中文版 | English
题名

层状潜水含水层水位波动引起的水气二相流研究

其他题名
AIR-WATER TWO-PHASE FLOW INDUCED BY WATER LEVEL FLUCTUATION IN LAYERED UNCONFINED AQUIFER
姓名
姓名拼音
SHAN Jipeng
学号
11930706
学位类型
博士
学位专业
080103 流体力学
学科门类/专业学位类别
08 工学
导师
匡星星
导师单位
环境科学与工程学院
论文答辩日期
2023-05-19
论文提交日期
2023-06-26
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

非饱和带具有地质条件复杂,流体与气体共存的特点,是植物生长、降雨入渗以及地表水-地下水相互作用的核心区域。潜水含水层水位波动引起的非饱和带内水气二相流对地下水补给、含水层参数反演、污染物运移、土壤-大气气体交换以及沿海基建稳定性等方面都有着重要的影响,因此在水文、环境与岩土工程等领域中都引起了广泛的重视。然而,在以往的研究中,对潜水含水层水位波动引起的水气二相流进行数值模拟时,相关的非饱和水力参数模型仍需改进、非饱和带地质条件考虑得也尚不周全、对水气二相流的自然诱因的认识也还存在欠缺,亟需对以上问题开展进一步的研究。

本文通过总结水气二相流相关研究成果、考虑非饱和带复杂地质条件以及潜水含水层水位波动的因素,基于二相流运动模型以及计算流体力学数值模拟,就层状潜水含水层水位波动引起的非饱和带内的水气二相流展开了系统研究。本文主要的研究内容包括:

为了提高水气二相流数值模拟的精度,本文提出了一种优化的相对渗透系数模型(Relative Hydraulic Conductivity ModelRHCM),并将其与Assouline土壤水分特征曲线(Soil Water Characteristic CurveSWCC)结合,构成了闭合解析表达式;同时,本文还将Assouline SWCC与传统的RHCM结合,进一步拓展了基于Assouline SWCC的闭合解析表达式的多样性。经40种土壤实测数据检验,优化的RHCM具有比传统模型更强的预测能力,精度比传统的Mualem模型提高了16.1%。对渗透性较低、渗透系数在1 cm/h以下的土壤,具有更好的预测能力,精度比Mualem模型提高了17.7%。优化的模型与Assouline SWCC结合成闭合解析表达式后,与VGM模型作比较,对全部40种土壤以及低渗透性土壤的预测精度分别提高了31%33%

抽水试验是获取含水层水力参数的主要方法之一。在层状潜水含水层中进行抽水试验,忽略空气流的影响可能会对结果造成较大误差。基于上覆低渗透性土层的层状潜水含水层中的抽水试验,本文针对非饱和带内广泛存在的由大颗粒岩块和土壤裂隙所造成的大孔隙优先流(Macropore Preferential FlowMPF),考虑了MPF对非饱和带内空气流动的影响因素,探究了MPF的存在对含水层水力参数反演的影响。结果表明,MPF会显著降低抽水试验引起的空气负压,最大空气负压降低了58.5%,最大空气负压持续时间减少了94.8%,由空气负压所引起的地下水水位降深曲线的相对误差,最大可以减小38%MPF的存在降低了空气负压对水力参数反演的影响,含水层饱和渗透系数与给水度的误差最小可以降至0.13%3.02%;在野外抽水试验中,若非饱和带存在较多的MPF,则可以忽略上层低渗透性地层对含水层水力参数反演结果的影响。

海岸带的波浪运动是引起层状潜水含水层非饱和带内的空气流动的可能原因之一。针对强波浪引起的非饱和带内的水气二相流,利用计算流体力学与水气二相流数值模拟耦合的方法,探究了强波浪引起的海岸带潜水含水层中的地下水位波动对非饱和带内空气流的影响机制。结果表明,非饱和带内的空气压力随波浪一起作周期性的震荡,并不断累积升高,压力突破上覆低渗透性土层后,开始逐渐下降。波浪在含水层内造成的水位波动,随传播距离的增加而逐渐衰减,非饱和带内空气压力的振幅也随之一起减小。波浪的扰动造成了非饱和带内的空气不断向内陆深处传播,使得沿内陆方向的空气压力不断增加,最大空气压力可以达到139.54 Pa。非饱和带内空气流动在水平方向与垂直方向流速相差不大;在低渗透性土层内,空气主要以垂向运动为主,水平方向十分微弱。海岸带地表处的气体交换,以持续排出土壤内空气为主,且在海岸斜坡面上空气通量最大。提高上层低渗透性土壤的渗透性,可以增加通气量,减小非饱和带内空气压力。当海岸内存在MPF时,会极大降低非饱和带内空气压力,最大可降低89%,且在沿海斜坡面上的MPF处,出现了呼吸式的气体交换。

综上所述,本文进一步完善了层状潜水含水层水位波动引起的水气二相流的相关研究,提出了优化的更适用于低渗透性土的RHCM,探究了MPF对层状潜水含水层抽水试验中非饱和带空气流动和含水层水力参数反演的影响,揭示了沿海地区非饱和带内空气流对波浪的响应机制。研究结果丰富了水气二相流相关理论知识,增进了对地下水位波动与空气流相互作用的认知,具有一定的理论意义与工程意义,为后续的水气二相流数值模拟、潜水含水层参数反演以及沿海工程建设提供了一定的科学依据。

关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2023-06
参考文献列表

[1] HOLDEN P A, FIERER N. VADOSE zone | microbial ecology[M]. HILLEL D, ed.//Encyclopedia of Soils in the Environment. Oxford: Elsevier, 2005: 216-224.
[2] HOLDEN P A, FIERER N. Microbial processes in the vadose zone[J]. Vadose Zone Journal, 2005, 4(1): 1-21.
[3] VOORHEES W B, FARRELL D A, LARSON W E. Soil strength and aeration effects on root elongation[J]. Soil Science Society of America Journal, 1975, 39(5): 948-953.
[4] MCMICHAEL B L, QUISENBERRY J E. The impact of the soil environment on the growth of root systems[J]. Environmental and Experimental Botany, 1993, 33(1): 53-61.
