[1] IIJIMA S. Helical Microtubules Of Graphitic Carbon[J]. Nature, 1991, 354(6348): 56-58.
[2] IIJIMA S, ICHIHASHI T. Single-Shell Carbon Nanotubes of 1-nm Diameter[J]. Nature, 1993, 363(6430): 603-605.
[3] BETHUNE D S, KIANG C H, DE VRIES M S, et al. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls[J]. Nature, 1993, 363(6430): 605-607.
[4] YANG F, WANG M, ZHANG D, et al. Chirality Pure Carbon Nanotubes: Growth, Sorting, and Characterization[J]. Chemical Reviews, 2020, 120(5): 2693-2758.
[5] 吕敏, 李彦. 单壁碳纳米管的双水相分离[J]. 中国科学:化学, 2020, 50(11): 1619-1636.
[6] ANDO T. The electronic properties of graphene and carbon nanotubes[J]. NPG Asia Materials, 2009, 1(1): 17-21.
[7] JIANG J, SAITO R, GRüNEIS A, et al. Intensity of the resonance Raman excitation spectra of single-wall carbon nanotubes[J]. Physical Review B, 2005, 71(20): 205420.
[8] QIAN, DONG, WAGNER, G J, et al. Mechanics of carbon nanotubes[J]. Applied Mechanics Reviews, 2002, 55(6): 495-533.
[9] LOURIE O, WAGNER H D. Evaluation of Young's Modulus of Carbon Nanotubes by Micro-Raman Spectroscopy[J]. Journal of Materials Research, 1998, 13(9): 2418-2422.
[10] OVERNEY G, ZHONG W, TOMáNEK D. Structural rigidity and low frequency vibrational modes of long carbon tubules[J]. Zeitschrift für Physik D Atoms, Molecules and Clusters, 1993, 27(1): 93-96.
[11] TREACY M M J, EBBESEN T W, GIBSON J M. Exceptionally high Young's modulus observed for individual carbon nanotubes[J]. Nature, 1996, 381(6584): 678-680.
[12] ZHONG R, CONG H T, HOU P X. Fabrication of nano-Al based composites reinforced by single-walled carbon[J]. Carbon, 2003, 41(4): 848-851.
[13] BERBER S, KWON Y-K, TOMáNEK D. Unusually High Thermal Conductivity of Carbon Nanotubes[J]. Physical Review Letters, 2000, 84(20): 4613-4616.
[14] POP E, MANN D, WANG Q, et al. Thermal Conductance of an Individual Single-Wall Carbon Nanotube above Room Temperature[J]. Nano Letters, 2006, 6(1): 96-100.
[15] ZHAN H, CHEN Y W, SHI Q Q, et al. Highly aligned and densified carbon nanotube films with superior thermal conductivity and mechanical strength[J]. Carbon, 2022, 186: 205-214.
[16] ZHANG Z, PENG J, ZHANG H. Low-temperature resistance of individual single-walled carbon nanotubes: a theoretical estimation[J]. Applied Physics Letters, 2001, 79(21): 3515-3517.
[17] SOH H T, QUATE C F, MORPURGO A F, et al. Integrated nanotube circuits: Controlled growth and ohmic contacting of single-walled carbon nanotubes[J]. Applied Physics Letters, 1999, 75(5): 627-629.
[18] FENG C, LIU K, WU J S, et al. Flexible, stretchable, transparent conducting films made from superaligned carbon nanotubes[J]. Advanced Functional Materials, 2010, 20(6): 885-891.
[19] ZHOU X, PARK J-Y, HUANG S, et al. Band Structure, Phonon Scattering, and the Performance Limit of Single-Walled Carbon Nanotube Transistors[J]. Physical Review Letters, 2005, 95(14): 146805.
[20] AVOURIS P, CHEN Z, PEREBEINOS V. Carbon-based electronics[J]. Nature Nanotechnology, 2007, 2(10): 605-615.
[21] SHULAKER M M, HILLS G, PATIL N, et al. Carbon nanotube computer[J]. Nature, 2013, 501(7468): 526-530.
[22] SHULAKER M M, HILLS G, PARK R S, et al. Three-dimensional integration of nanotechnologies for computing and data storage on a single chip[J]. Nature, 2017, 547(7661): 74-78.
[23] YANG Z-P, CI L, BUR J A, et al. Experimental Observation of an Extremely Dark Material Made By a Low-Density Nanotube Array[J]. Nano Letters, 2008, 8(2): 446-451.
