[1] WILKINS M R, PASQUALI C, APPEL R D, et al. From Proteins to Proteomes:Large Scale Protein Identification by Two-Dimensional Electrophoresis and ArninoAcid Analysis [J]. Bio/Technology, 1996, 14(1): 61-5.
[2] TYERS M, MANN M. From genomics to proteomics [J]. Nature, 2003, 422(6928):193-7.
[3] CRAVATT B F, SIMON G M, YATES J R. The biological impact of mass- spectrometry-based proteomics [J]. Nature, 2007, 450(7172): 991-1000.
[4] MANN M. The Rise of Mass Spectrometry and the Fall of Edman Degradation [J]. Clinical Chemistry, 2016, 62(1): 293-4.
[5] GAO W, ZHANG Q, SU Y, et al. Multiomic analysis of a dried single-drop plasma sample using an integrated mass spectrometry approach [J]. The Analyst, 2020, 145(20): 6441-6.
[6] MALMSTROM E, KILSGARD O, HAURI S, et al. Large-scale inference of proteintissue origin in gram-positive sepsis plasma using quantitative targeted proteomics[J]. Nature Communications, 2016, 7(1): 10261.
[7] GEYER P E, HOLDT L M, TEUPSER D, et al. Revisiting biomarker discovery byplasma proteomics [J]. Molecular systems biology, 2017, 13(9): 942.
[8] ANDERSON N L, ANDERSON N G. The Human Plasma Proteome: History, Character, and Diagnostic Prospects [J]. Molecular & Cellular Proteomics, 2002, 1(11): 845-67.
[9] ANDERSON N L, MING L, HUANG P. The Clinical Plasma Proteome: A Survey ofClinical Assays for Proteins in Plasma and Serum [J]. Clinical Chemistry, 2010, 56(2): 177-85.
[10] DEUTSCH E W, OMENN G S, SUN Z, et al. Advances and Utility of the HumanPlasma Proteome [J]. Journal of Proteome Research, 2021, 20(12): 5241-63.
[11] ZHONG W, EDFORS F, GUMMESSON A, et al. Next generation plasma proteome profiling to monitor health and disease [J]. Nature Communications, 2021, 12(1):2493.
[12] ROHLOFF J C, GELINAS A D, JARVIS T C, et al. Nucleic Acid Ligands WithProtein-like Side Chains: Modified Aptamers and Their Use as Diagnostic andTherapeutic Agents [J]. Molecular Therapy-Nucleic Acids, 2014, 3(10): e201.
[13] KULAK N A, PICHLER G, PARON I, et al. Minimal, encapsulated proteomic- sample processing applied to copy-number estimation in eukaryotic cells [J]. Nature Methods, 2014, 11(3): 319-24.
[14] GEYER P E, KULAK N A, PICHLER G, et al. Plasma Proteome Profiling to Assess Human Health and Disease [J]. Cell Systems, 2016, 2(3): 185-95.
[15] NIU L, GEYER P E, WEWER A N J, et al. Plasma proteome profiling discoversnovel proteins associated with non-alcoholic fatty liver disease [J]. Molecularsystems biology, 2019, 15(3): e8793.
[16] GEYER P E, AREND F M, DOLL S, et al. High-resolution serum proteometrajectories in COVID-19 reveal patient-specific seroconversion [J]. EMBOMolecular Medicine, 2021, 13(8): e14167.
[17] MESSNER C B, DEMICHEV V, WENDISCH D, et al. Ultra-High-ThroughputClinical Proteomics Reveals Classifiers of COVID-19 Infection [J]. Cell Systems, 2020, 11(1): 11-24.
[18] HUGHES C S, FOEHR S, GARFIELD D A, et al. Ultrasensitive proteome analysisusing paramagnetic bead technology [J]. Molecular systems biology, 2014, 10(10):757.
[19] MULLER T, KALXDORF M, LONGUESPEE R, et al. Automated samplepreparation with SP3 for low-input clinical proteomics [J]. Molecular systemsbiology, 2020, 16(1): e9111.
[20] LIU Y, YANG Q, DU Z, et al. Synthesis of Surface-Functionalized MolybdenumDisulfide Nanomaterials for Efficient Adsorption and Deep Profiling of the HumanPlasma Proteome by Data-Independent Acquisition [J]. Analytical Chemistry, 2022, 94(43): 14956-64.
[21] CHEN W, WANG S, ADHIKARI S, et al. Simple and Integrated Spintip-BasedTechnology Applied for Deep Proteome Profiling [J]. Analytical Chemistry, 2016, 88(9): 4864-71.
[22] CHEN W, CHEN L, TIAN R. An integrated strategy for highly sensitivephosphoproteome analysis from low micrograms of protein samples [J]. TheAnalyst, 2018, 143(15): 3693-701.
[23] GAO W, LI H, LIU L, et al. An integrated strategy for high-sensitive and multilevel glycoproteome analysis from low micrograms of protein samples [J]. Journalof Chromatography A, 2019, 1600(1): 46-54.