[5] LIANG J, ZHANG J, WONG M H. Effects of air-filled soil porosity and aeration on the initiation and growth of secondary roots of maize (zea mays)[J]. Plant and Soil, 1996, 186(2): 245-254.
[6] NACHSHON U, DRAGILA M, WEISBROD N. From atmospheric winds to fracture ventilation: cause and effect[J]. Journal of Geophysical Research: Biogeosciences, 2012, 117(G2): G02016.
[7] WEISBROD N, DRAGILA M I, NACHSHON U, et al. Falling through the cracks: the role of fractures in earth-atmosphere gas exchange[J]. Geophysical Research Letters, 2009, 36(2): L02401.
[8] SUN D M, ZANG Y G, SEMPRICH S. Effects of airflow induced by rainfall infiltration on unsaturated soil slope stability[J]. Transport in Porous Media, 2015, 107(3): 821-841.
[9] CHO S E. Stability analysis of unsaturated soil slopes considering water-air flow caused by rainfall infiltration[J]. Engineering Geology, 2016, 211: 184-197.
[10] ZHANG X Y, ZHU Y M, FANG C H. The role fore air flow in soil slope stability analysis[J]. Journal of Hydrodynamics, 2009, 21(5): 640-646.
[11] KANG S, LEE S-R, CHO S-E. Slope stability analysis of unsaturated soil slopes based on the site-specific characteristics: a case study of hwangryeong mountain, busan, korea[J]. Sustainability, 2020, 12(7): 2839.
[12] KUANG X X, JIAO J J, LI H L. Review on airflow in unsaturated zones induced by natural forcings[J]. Water Resources Research, 2013, 49(10): 6137-6165.
[13] LIU X Y, MA E Z, ZHANG Y K, et al. An analytical model of vapor intrusion with fluctuated water table[J]. Journal of Hydrology, 2021, 596: 126085.
[14] JIAO J J, GUO H P. Airflow induced by pumping tests in unconfined aquifer with a low-permeability cap[J]. Water Resources Research, 2009, 45(10): W10445.
[15] JIAO J J, LI H L. Breathing of coastal vadose zone induced by sea level fluctuations[J]. Geophysical Research Letters, 2004, 31(11): L11502.
[16] KUANG X X, JIAO J J, HUANG H, et al. Air and water flows in a large sand box with a two-layer aquifer system[J]. Hydrogeology Journal, 2013, 21(5): 977-985.
[17] SHAN J P, YANG Z L, KUANG X X, et al. Comparison of seven weibull distribution models for predicting relative hydraulic conductivity[J]. Water Resources Research, 2022, 58(5): e2021WR030683.
[18] ASSOULINE S, OR D. Conceptual and parametric representation of soil hydraulic properties: a review[J]. Vadose Zone Journal, 2013, 12(4): 1-20.
[19] 黄霄伊, 代朝猛, 游学极, 等. 地下水低渗透区重非水相液体(DNAPL)的增渗增移技术综述[J]. 材料导报, 2024(3): 1-18.
[20] 向甲甲. 低渗透性场地PRB修复地下水石油烃污染[C]//中国环境科学学会2019年科学技术年会——环境工程技术创新与应用分论坛论文集(一). 中国环境科学学会环境工程分会, 2019: 78-82.
[21] FAN Y, CLARK M, LAWRENCE D M, et al. Hillslope hydrology in global change research and earth system modeling[J]. Water Resources Research, 2019, 55(2): 1737-1772.
[22] BROOKS R H, COREY A T. Hydraulic properties of porous media[M]. Fort Collins, Colorado: Colorado State University, 1964.
[23] SCHAAP M G, VAN GENUCHTEN M Th. A modified mualem–van genuchten formulation for improved description of the hydraulic conductivity near saturation[J]. Vadose Zone Journal, 2006, 5(1): 27-34.
[24] VAN GENUCHTEN M Th. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892-898.
[25] KUANG X X, JIAO J J. A new equation for the soil water retention curve[J]. European Journal of Soil Science, 2014: 584-593.
[26] CLAPP R B, HORNBERGER G M. Empirical equations for some soil hydraulic properties[J]. Water Resources Research, 1978, 14(4): 601-604.
[27] HUTSON J L, CASS A. A retentivity function for use in soil–water simulation models[J]. Journal of Soil Science, 1987, 38(1): 105-113.
[28] BRUTSAERT W. Probability laws for pore-size distributions[J]. Soil Science, 1966, 101(2): 85-92.
[29] KONG J, SHEN C J, LUO Z Y, et al. Improvement of the hillslope-storage boussinesq model by considering lateral flow in the unsaturated zone[J]. Water Resources Research, 2016, 52(4): 2965-2984.
[30] KUANG X X, JIAO J J, SHAN J, et al. A modification to the van genuchten model for improved prediction of relative hydraulic conductivity of unsaturated soils[J]. European Journal of Soil Science, 2021, 72(3): 1354-1372.
[31] KOSUGI K. Three-parameter lognormal distribution model for soil water retention[J]. Water Resources Research, 1994, 30(4): 891-901.
[32] YANG Z L, MOHANTY B P. Effective parameterizations of three nonwetting phase relative permeability models[J]. Water Resources Research, 2015, 51(8): 6520-6531.
[33] ARYA L M, PARIS J F. A physicoempirical model to predict the soil moisture characteristic from particle-size distribution and bulk density data[J]. Soil Science Society of America Journal, 1981, 45(6): 1023-1030.
[34] ARYA L M, LEIJ F J, SHOUSE P J, et al. Relationship between the hydraulic conductivity function and the particle-size distribution[J]. Soil Science Society of America Journal, 1999, 63(5): 1063-1070.
[35] NIMMO J R, HERKELRATH W N, LAGUNA LUNA A M. Physically based estimation of soil water retention from textural data: general framework, new models, and streamlined existing models[J]. Vadose Zone Journal, 2007, 6(4): 766-773.
[36] MOHAMMADI M H, VANCLOOSTER M. Predicting the soil moisture characteristic curve from particle size distribution with a simple conceptual model[J]. Vadose Zone Journal, 2011, 10(2): 594-602.
[37] ASSOULINE S, TESSIER D, BRUAND A. A conceptual model of the soil water retention curve[J]. Water Resources Research, 1998, 34(2): 223-231.
