parameters through regression analysis[J]. Journal of Polymer Science Part B: Polymer Physics, 2007, 45(15): 2046-2059.
[15] HEME H N, ALIF M S N, RAHAT S M S M, et al. Recent progress in polyaniline composites for high capacity energy storage: A review[J]. Journal of Energy Storage, 2021, 42: 103018.
[16] LU Q, ZHAO Q, ZHANG H, et al. Water dispersed conducting polyaniline nanofibers for high-capacity rechargeable lithium–oxygen battery[J]. ACS Macro Letters, 2013, 2(2): 92-95.
[17] LUO H, KANETI Y V, AI Y, et al. Nanoarchitectured porous conducting polymers: From controlled synthesis to advanced applications[J]. Advanced Materials, 2021, 33(29): 2007318.
[18] LYUTOV V, TSAKOVA V. Polysulfonate-doped polyanilines—oxidation of ascorbic acid and dopamine in neutral solution[J]. Journal of Solid State Electrochemistry, 2020, 24(11): 3113-3123.
[19] BLáHA M, BOUŠA M, VALEŠ V, et al. Two-dimensional cvd-graphene/polyaniline supercapacitors: Synthesis strategy and electrochemical operation[J]. ACS Applied Materials & Interfaces, 2021, 13(29): 34686-34695.
[20] NARAYANASAMY S, JAYAPRAKASH J. Application of carbon-polymer based composite electrodes for microbial fuel cells[J]. Reviews in Environmental Science and Bio/Technology, 2020, 19(3): 595-620.
[21] DAVID S, NICOLAU Y F, MELIS F, et al. Molecular weight of polyaniline synthesized by oxidation of aniline with ammonium persulfate and with ferric chloride[J]. Synthetic Metals, 1995, 69(1): 125-126.
[22] ADAMS P N, LAUGHLIN P J, MONKMAN A P. Synthesis of high molecular weight polyaniline at low temperatures[J]. Synthetic Metals, 1996, 76(1): 157-160.
[23] TERLEMEZYAN N G. Conducting polymers prepared by oxidative polymerization: Polyaniline[J]. Progress in Polymer Science, 1998, 23(8):1443-1484.
[24] GOSPODINOVA N, TERLEMEZYAN L. Conducting polymers prepared by oxidative polymerization: Polyaniline[J]. Progress in Polymer Science, 1998, 23(8): 1443-1484.
[25] STEJSKAL J, PROKEŠ J, TRCHOVá M. Reprotonation of polyaniline: A route to various conducting polymer materials[J]. Reactive and Functional Polymers, 2008, 68(9): 1355-1361.
[26] HEEGER A J, KIVELSON S, SCHRIEFFER J R, et al. Solitons in conducting polymers[J]. Reviews of Modern Physics, 1988, 60(3): 781-850.
[27] MACDIARMID A G, CHIANG J C, RICHTER A F, et al. Polyaniline: Synthesis and characterization of the emeraldine oxidation state by elemental analysis[J]. Synthetic Metals, 1987, 18: 285.
[28] ŠEDĚNKOVá I, PROKEŠ J, TRCHOVá M, et al. Conformational transition in polyaniline films – spectroscopic and conductivity studies of ageing[J]. Polymer Degradation and Stability, 2008, 93(2): 428-435.
[29] STEJSKAL J, PROKES J, TRCHOVA M. Reprotonated polyanilines: The stability of conductivity at elevated temperature[J]. Polymer Degradation and Stability, 2014, 102(APR.): 67-73.
[30] HUANG X A, KOCAEFE D, KOCAEFE Y, et al. Study of the degradation behavior of heat-treated jack pine (pinus banksiana) under artificial sunlight irradiation[J]. Polymer Degradation and Stability, 2012, 97(7): 1197-1214.
[31] BAVATHARANI C, MUTHUSANKAR E, WABAIDUR S M, et al. Electrospinning technique for production of polyaniline nanocomposites/nanofibres for multi-functional applications: A review[J]. Synthetic Metals, 2021, 271: 116609.