[24] LU X, WANG Z, GAO Y, et al. AutoProteome Chip System for Fully Automatedand Integrated Proteomics Sample Preparation and Peptide Fractionation [J]. Analytical Chemistry, 2020, 92(13): 8893-900.
[25] 孙秀杰, 唐君, 陈文东, et al. 基于 SCX/SAX 混合填料的集成化蛋白质组学样品前处理方法 [J]. 中国科学:生命科学, 2018, 48(02): 188-94.
[26] LIN L, ZHENG J, YU Q, et al. High throughput and accurate serum proteomeprofiling by integrated sample preparation technology and single-run dataindependent mass spectrometry analysis [J]. Journal of Proteomics, 2018, 174(1):9-16.
[27] XUE L, LIN L, ZHOU W, et al. Mixed-mode ion exchange-based integratedproteomics technology for fast and deep plasma proteome profiling [J]. Journal ofChromatography A, 2018, 1564(1): 76-84.
[28] GWARK S, AHN H, YEOM J, et al. Plasma Proteome Signature to Predict theOutcome of Breast Cancer Patients Receiving Neoadjuvant Chemotherapy [J]. Cancers, 2021, 13(1): 6267.
[29] DOCTER D, WESTMEIER D F M, MARKIEWICZ M F S, et al. The nanoparticlebiomolecule corona: lessons learned - challenge accepted? [J]. Chemical Societyreviews, 2015, 44(17): 6094-121.
[30] CEDERVALL T, LYNCH I F S, LINDMAN S F T, et al. Understanding thenanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles [J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(7): 2050-5.
[31] CAI R, REN J, JI Y, et al. Corona of Thorns: The Surface Chemistry-MediatedProtein Corona Perturbs the Recognition and Immune Response of Macrophages [J]. ACS Applied Materials & Interfaces, 2020, 12(2): 1997-2008.
[32] OH J Y, KIM H S, PALANIKUMAR L, et al. Cloaking nanoparticles with proteincorona shield for targeted drug delivery [J]. Nature Communications, 2018, 9(1):4548.
[33] CAO M, CAI R, ZHAO L, et al. Molybdenum derived from nanomaterialsincorporates into molybdenum enzymes and affects their activities in vivo [J]. Nature Nanotechnology, 2021, 16(6): 708-16.
[34] WANG L, LI J, PAN J, et al. Revealing the Binding Structure of the Protein Corona on Gold Nanorods Using Synchrotron Radiation-Based Techniques: Understanding the Reduced Damage in Cell Membranes [J]. Journal of the American ChemicalSociety, 2013, 135(46): 17359-68.
[35] BLUME J E, MANNING W C, TROIANO G, et al. Rapid, deep and preciseprofiling of the plasma proteome with multi-nanoparticle protein corona [J]. Nature Communications, 2020, 11(1): 3662.
[36] FERDOSI S, TANGEYSH B, BROWN T R, et al. Engineered nanoparticles enabledeep proteomics studies at scale by leveraging tunable nano–bio interactions [J]. Proceedings of the National Academy of Sciences, 2022, 119(11): e2106053119.
[37] BAIMANOV D, WANG J, ZHANG J, et al. In situ analysis of nanoparticle softcorona and dynamic evolution [J]. Nature Communications, 2022, 13(1): 5389.
[38] SIMONSEN J B, MUNTER R. Pay Attention to Biological Nanoparticles whenStudying the Protein Corona on Nanomedicines [J]. Angewandte ChemieInternational Edition, 2020, 59(31): 12584-8.
[39] KESHISHIAN H, BURGESS M W, SPECHT H, et al. Quantitative, multiplexedworkflow for deep analysis of human blood plasma and biomarker discovery bymass spectrometry [J]. Nature protocols, 2017, 12(8): 1683-701.
[40] LUDWIG C, GILLET L, ROSENBERGER G, et al. Data-independent acquisition- based SWATH-MS for quantitative proteomics: a tutorial [J]. Molecular systemsbiology, 2018, 14(8): e8126.
[41] 周岳, 杨湘云, 黄敏, et al. Orbitrap Exploris 480 质谱在定量蛋白质组学应用中的优化和评测 [J]. 生物化学与生物物理进展, 2021, 48(02): 214-26.
[42] MEIER F, GEYER P E, VIRREIRA W S, et al. BoxCar acquisition method enablessingle-shot proteomics at a depth of 10,000 proteins in 100 minutes [J]. NatureMethods, 2018, 15(6): 440-8.
[43] WEWER A N J, GEYER P E, DOLL S, et al. Plasma Proteome Profiling RevealsDynamics of Inflammatory and Lipid Homeostasis Markers after Roux-En-YGastric Bypass Surgery [J]. Cell Systems, 2018, 7(6): 601-12.
[44] IGNJATOVIC V, GEYER P E, PALANIAPPAN K K, et al. Mass Spectrometry- Based Plasma Proteomics: Considerations from Sample Collection to AchievingTranslational Data [J]. Journal of Proteome Research, 2019, 18(12): 4085-97.
[45] WILSON S R, VEHUS T, BERG H S, et al. Nano-LC in proteomics: recentadvances and approaches [J]. Bioanalysis, 2015, 7(14): 1799-815.