[38] LIKOS W J, JAAFAR R. Pore-scale model for water retention and fluid partitioning of partially saturated granular soil[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(5): 724-737.
[39] ALVES R D, GITIRANA JR. G de F N, VANAPALLI S K. Advances in the modeling of the soil–water characteristic curve using pore-scale analysis[J]. Computers and Geotechnics, 2020, 127: 103766.
[40] MUFTI S, DAS A. An advanced pore-scale model for simulating water retention characteristics in granular soils[J]. Journal of Hydrology, 2022, 615: 128561.
[41] GHAREDAGHLOO B, BERG S J, SUDICKY E A. Water freezing characteristics in granular soils: insights from pore-scale simulations[J]. Advances in Water Resources, 2020, 143: 103681.
[42] HUNT A G, GEE G W. Water-retention of fractal soil models using continuum percolation theory: tests of hanford site soils[J]. Vadose Zone Journal, 2002, 1(2): 252-260.
[43] GHANBARIAN-ALAVIJEHBEHZAD, MILLÁNHUMBERTO, HUANGGUANHUA. A review of fractal, prefractal and pore-solid-fractal models for parameterizing the soil water retention curve[J]. Canadian Journal of Soil Science, 2011, 91(1): 1-14.
[44] LI Y, VANAPALLI S K. Prediction of soil-water characteristic curves using two artificial intelligence (ai) models and ai aid design method for sands[J]. Canadian Geotechnical Journal, 2022, 59(1): 129-143.
[45] LI Y, RAHARDJO H, SATYANAGA A, et al. Soil database development with the application of machine learning methods in soil properties prediction[J]. Engineering Geology, 2022, 306: 106769.
[46] 左炳昕, 查元源. 基于机器学习方法的土壤转换函数模型比较[J]. 灌溉排水学报, 2021, 40(5): 81-87.
[47] CAMPBELL G S, SHIOZAWA S. Prediction of hydraulic properties of soils using particle-size distribution and bulk density data[M]. van Genuchten M T and Leij F J,ed.//International Workshop on Indirect Methods for Estimating the Hydraulic Properties of Unsaturated Soils. University of California, 1992: 317-328.
[48] FAYER M J, SIMMONS C S. Modified soil water retention functions for all matric suctions[J]. Water Resources Research, 1995, 31(5): 1233-1238.
[49] TULLER M, OR D. Water films and scaling of soil characteristic curves at low water contents: scaling of characteristic curves[J]. Water Resources Research, 2005, 41(9): W09403.
[50] ZHANG Z F. Soil water retention and relative permeability for conditions from oven‐dry to full saturation[J]. Vadose Zone Journal, 2011, 10(4): 1299-1308.
[51] REVIL A, LU N. Unified water isotherms for clayey porous materials[J]. Water Resources Research, 2013, 49(9): 5685-5699.
[52] LU N. Generalized soil water retention equation for adsorption and capillarity[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(10): 04016051.
[53] MUALEM Y, DAGAN G. Hydraulic conductivity of soils: unified approach to the statistical models[J]. Soil Science Society of America Journal, 1978, 42(3): 392-395.
[54] GARDNER W R. Some steady-state solutions of the unsaturated moisture flow equation with application to evaporation from a water table[J]. Soil Science, 1958, 85(4): 228-232.
[55] AVERJANOV S F. About permeability of subsurface soils in case of incomplete saturation[J]. Engineering Collection, 1950: 19-21.
[56] BRESLER E, RUSSO D, MILLER R D. Rapid estimate of unsaturated hydraulic conductivity function[J]. Soil Science Society of America Journal, 1978, 42(1): 170-172.
[57] MUALEM Y. Hydraulic conductivity of unsaturated porous media: generalized macroscopic approach[J]. Water Resources Research, 1978, 14(2): 325-334.
[58] MUALEM Y. A new model for predicting the hydraulic conductivity of unsaturated porous media[J]. Water Resources Research, 1976, 12(3): 513-522.
[59] BURDINE N T. Relative permeability calculations from pore size distribution data[J]. Journal of Petroleum Technology, 1953, 5(03): 71-78.
[60] PURCELL W R. Capillary pressures - their measurement using mercury and the calculation of permeability therefrom[J]. Journal of Petroleum Technology, 1949, 1(02): 39-48.
[61] ALEXANDER LYNNE, SKAGGS R. W., ALEXANDER. Predicting unsaturated hydraulic conductivity from the soil water characteristic[J]. Transactions of the ASAE, 1986, 29(1): 0176-0184.
[62] FATT I, DYKSTRA H. Relative permeability studies[J]. Journal of Petroleum Technology, 1951, 3(09): 249-256.
[63] KOSUGI K. Lognormal distribution model for unsaturated soil hydraulic properties[J]. Water Resources Research, 1996, 32(9): 2697-2703.
[64] ASSOULINE S, TARTAKOVSKY D M. Unsaturated hydraulic conductivity function based on a soil fragmentation process[J]. Water Resources Research, 2001, 37(5): 1309-1312.
[65] ASSOULINE S. A model for soil relative hydraulic conductivity based on the water retention characteristic curve[J]. Water Resources Research, 2001, 37(2): 265-271.
[66] ASSOULINE S. On the relationships between the pore size distribution index and characteristics of the soil hydraulic functions: pore size distribution index and hydraulic functions[J]. Water Resources Research, 2005, 41(7): W07019.
[67] ASSOULINE S, TULI A, HOPMANS J W. Evaluating the relative air permeability of porous media from their water retention curves[J]. Water Resources Research, 2016, 52(5): 3428-3439.
[68] LEBEAU M, KONRAD J-M. A new capillary and thin film flow model for predicting the hydraulic conductivity of unsaturated porous media[J]. Water Resources Research, 2010, 46(12): W12554.
[69] PETERS A. Simple consistent models for water retention and hydraulic conductivity in the complete moisture range[J]. Water Resources Research, 2013, 49(10): 6765-6780.
[70] SCARFONE R, WHEELER S J, LLORET-CABOT M. A hysteretic hydraulic constitutive model for unsaturated soils and application to capillary barrier systems[J]. Geomechanics for Energy and the Environment, 2022, 30: 100224.