[24] KATAURA H, KUMAZAWA Y, MANIWA Y, et al. Optical properties of single-wall carbon nanotubes[J]. Synthetic Metals, 1999, 103(1): 2555-2558.
[25] JU S-Y, KOPCHA W P, PAPADIMITRAKOPOULOS F. Brightly Fluorescent Single-Walled Carbon Nanotubes via an Oxygen-Excluding Surfactant Organization[J]. Science, 2009, 323(5919): 1319-1323.
[26] LIU B, ZHANG J, WANG C, et al. Dispersion of Single-Walled Carbon Nanotubes in Organic Solvents DMAC; proceedings of the Advanced Functional Materials, Singapore, F 2018//, 2018 [C]. Springer Singapore.
[27] GEORGAKILAS V, KORDATOS K, PRATO M, et al. Organic Functionalization of Carbon Nanotubes[J]. Journal of the American Chemical Society, 2002, 124(5): 760-761.
[28] FUKUSHIMA T, KOSAKA A, ISHIMURA Y, et al. Molecular Ordering of Organic Molten Salts Triggered by Single-Walled Carbon Nanotubes[J]. Science, 2003, 300(5628): 2072-2074.
[29] WEI X J, LI S L, WANG W K, et al. Recent Advances in Structure Separation of Single-Wall Carbon Nanotubes and Their Application in Optics, Electronics, and Optoelectronics[J]. Advanced Science, 2022, 9(14): 42.
[30] DUESBERG G, MUSTER J, KRSTIC V, et al. Chromatographic size separation of single-wall carbon nanotubes[J]. Applied Physics A: Materials Science & Processing, 1998, 67(1): 117-120.
[31] ZHENG M, JAGOTA A, SEMKE E D, et al. DNA-assisted dispersion and separation of carbon nanotubes[J]. Nature Materials, 2003, 2(5): 338-342.
[32] LI H, JIN H, ZHANG J, et al. Understanding the Electrophoretic Separation of Single-Walled Carbon Nanotubes Assisted by Thionine as a Probe[J]. The Journal of Physical Chemistry C, 2010, 114(45): 19234-19238.
[33] TANAKA T, URABE Y, NISHIDE D, et al. Continuous Separation of Metallic and Semiconducting Carbon Nanotubes Using Agarose Gel[J]. Applied Physics Express, 2009, 2(12): 125002.
[34] TANAKA T, JIN H, MIYATA Y, et al. Simple and Scalable Gel-Based Separation of Metallic and Semiconducting Carbon Nanotubes[J]. Nano Letters, 2009, 9(4): 1497-1500.
[35] LIU H, TANAKA T, KATAURA H. Optical Isomer Separation of Single-Chirality Carbon Nanotubes Using Gel Column Chromatography[J]. Nano Letters, 2014, 14(11): 6237-6243.
[36] YANG D H, LI L H, WEI X J, et al. Submilligram-scale separation of near-zigzag single-chirality carbon nanotubes by temperature controlling a binary surfactant system[J]. Science Advances, 2021, 7(8): 10.
[37] KHRIPIN C Y, FAGAN J A, ZHENG M. Spontaneous Partition of Carbon Nanotubes in Polymer-Modified Aqueous Phases[J]. Journal of the American Chemical Society, 2013, 135(18): 6822-6825.
[38] AO G, KHRIPIN C Y, ZHENG M. DNA-Controlled Partition of Carbon Nanotubes in Polymer Aqueous Two-Phase Systems[J]. Journal of the American Chemical Society, 2014, 136(29): 10383-10392.
[39] LYU M, MEANY B, YANG J, et al. Toward Complete Resolution of DNA/Carbon Nanotube Hybrids by Aqueous Two-Phase Systems[J]. Journal of the American Chemical Society, 2019, 141(51): 20177-20186.
[40] OZAWA H, FUJIGAYA T, NIIDOME Y, et al. Rational Concept To Recognize/Extract Single-Walled Carbon Nanotubes with a Specific Chirality[J]. Journal of the American Chemical Society, 2011, 133(8): 2651-2657.
[41] KANAI Y, GROSSMAN J C. Role of Semiconducting and Metallic Tubes in P3HT/Carbon-Nanotube Photovoltaic Heterojunctions: Density Functional Theory Calculations[J]. Nano Letters, 2008, 8(3): 908-912.
[42] NISH A, HWANG J Y, DOIG J, et al. Highly selective dispersion of singlewalled carbon nanotubes using aromatic polymers[J]. Nature Nanotechnology, 2007, 2(10): 640-646.