[32] KIM B H, PARK D H, JOO J, et al. Synthesis, characteristics, and field emission of doped and de-doped polypyrrole, polyaniline, poly(3,4-ethylenedioxythiophene) nanotubes and nanowires[J]. Synthetic Metals, 2005, 150(3): 279-284.
[33] LI X, WAN M, LI X, et al. The role of DNA in pani–DNA hybrid: Template and dopant[J]. Polymer, 2009, 50(19): 4529-4534.
[34] CALLEGARI V, GENCE L, MELINTE S, et al. Electrochemically template-grown multi-segmented gold-conducting polymer nanowires with tunable electronic behavior[J]. Chemistry of Materials, 2009, 21(18): 4241-4247.
[35] HUANG J, KANER R B. A general chemical route to polyaniline nanofibers[J]. Journal of the American Chemical Society, 2004, 126(3): 851-855.
[36] WAN M. A template-free method towards conducting polymer nanostructures[J]. Advanced Materials, 2008, 20(15): 2926-2932.
[37] CHIAM Y S, MOHAMAD AHAD I Z, WADI HARUN S, et al. Effects of the dopant ratio on polyaniline coated fiber bragg grating for ph detection[J]. Synthetic Metals, 2016, 211: 132-141.
[38] SIMOTWO S K, DELRE C, KALRA V. Supercapacitor electrodes based on high-purity electrospun polyaniline and polyaniline–carbon nanotube nanofibers[J]. ACS Applied Materials & Interfaces, 2016, 8(33): 21261-21269.
[39] CHAUDHARI S, SHARMA Y, ARCHANA P S, et al. Electrospun polyaniline nanofibers web electrodes for supercapacitors[J]. Journal of Applied Polymer Science, 2013, 129(4): 1660-1668.
[40] SHIN M K, KIM Y J, KIM S I, et al. Enhanced conductivity of aligned pani/peo/mwnt nanofibers by electrospinning[J]. Sensors and Actuators B: Chemical, 2008, 134(1): 122-126.
[41] YU Q-Z, SHI M-M, DENG M, et al. Morphology and conductivity of polyaniline sub-micron fibers prepared by electrospinning[J]. Materials Science and Engineering: B, 2008, 150(1): 70-76.
[42] SRINIVASAN S S, RATNADURAI R, NIEMANN M U, et al. Reversible hydrogen storage in electrospun polyaniline fibers[J]. International Journal of Hydrogen Energy, 2010, 35(1): 225-230.
[43] BABU V J, MURTHY D V B, SUBRAMANIAN V, et al. Microwave hall mobility and electrical properties of electrospun polymer nanofibers[J]. Journal of Applied Physics, 2011, 109(7): 074306.
[44] LIN Q, LI Y, YANG M. Polyaniline nanofiber humidity sensor prepared by electrospinning[J]. Sensors and Actuators B: Chemical, 2012, 161(1): 967-972.
[45] MACDIARMID A G. “Synthetic metals”: A novel role for organic polymers[J]. Current Applied Physics, 2001, 1(4): 269-279.
[46] TANG C C, HUANG R, LONG Y Z, et al. Synthesis, structural and gas sensing properties of nano-branched coaxial polyaniline fibers by electrospinning[J]. Advanced Materials Research, 2012, 562-564: 308-311.
[47] KIRISTI M, OKSUZ A U, OKSUZ L, et al. Electrospun chitosan/pedot nanofibers[J]. Materials Science and Engineering: C, 2013, 33(7): 3845-3850.
[48] LI X-Q, LIU W-W, LIU S-P, et al. In situ polymerization of aniline in electrospun microfibers[J]. Chinese Chemical Letters, 2014, 25(1): 83-86.