[71] IDEN S C, BLÖCHER J R, DIAMANTOPOULOS E, et al. Capillary, film, and vapor flow in transient bare soil evaporation (1): identifiability analysis of hydraulic conductivity in the medium to dry moisture range[J]. Water Resources Research, 2021, 57(5): e2020WR028513.
[72] 王雅男, 孙艳玲, 张丽玲. 乾安县地下水位动态变化特征及成因分析[J]. 吉林地质, 2020, 39(1): 92-96.
[73] 刘利刚. 兴平市2009~2019年地下水位变化趋势分析[J]. 陕西水利, 2023(2): 45-47.
[74] 刘美英, 闵雷雷, 沈彦俊. 河北平原浅层地下水位动态变化分析[J]. 中国农村水利水电, 2017(8): 80-85.
[75] 裴源生. 地下水水位匀速升降条件下土壤水分运动和给水度的研究[J]. 水文地质工程地质, 1983(04): 1-7.
[76] 董佩, 王旭升, 万力, 等. 地下水位升降与空气流耦合的砂柱实验及其模拟[J]. 地球科学(中国地质大学学报), 2013, 38(S1): 126-132.
[77] KUANG X X, JIAO J J, WAN L, et al. Air and water flows in a vertical sand column[J]. Water Resources Research, 2011, 47(4): W04506.
[78] THEIS C V. The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using ground-water storage[J]. Eos, Transactions American Geophysical Union, 1935, 16(2): 519–524.
[79] NEUMAN S P. Analysis of pumping test data from anisotropic unconfined aquifers considering delayed gravity response[J]. Water Resources Research, 1975, 11(2): 329-342.
[80] BOULTON N S. Analysis of data from non-equilibrium pumping tests allowing for delayed yield from storage[J]. Proceedings of the Institution of Civil Engineers, 1963, 26(3): 469-482.
[81] NEUMAN S P. Theory of flow in unconfined aquifers considering delayed response of the water table[J]. Water Resources Research, 1972, 8(4): 1031-1045.
[82] NEUMAN S P. Effect of partial penetration on flow in unconfined aquifers considering delayed gravity response[J]. Water Resources Research, 1974, 10(2): 303-312.
[83] BOUWER H, RICE R C. Delayed aquifer yield as a phenomenon of delayed air entry[J]. Water Resources Research, 1978, 14(6): 1068-1074.
[84] KUANG X X, JIAO J J, ZHANG K N, et al. Air and water flows induced by pumping tests in unconfined aquifers with low-permeability zones[J]. Hydrological Processes, 2014, 28(21): 5450-5464.
[85] LIGON J T, JOHNSON H P, KIRKHAM D. Unsteady-state drainage of fluid from a vertical column of porous material[J]. Journal of Geophysical Research, 1962, 67(13): 5199-5204.
[86] WATSON K K. Experimental and numerical study of column drainage[J]. Journal of the Hydraulics Division, 1967, 93(2): 1-15.
[87] ROGERS J S, KLUTE A. The hydraulic conductivity-water content relationship during nonsteady flow through a sand column[J]. Soil Science Society of America Journal, 1971, 35(5): 695-700.
[88] WATSON K K, WHISLER F D. System dependence of the water content-pressure head relationship[J]. Soil Science Society of America Journal, 1968, 32(1): 121-123.
[89] VACHAUD G, VAUCLIN M, KHANJI D, et al. Effects of air pressure on water flow in an unsaturated stratified vertical column of sand[J]. Water Resources Research, 1973, 9(1): 160-173.
[90] AN R, DONG P, WANG J Z, et al. Analytical solutions of vertical airflow in an unconfined aquifer with rising or falling water table[J]. Water, 2021, 13(5): 625.
[91] 孙冬梅, 张杨, S .Semprich, 等. 水位下降过程中气相对土坡稳定性的影响[J]. 地下空间与工程学报, 2015, 11(2): 511-518.
[92] 高朝侠, 徐学选, 赵娇娜, 等. 土壤大孔隙流研究现状与发展趋势[J]. 生态学报, 2014, 34(11): 2801-2811.
[93] 盛丰, 张利勇, 吴丹. 土壤优先流模型理论与观测技术的研究进展[J]. 农业工程学报, 2016, 32(06): 1-10.
[94] MOHAMMED A A, PAVLOVSKII I, CEY E E, et al. Effects of preferential flow on snowmelt partitioning and groundwater recharge in frozen soils[J]. Hydrology and Earth System Sciences, 2019, 23(12): 5017-5031.
[95] CUTHBERT M O, TINDIMUGAYA C. The importance of preferential flow in controlling groundwater recharge in tropical africa and implications for modelling the impact of climate change on groundwater resources[J]. Journal of Water and Climate Change, 2011, 1(4): 234-245.
[96] CHENG Y, OGDEN F L, ZHU J T. Earthworms and tree roots: a model study of the effect of preferential flow paths on runoff generation and groundwater recharge in steep, saprolitic, tropical lowland catchments[J]. Water Resources Research, 2017, 53(7): 5400-5419.
[97] FRANKLIN S M, KRAVCHENKO A N, VARGAS R, et al. The unexplored role of preferential flow in soil carbon dynamics[J]. Soil Biology and Biochemistry, 2021, 161: 108398.
[98] WANG Y S, BRADFORD S A, ŠIMŮNEK J. Transport and fate of microorganisms in soils with preferential flow under different solution chemistry conditions[J]. Water Resources Research, 2013, 49(5): 2424-2436.
[99] FRANKLIN S, VASILAS B, JIN Y. More than meets the dye: evaluating preferential flow paths as microbial hotspots[J]. Vadose Zone Journal, 2019, 18(1): 190024.
[100] BLACKWELL P S. Management of water repellency in australia, and risks associated with preferential flow, pesticide concentration and leaching[J]. Journal of Hydrology, 2000, 231-232: 384-395.
[101] ZHANG Y H, NIU J Z, ZHANG M X, et al. Interaction between plant roots and soil water flow in response to preferential flow paths in northern china[J]. Land Degradation & Development, 2017, 28(2): 648-663.
[102] WU Y N, ZHANG Y H, XIE L M, et al. Preferential flow improves root-soil system on a small scale: a case study of two ecotypes of phragmites communis[J]. Journal of Cleaner Production, 2021, 328: 129581.