[43] YANG X, ZHU C, ZENG L, et al. Polyoxometalate steric hindrance driven chirality-selective separation of subnanometer carbon nanotubes[J]. Chemical Science, 2022, 13(20): 5920-5928.
[44] 李鹏松, 蔡钊, 李莉, et al. 纳米材料的密度梯度离心分离的研究进展(上)[J]. 石油化工, 2016, 45(06): 648-655+670.
[45] ARNOLD M S, STUPP S I, HERSAM M C. Enrichment of single-walled carbon nanotubes by diameter in density gradients[J]. Nano Letters, 2005, 5(4): 713-718.
[46] ARNOLD M S, GREEN A A, HULVAT J F, et al. Sorting carbon nanotubes by electronic structure using density differentiation[J]. Nature Nanotechnology, 2006, 1(1): 60-65.
[47] YANAGI K, IITSUKA T, FUJII S, et al. Separations of Metallic and Semiconducting Carbon Nanotubes by Using Sucrose as a Gradient Medium[J]. Journal of Physical Chemistry C, 2008, 112(48): 18889-18894.
[48] KAWAI M, KYAKUNO H, SUZUKI T, et al. Single Chirality Extraction of Single-Wall Carbon Nanotubes for the Encapsulation of Organic Molecules[J]. Journal of the American Chemical Society, 2012, 134(23): 9545-9548.
[49] GHOSH S, BACHILO S M, WEISMAN R B. Advanced sorting of single-walled carbon nanotubes by nonlinear density-gradient ultracentrifugation[J]. Nature Nanotechnology, 2010, 5(6): 443-450.
[50] ZHAO P, EINARSSON E, XIANG R, et al. Controllable Expansion of Single-Walled Carbon Nanotube Dispersions Using Density Gradient Ultracentrifugation[J]. Journal of Physical Chemistry C, 2010, 114(11): 4831-4834.
[51] NIYOGI S, DENSMORE C G, DOORN S K. Electrolyte tuning of surfactant interfacial behavior for enhanced density-based separations of single-walled carbon nanotubes[J]. Journal of the American Chemical Society, 2009, 131(3): 1144-1153.
[52] SMITH B W, MONTHIOUX M, LUZZI D E. Encapsulated C60 in carbon nanotubes[J]. Nature, 1998, 396(6709): 323-324.
[53] DUJARDIN E, EBBESEN T W, HIURA H, et al. CAPILLARITY AND WETTING OF CARBON NANOTUBES[J]. Science, 1994, 265(5180): 1850-1852.
[54] SLOAN J, HAMMER J, ZWIEFKA-SIBLEY M, et al. The opening and filling of single walled carbon nanotubes (SWTs)[J]. Chemical Communications, 1998(3): 347-348.
[55] GUAN L, SUENAGA K, OKUBO S, et al. Metallic wires of lanthanum atoms inside carbon nanotubes[J]. Journal of the American Chemical Society, 2008, 130(7): 2162-2163.
[56] GUAN L H, SHI Z J, LI H J, et al. Super-long continuous Ni nanowires encapsulated in carbon nanotubes[J]. Chemical Communications, 2004(17): 1988-1989.
[57] QIN J-K, LIAO P-Y, SI M, et al. Raman response and transport properties of tellurium atomic chains encapsulated in nanotubes[J]. Nature Electronics, 2020, 3(3): 141-147.
[58] MEYER R R, SLOAN J, DUNIN-BORKOWSKI R E, et al. Discrete Atom Imaging of One-Dimensional Crystals Formed Within Single-Walled Carbon Nanotubes[J]. Science, 2000, 289(5483): 1324-1326.
[59] GUAN L, SUENAGA K, SHI Z, et al. Polymorphic Structures of Iodine and Their Phase Transition in Confined Nanospace[J]. Nano Letters, 2007, 7(6): 1532-1535.
[60] FUJIMORI T, MORELOS-GóMEZ A, ZHU Z, et al. Conducting linear chains of sulphur inside carbon nanotubes[J]. Nature Communications, 2013, 4(1): 2162.
[61] KHARLAMOVA M V, KRAMBERGER C, SAUER M, et al. Inner tube growth and electronic properties of metallicity-sorted nickelocene-filled semiconducting single-walled carbon nanotubes[J]. Applied Physics A, 2018, 124(3): 247.
[62] KITAURA R, IMAZU N, KOBAYASHI K, et al. Fabrication of Metal Nanowires in Carbon Nanotubes via Versatile Nano-Template Reaction[J]. Nano Letters, 2008, 8(2): 693-699.