[49] SARVI A, CHIMELLO V, SILVA A B, et al. Coaxial electrospun nanofibers of poly(vinylidene fluoride)/polyaniline filled with multi-walled carbon nanotubes[J]. Polymer Composites, 2014, 35(6): 1198-1203.
[50] BAI C, WANG Y, FAN Z, et al. One-step preparation of gel-electrolyte-friendly fiber-shaped aerogel current collector for solid-state fiber-shaped supercapacitors with large capacity[J]. Journal of Power Sources, 2022, 521: 230971.
[51] JI S, LI Y, YANG M. Gas sensing properties of a composite composed of electrospun poly(methyl methacrylate) nanofibers and in situ polymerized polyaniline[J]. Sensors and Actuators B: Chemical, 2008, 133(2): 644-649.
[52] LI X, RAFIE A, SMOLIN Y Y, et al. Engineering conformal nanoporous polyaniline via oxidative chemical vapor deposition and its potential application in supercapacitors[J]. Chemical Engineering Science, 2019, 194: 156-164.
[53] KOSIŃSKI S, RYKOWSKA I, GONSIOR M, et al. Ionic liquids as antistatic additives for polymer composites – a review[J]. Polymer Testing, 2022, 112: 107649.
[54] ZHU A, WANG H, SUN S, et al. The synthesis and antistatic, anticorrosive properties of polyaniline composite coating[J]. Progress in Organic Coatings, 2018, 122: 270-279.
[55] 姜宇, 陈卓明, 辛斌杰, 等. 聚苯胺基导电功能性织物研究进展[J]. 当代化工研究, 2019, 27(04): 58-64.
[56] 吴连锋, 刘艳明, 王贤明, 等. 抗静电涂料研究概述[J]. 涂料工业, 2016, 46(08): 75-81.
[57] MA X, LI Y, SHEN B, et al. Carbon composite networks with ultrathin skin layers of graphene film for exceptional electromagnetic interference shielding[J]. ACS Applied Materials & Interfaces, 2018, 10(44): 38255-38263.
[58] SUDHA J D, SIVAKALA S, PRASANTH R, et al. Development of electromagnetic shielding materials from the conductive blends of polyaniline and polyaniline-clay nanocomposite-eva: Preparation and properties[J]. Composites Science and Technology, 2009, 69(3): 358-364.
[59] CHUNG D D L. Electromagnetic interference shielding effectiveness of carbon materials[J]. Carbon, 2001, 39(2): 279-285.
[60] THOMASSIN J-M, JéRôME C, PARDOEN T, et al. Polymer/carbon based composites as electromagnetic interference (emi) shielding materials[J]. Materials Science and Engineering: R: Reports, 2013, 74(7): 211-232.
[61] SAINI P, ARORA M, GUPTA G, et al. High permittivity polyaniline–barium titanate nanocomposites with excellent electromagnetic interference shielding response[J]. Nanoscale, 2013, 5(10): 4330-4336.
[62] SONG Q, YE F, YIN X, et al. Carbon nanotube–multilayered graphene edge plane core–shell hybrid foams for ultrahigh-performance electromagnetic-interference shielding[J]. Advanced Materials, 2017, 29(31): 1701583.
[63] SANKARAN S, DESHMUKH K, AHAMED M B, et al. Recent advances in electromagnetic interference shielding properties of metal and carbon filler reinforced flexible polymer composites: A review[J]. Composites Part A: Applied Science and Manufacturing, 2018, 114: 49-71.
[64] LEE J, LIU Y, LIU Y, et al. Ultrahigh electromagnetic interference shielding performance of lightweight, flexible, and highly conductive copper-clad carbon fiber nonwoven fabrics[J]. Journal of Materials Chemistry C, 2017, 5(31): 7853-7861.
[65] JING X, WANG Y, ZHANG B. Electrical conductivity and electromagnetic interference shielding of polyaniline/polyacrylate composite coatings[J]. Journal of Applied Polymer Science, 2005, 98(5): 2149-2156.