[103] ALLAIRE S E, ROULIER S, CESSNA A J. Quantifying preferential flow in soils: a review of different techniques[J]. Journal of Hydrology, 2009, 378(1-2): 179-204.
[104] GLENN V. WILSON, JOHN L. NIEBER, ROY C. SIDLE, et al. Internal erosion during soil pipeflow: state of the science for experimental and numerical analysis[J]. Transactions of the ASABE, 2013, 56(2): 465-478.
[105] SIDLE R C, NOGUCHI S, TSUBOYAMA Y, et al. A conceptual model of preferential flow systems in forested hillslopes: evidence of self-organization[J]. Hydrological Processes, 2001, 15(10): 1675-1692.
[106] LESLIE I N, HEINSE R. Characterizing soil–pipe networks with pseudo-three-dimensional resistivity tomography on forested hillslopes with restrictive horizons[J]. Vadose Zone Journal, 2013, 12(4): 1-10.
[107] WILSON G V, RIGBY J R, URSIC M, et al. Soil pipe flow tracer experiments: 1. connectivity and transport characteristics[J]. Hydrological Processes, 2016, 30(8): 1265-1279.
[108] JONES J A A. Soil piping and catchment response[J]. Hydrological Processes, 2010, 24(12): 1548-1566.
[109] KAMPHUIS J W. Introduction to coastal engineering and management[M]. Singapore ; River Edge, N.J: World Scientific, 2000.
[110] DESPLANQUE C, MOSSMAN D J. Tides and their seminal impact on the geology, geography, history, and socio-economics of the bay of fundy, eastern canada[J]. Atlantic Geoscience, 2004, 40(1): 1-130.
[111] RABINOWITZ T R M, LUNDHOLM J T, GRAHAM J M, et al. Planting techniques and abiotic variation at two salt marsh restoration sites in the bay of fundy[J]. Restoration Ecology, 2023, 31(3): e13707.
[112] 王鑫娟. 潮汐循环对胶州湾大沽河口沉积物氮、磷、DOM释放影响的模拟研究[D]. 青岛: 青岛大学, 2021.
[113] 周曾, 陈璐莹, 蒋春海, 等. 河口地貌对潮汐不对称性影响的数值模拟研究[J]. 海洋学报, 2022, 44(7): 37-46.
[114] 张海艳. 海河口潮汐动力与潮流作用下的泥沙运动分析[D]. 天津: 天津大学, 2008.
[115] FANG Y H, ZHENG T, ZHENG .L., et al. Influence of tide-induced unstable flow on seawater intrusion and submarine groundwater discharge[J]. Water Resources Research, 2021, 57(4): e2020WR029038.
[116] BABU D S S, KHANDEKAR A, BHAGAT C, et al. Evaluation, effect and utilization of submarine groundwater discharge for coastal population and ecosystem: a special emphasis on indian coastline[J]. Journal of Environmental Management, 2021, 277: 111362.
[117] 李海龙, 焦赳赳. 海潮引起的滨海地区包气带气压周期性变化的数值模拟[J]. 地球科学, 2003(5): 505-510.
[118] GUO H P, JIAO J J. Numerical study of airflow in the unsaturated zone induced by sea tides[J]. Water Resources Research, 2008, 44(6): W06402.
[119] ZANG Y G, SUN D M, FENG P. Numerical study of tide-induced airflow and salt–fresh water dynamics in unconfined aquifers[J]. Groundwater, 2020, 58(4): 535-549.
[120] LI H, JIAO J J. One-dimensional airflow in unsaturated zone induced by periodic water table fluctuation[J]. Water Resources Research, 2005, 41(4): W04007.
[121] LI J, ZHAN H B, HUANG G H, et al. Tide-induced airflow in a two-layered coastal land with atmospheric pressure fluctuations[J]. Advances in Water Resources, 2011, 34(5): 649-658.
[122] LI J, ZHAN H, HUANG G, et al. Determining air permeability in reclaimed coastal land based on tidal fluctuations[J]. Environmental Earth Sciences, 2012, 66(4): 1259-1268.
[123] SONG J Y, LI H L, WAN L. Analytical study of airflow induced by barometric pressure and groundwater head fluctuations in a two-layered unsaturated zone[J]. Groundwater Monitoring & Remediation, 2013, 33(1): 40-47.
[124] XIA Y Q, LI H L, WANG L. Tide-induced air pressure fluctuations in a coastal unsaturated zone: effects of thin low-permeability pavements[J]. Groundwater Monitoring & Remediation, 2011, 31(2): 40-47.
[125] LI L, BARRY D A, PARLANGE J Y, et al. Beach water table fluctuations due to wave run-up: capillarity effects[J]. Water Resources Research, 1997, 33(5): 935-945.
[126] LI L, BARRY D A. Wave-induced beach groundwater flow[J]. Advances in Water Resources, 2000, 23(4): 325-337.
[127] BAKHTYAR R, BROVELLI A, BARRY D A, et al. Wave-induced water table fluctuations, sediment transport and beach profile change: modeling and comparison with large-scale laboratory experiments[J]. Coastal Engineering, 2011, 58(1): 103-118.
[128] SHOUSHTARI S M H J, CARTWRIGHT N, NIELSEN P, et al. The effects of oscillation period on groundwater wave dispersion in a sandy unconfined aquifer: sand flume experiments and modelling[J]. Journal of Hydrology, 2016, 533: 412-420.
[129] YU S C, ZHANG X L, LI H L, et al. Analytical study for wave-induced submarine groundwater discharge in subtidal zone[J]. Journal of Hydrology, 2022, 612(Part C): 128219.
[130] ZHENG Y H, YANG M Z, LIU H L. The effects of capillary fringe on solitary wave induced groundwater dynamics[J]. Coastal Engineering, 2022, 177: 104202.
[131] YANG M Z, ZHENG Y H, LIU H J. Experimental study of the solitary wave induced groundwater hydrodynamics[J]. Coastal Engineering, 2022, 177: 104193.
[132] KUDAI K, SASSA S, YANG S, et al. Influence of soil and hydraulic conditions on the processes of internal erosion, cavity formation and collapse behind coastal structures[J]. Coastal Engineering, 2021, 170: 104013.