[46] VEGVARI Á, WELINDER C, LINDBERG H, et al. Biobank resources for futurepatient care: developments, principles and concepts [J]. Journal of ClinicalBioinformatics, 2011, 1(1): 24.
[47] VIHKO P, SAJANTI E, JANNE O, et al. Serum Prostate-specific Acid- phosphatase-development and Validation of a Specific Radioimmunoassay [J]. Clinical Chemistry, 1978, 24(11): 1915-9.
[48] MONTES H Z. TNM Classification of Malignant Tumors, 7th edition [J]. International Journal of Radiation Oncology Biology Physics, 2010, 78(4): 1278.
[49] NALDRETT M J, ZEIDLER R, WILSON K E, et al. Concentration and desalting ofpeptide and protein samples with a newly developed C18 membrane in a microspin column format [J]. Journal of biomolecular techniques: JBT, 2006, 16(1): 423-8.
[50] BIAN Y, ZHENG R, BAYER F P, et al. Robust, reproducible and quantitativeanalysis of thousands of proteomes by micro-flow LC-MS/MS [J]. Naturecommunications, 2020, 11(1): 157.
[51] SUI X, WU Q, CUI X, et al. Robust Capillary- and Micro-Flow LiquidChromatography–Tandem Mass Spectrometry Methods for High-ThroughputProteome Profiling [J]. Journal of Proteome Research, 2022, 21(10): 2472-80.
[52] COX J, MANN M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification [J]. Nature Biotechnology, 2008, 26(12): 1367-72.
[53] ENG J K, MCCORMACK A L, YATES J R. An approach to correlate tandem massspectral data of peptides with amino acid sequences in a protein database [J]. Journal of the American Society for Mass Spectrometry, 1994, 5(11): 976-89.
[54] KALL L, CANTERBURY J D, WESTON J, et al. Semi-supervised learning forpeptide identification from shotgun proteomics datasets [J]. Nature Methods, 2007, 4(11): 923-5.
[55] ANDERSON N L. The Clinical Plasma Proteome: A Survey of Clinical Assays forProteins in Plasma and Serum [J]. Clinical Chemistry, 2010, 56(2): 177-85.
[56] HOSHINO A, KIM H S, BOJMAR L, et al. Extracellular Vesicle and ParticleBiomarkers Define Multiple Human Cancers [J]. Cell, 2020, 182(4): 1044-61.
[57] SANTOS-LOZANO A, VALENZUELA P L, LLAVERO F, et al. Successful aging:insights from proteome analyses of healthy centenarians [J]. Aging-US, 2020, 12(4):3502-15.
[58] YE S, MA L, ZHANG R, et al. Plasma proteomic and autoantibody profiles reveal the proteomic characteristics involved in longevity families in Bama, China [J]. Clinical Proteomics, 2019, 16(1): 22.
[59] WANG Z, ZHANG R, LIU F, et al. TMT-Based Quantitative Proteomic AnalysisReveals Proteomic Changes Involved in Longevity [J]. PROTEOMICS - ClinicalApplications, 2018, 13(4): 1800024.
[60] XU R, GONG C X, DUAN C M, et al. Age-Dependent Changes in the PlasmaProteome of Healthy Adults [J]. The journal of nutrition, health & aging, 2020, 24(8): 846-56.
[61] SURINOVA S, CHOI M, TAO S, et al. Prediction of colorectal cancer diagnosisbased on circulating plasma proteins [J]. EMBO Molecular Medicine, 2015, 7(9):1166-78.
[62] MESSNER C B, DEMICHEV V, BLOOMFIELD N, et al. Ultra-fast proteomicswith Scanning SWATH [J]. Nature biotechnology, 2021, 39(7): 846-54.
[63] DEMICHEV V, MESSNER C B, VERNARDIS S I, et al. DIA-NN: neural networksand interference correction enable deep proteome coverage in high throughput [J]. Nature Methods, 2020, 17(1): 41-4.
[64] CHUI S S Y, LO S M F, CHARMANT J P H, et al. A Chemically FunctionalizableNanoporous Material [Cu3(TMA)2(H2O)3]n [J]. Science, 1999, 283(5405): 1148-50.
[65] CAVKA J H, JAKOBSEN S, OLSBYE U, et al. A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability [J]. Journal of the American Chemical Society, 2008, 130(42): 13850-1.
[66] SIEGEL R L, MILLER K D, WAGLE N S, et al. Cancer statistics, 2023 [J]. CA: ACancer Journal for Clinicians, 2023, 73(1): 17-48.
[67] MARSH L A, CARRERA S, SHANDILYA J, et al. BASP1 interacts with oestrogenreceptor α and modifies the tamoxifen response [J]. Cell Death & Disease, 2017, 8(5): e2771-e.
[68] BAUER M, EICKHOFF J C, GOULD M N, et al. Neutrophil gelatinase-associatedlipocalin (NGAL) is a predictor of poor prognosis in human primary breast cancer[J]. Breast Cancer Research and Treatment, 2008, 108(3): 389-97.
修改评论