[66] ACHARYA S, ALEGAONKAR P, DATAR S. Effect of formation of heterostructure of sral4fe8o19/rgo/pvdf on the microwave absorption properties of the composite[J]. Chemical Engineering Journal, 2019, 374: 144-154.
[67] PASTORE R, DELFINI A, MICHELI D, et al. Carbon foam electromagnetic mm-wave absorption in reverberation chamber[J]. Carbon, 2019, 144: 63-71.
[68] WANG Y, CHENG X-D, SONG W-L, et al. Hydro-sensitive sandwich structures for self-tunable smart electromagnetic shielding[J]. Chemical Engineering Journal, 2018, 344: 342-352.
[69] GUO H, CHEN Y, LI Y, et al. Electrospun fibrous materials and their applications for electromagnetic interference shielding: A review[J]. Composites Part A: Applied Science and Manufacturing, 2021, 143: 106309.
[70] LAI H, LI W, XU L, et al. Scalable fabrication of highly crosslinked conductive nanofibrous films and their applications in energy storage and electromagnetic interference shielding[J]. Chemical Engineering Journal, 2020, 400: 125322.
[71] ZHANG Z, WANG G, GU W, et al. A breathable and flexible fiber cloth based on cellulose/polyaniline cellular membrane for microwave shielding and absorbing applications[J]. Journal of Colloid and Interface Science, 2022, 605: 193-203.
[72] KONG W, YI S, SUN W, et al. Polyaniline-decorated carbon fibers for enhanced mechanical and electromagnetic interference shielding performances of epoxy composites[J]. Materials & Design, 2022, 217: 110658.
[73] CHEN R, WAN Y, WU W, et al. A lotus effect-inspired flexible and breathable membrane with hierarchical electrospinning micro/nanofibers and zno nanowires[J]. Materials & Design, 2019, 162: 246-248.
[74] STEJSKAL J, HAJNá M, KAŠPáRKOVá V, et al. Purification of a conducting polymer, polyaniline, for biomedical applications[J]. Synthetic Metals, 2014, 195: 286-293.
[75] STEJSKAL J, GILBERT R G. Polyaniline. Preparation of a conducting polymer(iupac technical report)[J]. Pure and Applied Chemistry, 2002, 74(5): 857-867.
[76] MATTES B R, WANG H L, YANG D, et al. Formation of conductive polyaniline fibers derived from highly concentrated emeraldine base solutions[J]. Synthetic Metals, 1997, 84(1): 45-49.
[77] 王新月, 王华洁, 李建三, 等. 不同酸掺杂聚苯胺防污添加剂的制备及其在防污涂料中的应用[J]. 电镀与涂饰, 2020, 39(06): 323-328.
[78] 吕尤. 导电聚苯胺纤维的制备与改性[D]; 深圳: 哈尔滨工业大学材料系 2019.
[79] CHEN Z, JIANG Y, XIN B, et al. Electrochemical analysis of conducting reduced graphene oxide/polyaniline/polyvinyl alcohol nanofibers as supercapacitor electrodes[J]. Journal of Materials Science: Materials in Electronics, 2020, 31(8): 5958-5965.
[80] PAPKOV D, ZOU Y, ANDALIB M N, et al. Simultaneously strong and tough ultrafine continuous nanofibers[J]. ACS Nano, 2013, 7(4): 3324-3331.
[81] ZHOU C, REN Y, HAN J, et al. Chiral polyaniline hollow nanotwists toward efficient enantioselective separation of amino acids[J]. ACS Nano, 2019, 13(3): 3534-3544.
[82] ZHANG Y, PAN T, YANG Z. Flexible polyethylene terephthalate/polyaniline composite paper with bending durability and effective electromagnetic shielding performance[J]. Chemical Engineering Journal, 2020, 389: 124433.