[133] GAO C, KONG J, WANG J, et al. Potential effect of preferential flow on nitrification and denitrification in coastal unconfined aquifer[J]. Research Square, 2022.
[134] GAO C, KONG J, WANG J, et al. Effect of preferential flow on the fate of nitrate in coastal unconfined aquifer[J]. Research Square, 2022.
[135] GAO C, KONG J, ZHOU L B, et al. Macropores and burial of dissolved organic matter affect nitrate removal in intertidal aquifers[J]. Journal of Hydrology, 2023, 617: 129011.
[136] 李恩羊. 达西定律及其在非饱和土壤中的推广应用[J]. 农田水利与小水电, 1981(01): 42-44+31.
[137] TENG H, ZHAO T S. An extension of darcy’s law to non-stokes flow in porous media[J]. Chemical Engineering Science, 2000, 55(14): 2727-2735.
[138] 雷志栋. 土壤水动力学[M]. 清华大学出版社, 1987.
[139] NIMMO J R, RUBIN J, HAMMERMEISTER D P. Unsaturated flow in a centrifugal field: measurement of hydraulic conductivity and testing of darcy’s law[J]. Water Resources Research, 1987, 23(1): 124-134.
[140] FETTER C W. Applied hydrogeology[M]. Subsequent edition. Upper Saddle River, N.J: Pearson College Div, 2000.
[141] GAO Y, LIN Q Y, BIJELJIC B, et al. Pore-scale dynamics and the multiphase darcy law[J]. Physical Review Fluids, 2020, 5(1): 013801.
[142] 臧永歌. 地下淡/咸水多相流过程模拟及参数反演识别研究[D]. 天津: 天津大学, 2018.
[143] LU N, LIKOS W J. Unsaturated soil mechanics[M]. Wiley, 2008.
[144] PRUESS K, OLDENBURG C M, MORIDIS G J. TOUGH2 user’s guide version 2: LBNL-43134[R]. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States), 1999.
[145] NARASIMHAN T N, WITHERSPOON P A. An integrated finite difference method for analyzing fluid flow in porous media[J]. Water Resources Research, 1976, 12(1): 57-64.
[146] 周轩. 基于CFD的地震波作用下坝面动水压力研究[D]. 武汉理工大学, 2018.
[147] 沈志荣. 船桨舵相互作用的重叠网格技术数值方法研究[D]. 上海交通大学, 2014.
[148] 王知深. 岩石水压致裂的机理研究及非连续变形分析计算[D]. 山东大学, 2019.
[149] 叶和宇. 深海采矿扬矿泵内柱状颗粒固液两相流研究[D]. 江苏大学, 2022.
[150] 杨恩友. 住宅小区风环境的CFD研究[D]. 河北建筑工程学院, 2022.
[151] 陈文姝. 基于OpenFOAM的负载与洋流相互作用数值仿真[D]. 山东大学, 2021.
[152] 寇伟元. 实验水槽造波系统开发及数值模拟[D]. 天津: 天津大学, 2015.
[153] 蒋炎坤, 褚开星. 基于VOF方法发动机水下排气气泡特性研究[J]. 华中科技大学学报(自然科学版), 2015, 43(10): 10-14.
[154] YE J H, SHAN J P, ZHOU H R, et al. Numerical modelling of the wave interaction with revetment breakwater built on reclaimed coral reef islands in the south china sea—experimental verification[J]. Ocean Engineering, 2021, 235: 109325.
[155] GAROOSI F, MERABTENE T, MAHDI T-F. Numerical simulation of merging of two rising bubbles with different densities and diameters using an enhanced volume-of-fluid (vof) model[J]. Ocean Engineering, 2022, 247: 110711.
[156] HIGUERA P. Application of computational fluid dynamics to wave action on structures[D]. UNIVERSIDAD DE CANTABRIA, 2015.
[157] DEL JESUS M, LARA J L, LOSADA I J. Three-dimensional interaction of waves and porous coastal structures[J]. Coastal Engineering, 2012, 64: 57-72.
[158] HIGUERA P, LARA J L, LOSADA I J. Three-dimensional interaction of waves and porous coastal structures using openfoam®. part i: formulation and validation[J]. Coastal Engineering, 2014, 83: 243-258.
[159] LIN P Z, KARUNARATHNA S A. Numerical study of solitary wave interaction with porous breakwaters[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2007, 133(5): 352-363.
[160] ENGELUND F. On the laminar and turbulent flows of ground water through homogeneous sand[J]. Transactions of the Danish Academy of Technical Sciences, 1953, 3(4): 7-105.
[161] VAN GENT M R A. Wave interaction with permeable coastal structures[D]. Delft University, 1995.
[162] DEL JESUS M. Three-dimensional interaction of water waves with maritime structures[D]. University of Cantabria, 2011.
[163] HIGUERA P, LARA J L, LOSADA I J. Realistic wave generation and active wave absorption for navier–stokes models: application to openfoam®[J]. Coastal Engineering, 2013, 71: 102-118.
[164] 曾诚, 尹雨然, 周婕, 等. 基于二阶规则波模拟的数值波浪水槽优化[J]. 河海大学学报(自然科学版), 2022: 1-16.
[165] TENCHOV B G, YANEV T K. Weibull distribution of particle sizes obtained by uniform random fragmentation[J]. Journal of Colloid and Interface Science, 1986, 111(1): 1-7.
[166] BRUTSAERT W. The permeability of a porous medium determined from certain probability laws for pore size distribution[J]. Water Resources Research, 1968, 4(2): 425-434.
[167] YANG Z L, MOHANTY B P, EFENDIEV Y, et al. Prediction of relative air permeability of porous media with weibull pore size distribution[J]. Water Resources Research, 2019, 55(11): 10037-10049.
[168] KOSUGI K. General model for unsaturated hydraulic conductivity for soils with lognormal pore-size distribution[J]. Soil Science Society of America Journal, 1999, 63(2): 270-277.
[169] PORTER L K, KEMPER W D, JACKSON R D, et al. Chloride diffusion in soils as influenced by moisture content[J]. Soil Science Society of America Journal, 1960, 24(6): 460-463.
[170] ASSOULINE S, SELKER J. Introduction and evaluation of a weibull hydraulic conductivity‐pressure head relationship for unsaturated soils[J]. Water Resources Research, 2017, 53(6): 4956-4964.