[63] CAO K, CHAMBERLAIN T W, BISKUPEK J, et al. Direct Correlation of Carbon Nanotube Nucleation and Growth with the Atomic Structure of Rhenium Nanocatalysts Stimulated and Imaged by the Electron Beam[J]. Nano Letters, 2018, 18(10): 6334-6339.
[64] FEI B, LU H, CHEN W, et al. Ionic peapods from carbon nanotubes and phosphotungstic acid[J]. Carbon, 2006, 44(11): 2261-2264.
[65] YUDASAKA M, AJIMA K, SUENAGA K, et al. Nano-extraction and nano-condensation for C60 incorporation into single-wall carbon nanotubes in liquid phases[J]. Chemical Physics Letters, 2003, 380(1): 42-46.
[66] SU Q, DU G, ZHANG J, et al. In Situ Transmission Electron Microscopy Investigation of the Electrochemical Lithiation–Delithiation of Individual Co9S8/Co-Filled Carbon Nanotubes[J]. ACS Nano, 2013, 7(12): 11379-11387.
[67] MöNCH I, LEONHARDT A, MEYE A, et al. Synthesis and characteristics of Fe-filled multi-walled carbon nanotubes for biomedical application[J]. Journal of Physics: Conference Series, 2007, 61(1): 820.
[68] MONTEIRO A O, COSTA P M F J, CACHIM P B, et al. Buckling of ZnS-filled single-walled carbon nanotubes – The influence of aspect ratio[J]. Carbon, 2014, 79: 529-537.
[69] SENGA R, KOMSA H-P, LIU Z, et al. Atomic structure and dynamic behaviour of truly one-dimensional ionic chains inside carbon nanotubes[J]. Nature Materials, 2014, 13(11): 1050-1054.
[70] HU J, BANDO Y, ZHAN J, et al. Carbon Nanotubes as Nanoreactors for Fabrication of Single-Crystalline Mg3N2 Nanowires[J]. Nano Letters, 2006, 6(6): 1136-1140.
[71] CAMBRE S, WENSELEERS W. Separation and diameter-sorting of empty (end-capped) and water-filled (open) carbon nanotubes by density gradient ultracentrifugation[J]. Angewandte Chemie International Edition, 2011, 50(12): 2764-2768.
[72] FAGAN J A, HUH J Y, SIMPSON J R, et al. Separation of Empty and Water-Filled Single-Wall Carbon Nanotubes[J]. ACS Nano, 2011, 5(5): 3943-3953.
[73] YANG X, LIU T, LI R, et al. Host–Guest Molecular Interaction Enabled Separation of Large-Diameter Semiconducting Single-Walled Carbon Nanotubes[J]. Journal of the American Chemical Society, 2021, 143(27): 10120-10130.
[74] 薛安, 聂登攀, 吴素斌, et al. 纳米碘化亚铜的研究现状与应用前景[J]. 当代化工, 2014, 43(07): 1268-1270.
[75] CHERNYSHEVA M V, ELISEEV A A, LUKASHIN A V, et al. Filling of single-walled carbon nanotubes by CuI nanocrystals via capillary technique[J]. Physica E: Low-dimensional Systems and Nanostructures, 2007, 37(1): 62-65.
[76] HUTCHISON J, GROBERT N, ZAKALYUKIN R, et al. The behaviour of 1D CuI crystal@ SWNT nanocomposite under electron irradiation; proceedings of the AIP Conference Proceedings, F, 2008 [C]. American Institute of Physics.
[77] BELIN T, EPRON F. Characterization methods of carbon nanotubes: a review[J]. Materials Science and Engineering: B, 2005, 119(2): 105-118.
[78] CHASTAIN J, KING JR R C. Handbook of X-ray photoelectron spectroscopy[J]. Perkin-Elmer Corporation, 1992, 40: 221.
[79] YANG J, JIN R. New Advances in Atomically Precise Silver Nanoclusters[J]. ACS Materials Letters, 2019, 1(4): 482-489.
[80] BI Y, WANG Z, LIU T, et al. Supramolecular Chirality from Hierarchical Self-Assembly of Atomically Precise Silver Nanoclusters Induced by Secondary Metal Coordination[J]. ACS Nano, 2021, 15(10): 15910-15919.
[81] SHEN J, WANG Z, SUN D, et al. Self-assembly of water-soluble silver nanoclusters: superstructure formation and morphological evolution[J]. Nanoscale, 2017, 9(48): 19191-19200.
修改评论