[83] LIU L, DENG H, TANG X, et al. Specific electromagnetic radiation in the wireless signal range increases wakefulness in mice[J]. Proceedings of the National Academy of Sciences, 2021, 118(31): e2105838118.
[84] LI D-Y, LIU L-X, WANG Q-W, et al. Functional polyaniline/mxene/cotton fabrics with acid/alkali-responsive and tunable electromagnetic interference shielding performances[J]. ACS Applied Materials & Interfaces, 2022, 14(10): 12703-12712.
[85] ZHANG Y, FANG X-X, WEN B-Y. Asymmetric ni/pvc films for high-performance electromagnetic interference shielding[J]. Chinese Journal of Polymer Science, 2015, 33(6): 899-907.
[86] GOPAKUMAR D A, PAI A R, POTTATHARA Y B, et al. Cellulose nanofiber-based polyaniline flexible papers as sustainable microwave absorbers in the x-band[J]. ACS Applied Materials & Interfaces, 2018, 10(23): 20032-20043.
[87] MARINS J A, SOARES B G, FRAGA M, et al. Self-supported bacterial cellulose polyaniline conducting membrane as electromagnetic interference shielding material: Effect of the oxidizing agent[J]. Cellulose, 2014, 21(3): 1409-1418.
[88] AVADHANAM V, THANASAMY D, KIRAN MATHAD J, et al. Single walled carbon nano tube -polyaniline core-shell/polyurethane polymer composite for electromagnetic interference shielding[J]. Polymer Composites, 2018, 39(11): 4104-4114.
[89] KHASIM S. Polyaniline-graphene nanoplatelet composite films with improved conductivity for high performance x-band microwave shielding applications[J]. Results in Physics, 2019, 12: 1073-1081.
[90] JELMY E J, RAMAKRISHNAN S, KOTHURKAR N K. Emi shielding and microwave absorption behavior of au-mwcnt/polyaniline nanocomposites[J]. Polymers for Advanced Technologies, 2016, 27(9): 1246-1257.
[91] ISMAIL M M, RAFEEQ S N, SULAIMAN J M A, et al. Electromagnetic interference shielding and microwave absorption properties of cobalt ferrite cofe2o4/polyaniline composite[J]. Applied Physics A, 2018, 124(5): 380.
[92] KUMAR S, ARTI, KUMAR P, et al. Steady microwave absorption behavior of two-dimensional metal carbide mxene and polyaniline composite in x-band[J]. Journal of Magnetism and Magnetic Materials, 2019, 488: 165364.
[93] BORA P J, LAKHANI G, RAMAMURTHY P C, et al. Outstanding electromagnetic interference shielding effectiveness of polyvinylbutyral–polyaniline nanocomposite film[J]. RSC Advances, 2016, 6(82): 79058-79065.
[94] ZHANG C, LV Q, LIU Y, et al. Rational design and fabrication of lightweight porous polyimide composites containing polyaniline modified graphene oxide and multiwalled carbon nanotube hybrid fillers for heat-resistant electromagnetic interference shielding[J]. Polymer, 2021, 224: 123742.
[95] PAN T, ZHANG Y, WANG C, et al. Mulberry-like polyaniline-based flexible composite fabrics with effective electromagnetic shielding capability[J]. Composites Science and Technology, 2020, 188: 107991.
[96] JOON S, KUMAR R, SINGH A P, et al. Fabrication and microwave shielding properties of free standing polyaniline-carbon fiber thin sheets[J]. Materials Chemistry and Physics, 2015, 160: 87-95.
[97] ZHANG M, LING H, DING S, et al. Synthesis of cf@pani hybrid nanocomposites decorated with fe3o4 nanoparticles towards excellent lightweight microwave absorber[J]. Carbon, 2021, 174: 248-259.
[98] VYAS M K, CHANDRA A. Synergistic effect of conducting and insulating fillers in polymer nanocomposite films for attenuation of x-band[J]. Journal of Materials Science, 2019, 54(2): 1304-1325.
修改评论