[171] LEIJ F J, ALVES W J, VAN GENUCHTEN M T, et al. The unsoda unsaturated soil hydraulic database: user’s manual[M]. National Risk Management Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, 1996.
[172] NEMES A, SCHAAP M, LEIJ F. The unsoda unsaturated soil hydraulic databaseversion 2.0[M]. U.S. Salinity Laboratory Riverside CA,1999.
[173] NEMES A, SCHAAP M G, LEIJ F J, et al. Description of the unsaturated soil hydraulic database unsoda version 2.0[J]. Journal of Hydrology, 2001, 251(3): 151-162.
[174] MUALEM Y. A catalogue of the hydraulic properties of unsaturated soils[M]. Haifa, Israel: Technion Israel Institute of Technology, 1976.
[175] TULI A, HOPMANS J W. Effect of degree of fluid saturation on transport coefficients in disturbed soils[J]. European Journal of Soil Science, 2004, 55(1): 147-164.
[176] DURY O, FISCHER U, SCHULIN R. Dependence of hydraulic and pneumatic characteristics of soils on a dissolved organic compound[J]. Journal of Contaminant Hydrology, 1998, 33(1): 39-57.
[177] POULOVASSILIS A. Hysteresis of pore water in granular porous bodies[J]. Soil Science, 1970, 109(1): 5-12.
[178] LALIBERTE G E, COREY A T, BROOKS R H. Properties of unsaturated porous media[D]. Colorado State University, 1966.
[179] ELRICK D E, BOWMAN D H. Note on an improved apparatus for soil moisture flow measurements[J]. Soil Science Society of America Journal, 1964, 28(3): 450-453.
[180] JENSEN M E, HANKS R J. Nonsteady-state drainage from porous media[J]. Journal of the Irrigation and Drainage Division, 1967, 93(3): 209-242.
[181] PHILIP J R. The theory of infiltration: 1. the infiltration equation and its solution[J]. Soil Science, 1957, 83(5): 345-358.
[182] HAVERKAMP R, VAUCLIN M, TOUMA J, et al. A comparison of numerical simulation models for one-dimensional infiltration[J]. Soil Science Society of America Journal, 1977, 41(2): 285-294.
[183] TULLER M, OR D. Hydraulic conductivity of variably saturated porous media: film and corner flow in angular pore space[J]. Water Resources Research, 2001, 37(5): 1257-1276.
[184] PETERS A. Reply to comment by s. iden and w. durner on “simple consistent models for water retention and hydraulic conductivity in the complete moisture range”[J]. Water Resources Research, 2014, 50(9): 7535-7539.
[185] IDEN S C, DURNER W. Comment on “simple consistent models for water retention and hydraulic conductivity in the complete moisture range” by a. peters: commentary[J]. Water Resources Research, 2014, 50(9): 7530-7534.
[186] YANG Z L, MOHANTY B P, TONG X, et al. Effects of water retention curves and permeability equations on the prediction of relative air permeability[J]. Geophysical Research Letters, 2021, 48(10): e2021GL092459.
[187] HEBER GREEN W, AMPT G A. Studies on soil phyics[J]. The Journal of Agricultural Science, 1911, 4(1): 1-24.
[188] MOREL-SEYTOUX H J, MEYER P D, NACHABE M, et al. Parameter equivalence for the brooks-corey and van genuchten soil characteristics: preserving the effective capillary drive[J]. Water Resources Research, 1996, 32(5): 1251-1258.
[189] PARLANGE J Y, HAVERKAMP R, TOUMA J. Infiltration under ponded conditions 1. optimal analytical solution and comparison with experimental observations[J]. Soil Science, 1985, 139(4): 305-311.
[190] HAVERKAMP R, PARLANGE J-Y, STARR J L, et al. Infiltration under ponded conditions: 3. a predictive equation based on physical parameters[J]. Soil Science, 1990, 149(5): 292-300.
[191] ZHOU T, XIN P, LI L, et al. Effects of large macropores on soil evaporation in salt marshes[J]. Journal of Hydrology, 2020, 584: 124754.
[192] XU X, XIN P, ZHOU T, et al. Effect of macropores on pore-water flow and soil conditions in salt marshes subject to evaporation and tides[J]. Estuarine, Coastal and Shelf Science, 2021, 261: 107558.
[193] RICHARDS L A. Capillary conduction of liquids through porous mediums[J]. Physics, 1931, 1(5): 318-333.
[194] GUO H P, JIAO J J, WEEKS E P. Rain-induced subsurface airflow and lisse effect[J]. Water Resources Research, 2008, 44(7): W07409.
[195] CARSEL R F, PARRISH R S. Developing joint probability distributions of soil water retention characteristics[J]. Water Resources Research, 1988, 24(5): 755-769.
[196] MOENCH A F. Computation of type curves for flow to partially penetrating wells in water-table aquifers[J]. Groundwater, 1993, 31(6): 966-971.
[197] MOENCH A F. Flow to a well in a water-table aquifer: an improved laplace transform solution[J]. Groundwater, 1996, 34(4): 593-596.
[198] JACOBSEN N G, VAN GENT M R A, WOLTERS G. Numerical analysis of the interaction of irregular waves with two dimensional permeable coastal structures[J]. Coastal Engineering, 2015, 102: 13-29.
[199] MICHALLET H, MORY M, PIEDRA-CUEVA I. Wave-induced pore pressure measurements near a coastal structure[J]. Journal of Geophysical Research: Oceans, 2009, 114(C6): C06019.
[200] QI W G, LI C F, JENG D S, et al. Combined wave-current induced excess pore-pressure in a sandy seabed: flume observations and comparisons with theoretical models[J]. Coastal Engineering, 2019, 147: 89-98.
[201] ABDOLLAHI A, MASON H B. Tsunami-induced pore water pressure response of unsaturated soil beds: numerical formulation and experiments[J]. Computers and Geotechnics, 2019, 110: 19-27.
[202] STARK N, MEWIS P, REEVE B, et al. Vertical pore pressure variations and geotechnical sediment properties at a sandy beach[J]. Coastal Engineering, 2022, 172: 104058.
[203] SUMER B M, FREDSØE J, CHRISTENSEN S, et al. Sinking/floatation of pipelines and other objects in liquefied soil under waves[J]. Coastal Engineering, 1999, 38(2): 53-90.
[204] L. TURNER I, NIELSEN P. Rapid water table fluctuations within the beach face: implications for swash zone sediment mobility?[J]. Coastal Engineering, 1997, 32(1): 45-59.
[205] ZIJLEMA M, STELLING G, SMIT P. SWASH: an operational public domain code for simulating wave fields and rapidly varied flows in coastal waters[J]. Coastal Engineering, 2011, 58(10): 992-1012.
[206] ZHOU H R, YE J H. Numerical study on the hydrodynamic performance of a revetment breakwater in the south china sea: a case study[J]. Ocean Engineering, 2022, 256: 111497.
[207] YU S C, WANG C Y, LI H L, et al. Field and numerical investigations of wave effects on groundwater flow and salt transport in a sandy beach[J]. Water Resources Research, 2022, 58(11): e2022WR032077.
[208] ZHANG J X, LU C H, SHEN C J, et al. Effects of a low-permeability layer on unstable flow pattern and land-sourced solute transport in coastal aquifers[J]. Journal of Hydrology, 2021, 598: 126397.
[209] CANTELON J A, GUIMOND J A, ROBINSON C E, et al. Vertical saltwater intrusion in coastal aquifers driven by episodic flooding: a review[J]. Water Resources Research, 2022, 58(11): e2022WR032614.
[210] ATAIE-ASHTIANI B, VOLKER R E, LOCKINGTON D A. Tidal effects on sea water intrusion in unconfined aquifers[J]. Journal of Hydrology, 1999, 216(1): 17-31.
[211] VIKAS M, DWARAKISH G S. Coastal pollution: a review[J]. Aquatic Procedia, 2015, 4: 381-388.
[212] JIANG Y, YANG F, HASSAN KAZMI S S U, et al. A review of microplastic pollution in seawater, sediments and organisms of the chinese coastal and marginal seas[J]. Chemosphere, 2022, 286: 131677.
[213] HOUGHTON J. Global warming[J]. Reports on Progress in Physics, 2005, 68(6): 1343.
[214] KERR R A. Global warming is changing the world[J]. Science, 2007, 316(5822): 188-190.
[215] ARMSTRONG MCKAY D I, STAAL A, ABRAMS J F, et al. Exceeding 1.5°c global warming could trigger multiple climate tipping points[J]. Science, 2022, 377(6611): eabn7950.
[216] SONG F F, ZHANG G J, RAMANATHAN V, et al. Trends in surface equivalent potential temperature: a more comprehensive metric for global warming and weather extremes[J]. Proceedings of the National Academy of Sciences, 2022, 119(6): e2117832119.
[217] SHADRICK J R, ROOD D H, HURST M D, et al. Sea-level rise will likely accelerate rock coast cliff retreat rates[J]. Nature Communications, 2022, 13(1): 7005.
[218] LI L F, CHEN H, CHEN L, et al. Past and future contributions of artificial reservoirs on global sea-level rise[J]. Resources, Conservation and Recycling, 2020, 161: 104922.
[219] FREDERIKSE T, LANDERER F, CARON L, et al. The causes of sea-level rise since 1900[J]. Nature, 2020, 584(7821): 393-397.
[220] PIELKE R A, LANDSEA C, MAYFIELD M, et al. Hurricanes and global warming[J]. Bulletin of the American Meteorological Society, 2005, 86(11): 1571-1576.
[221] LI C J, LU T, FU B J, et al. Sustainable city development challenged by extreme weather in a warming world[J]. Geography and Sustainability, 2022, 3(2): 114-118.
[222] CLARKE B, OTTO F, STUART-SMITH R, et al. Extreme weather impacts of climate change: an attribution perspective[J]. Environmental Research: Climate, 2022, 1(1): 012001.
[223] 董锁成, 陶澍, 杨旺舟, 等. 气候变化对中国沿海地区城市群的影响[J]. 气候变化研究进展, 2010, 6(4): 284-289.
[224] ZHENG C W, LI C Y. Variation of the wave energy and significant wave height in the china sea and adjacent waters[J]. Renewable and Sustainable Energy Reviews, 2015, 43: 381-387.
[225] HILES C E, ROBERTSON B, BUCKHAM B J. Extreme wave statistical methods and implications for coastal analyses[J]. Estuarine, Coastal and Shelf Science, 2019, 223: 50-60.
[226] YOUNG I R, ZIEGER S, BABANIN A V. Global trends in wind speed and wave height[J]. Science, 2011, 332(6028): 451-455.
[227] LE MÉHAUTÉ B. An introduction to water waves[M]//An Introduction to Hydrodynamics and Water Waves. Berlin, Heidelberg: Springer, 1976: 197-211.
[228] 查晶晶, 万德成. 用OpenFOAM实现数值水池造波和消波[J]. 海洋工程, 2011, 29(3): 1-12.
[229] SALARASHAYERI A F, SIOSEMARDE M. Prediction of soil hydraulic conductivity from particle-size distribution[J]. International Journal of Geological and Environmental Engineering, 2012, 6(1): 16-20.
[230] YE J H, ZHANG Z H, SHAN J P. Statistics-based method for determination of drag coefficient for nonlinear porous flow in calcareous sand soil[J]. Bulletin of Engineering Geology and the Environment, 2019, 78(5): 3663-3670.
[231] WANG Z, FEYEN J, NIELSEN D R, et al. Two-phase flow infiltration equations accounting for air entrapment effects[J]. Water Resources Research, 1997, 33(12): 2759-2767.
[232] 陈宾, 邓坚, 胡杰铭, 等. 钙质砂一维蠕变分形破碎特性宏微观试验研究[J]. 岩土力学, 2022, 43(7): 1781-1790+1853.

所在学位评定分委会
力学
国内图书分类号
P641
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/543996
专题工学院_环境科学与工程学院
推荐引用方式
GB/T 7714
单继鹏. 层状潜水含水层水位波动引起的水气二相流研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930706-单继鹏-环境科学与工程(16233KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[单继鹏]的文章
百度学术
百度学术中相似的文章
[单继鹏]的文章
必应学术
必应学术中相似的文章
[单继鹏]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。