[1] DONG X, YANG Y, WANG B, et al. Low-temperature charge/discharge of rechargeable battery realized by intercalation pseudocapacitive behavior[J]. Advanced Science, 2020, 7(14): 2000196.
[2] HUBBLE D, BROWN D E, ZHAO Y, et al. Liquid electrolyte development for low-temperature lithium-ion batteries[J]. Energy & Environmental Science, 2022, 15: 550-578.
[3] MANTHIRAM A, GOODENOUGH J B. Layered lithium cobalt oxide cathodes[J]. Nature Energy, 2021, 6(3): 323-323.
[4] PETZL M, KASPER M, DANZER M A. Lithium plating in a commercial lithium-ion battery – A low-temperature aging study[J]. Journal of Power Sources, 2015, 275: 799-807.
[5] FAN X, WANG C. High-voltage liquid electrolytes for Li batteries: Progress and perspectives[J]. Chemical Society Reviews, 2021, 50(18): 10486-10566.
[6] DONG X, GUO Z, GUO Z, et al. Organic batteries operated at −70 °C[J]. Joule, 2018, 2(5): 902-913.
[7] 路露, 周小 红, 余 乐平,等. 锂离子电池 低温性能研究进展[J]. 化工新型材料, 2021, 49(1): 55-58.
[8] COLLINS G A, GEANEY H, RYAN K M. Alternative anodes for low temperature lithium-ion batteries[J]. Journal of Materials Chemistry A, 2021, 9(25): 14172-14213.
[9] SU X, XU Y, WU Y, et al. Liquid electrolytes for low-temperature lithium batteries: Main limitations, current advances, and future perspectives[J]. Energy Storage Materials, 2023, 56: 642-663.
[10] SCHIPPER F, AURBACH D. A brief review: Past, present and future of lithium ion batteries[J]. Russian Journal of Electrochemistry, 2016, 52(12): 1095-1121.
[11] GUO R, CHE Y, LAN G, et al. Tailoring low-temperature performance of a lithium-ion battery via rational designing interphase on an anode[J]. ACS Applied Materials & Interfaces, 2019, 11(41): 38285-38293.
[12] NITTA N, WU F, LEE J T, et al. Li-ion battery materials: Present and future[J]. Materials Today, 2015, 18(5): 252-264.
[13] XU K. Electrolytes and interphases in Li-ion batteries and beyond[J]. Chemical Reviews, 2014, 114(23): 11503-11618.
[14] PIAO Z, XIAO P, LUO R, et al. Constructing a stable interface layer by tailoring solvation chemistry in carbonate electrolytes for high-performancelithium-metal batteries[J]. Advanced Materials, 2021, 34(8): 2108400.
[15] QU H, KAFLE J, HARRIS J, et al. Application of ac impedance as diagnostic tool – low temperature electrolyte for a Li-ion battery[J]. Electrochimica Acta, 2019, 322: 134755.
[16] ZHU G, WEN K, LV W, et al. Materials insights into low-temperature performances of lithium-ion batteries[J]. Journal of Power Sources, 2015, 300: 29-40.
[17] MANTHIRAM A. A reflection on lithium-ion battery cathode chemistry[J]. Nature Communications, 2020, 11(1): 1550.
[18] LI M, LU J, CHEN Z, et al. 30 years of lithium-ion batteries[J]. Advanced Materials, 2018, 30(33): 1800561.
[19] 胡江涛, 郑家新, 潘锋. 锂电池磷酸铁锂正极材料的结构与性能相关性的研究进展[J]. 物理化学学报, 2019, 35(04): 361-370.
[20] MENG F, XIONG X, TAN L, et al. Strategies for improving electrochemical reaction kinetics of cathode materials for subzero-temperature Li-ion batteries: A review[J]. Energy Storage Materials, 2022, 44: 390-407.
[21] 李仲明, 李斌, 冯东, 等. 锂离子电池正极材料研究进展[J]. 复合材料学报, 2022, 39(02): 513-527.
[22] ZHANG W, LIANG L, ZHAO F, et al. Ni-rich LiNi 0 . 8Co0 . 1Mn0 . 1O2 coated with Li-ion conductive Li 3PO4 as competitive cathodes for high-energy-density lithium ion batteries[J]. Electrochimica Acta, 2020, 340: 135871.
[23] YAN W, YANG S, HUANG Y, et al. A review on doping/coating of nickel-rich cathode materials for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2020, 819: 153048.
[24] LU Y, ZHANG Y, ZHANG Q, et al. Recent advances in Ni-rich layered oxide particle materials for lithium-ion batteries[J]. Particuology, 2020, 53: 1-11.
[25] SUN H L, ZHANG Y F, LI W, et al. Effects of Ag coating on the structural and electrochemical properties of LiNi 0 . 8Co0 . 1Mn0 . 1O2 as cathode material for lithium ion batteries[J]. Electrochimica Acta, 2019, 327: 135054.
[26] LI Y, LAI F, ZHANG X, et al. Surface modification of Sr-doped LaMnO3coating by spray drying on Ni-rich LiNi 0 . 8Mn0 . 1Co0 . 1O2 cathode material for lithium-ion batteries[J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 102: 225-232.
[27] LI Y, ZHU J, DENG S, et al. Towards superior cyclability of LiNi 0 . 8Co0 . 1Mn0 . 1O2 cathode material for lithium ion batteries via synergetic effects of Sb modification[J]. Journal of Alloys and Compounds, 2019, 798: 93-103.
[28] DONG X, YANG Y, LI P, et al. A high‐rate and long‐life rechargeable battery operated at −75 °C[J]. Batteries & Supercaps, 2020, 3(10): 1016-1020.
[29] XU K. Li-ion battery electrolytes[J]. Nature Energy, 2021, 6(7): 763-763.
[30] TURK M C, JOHNSON C A, ROY D. Electroanalytical evaluation of temperature dependent electrolyte functions for lithium ion batteries: Investigation of selected mixed carbonate solvents using a lithium titanate electrode[J]. Journal of Energy Storage, 2018, 20: 395-408.
[31] ZHANG W, SEO D-H, CHEN T. Kinetic pathways of ionic transport in fastcharging lithium titanate[J]. Science, 2020, 367(6481): 1030-1034.
[32] 彭盼盼, 来雪琦, 韩啸, 等. 锂离子电池负极材料的研究进展 [J]. 有色金属工程, 2021, 11(11): 80-91.
[33] NIU H, WANG L, GUAN P, et al. Recent advances in application of ionic liquids in electrolyte of lithium ion batteries[J]. Journal of Energy Storage, 2021, 40: 102659.
[34] LI Y, WONG K W, DOU Q, et al. Improvement of lithium-ion battery performance at low temperature by adopting ionic liquid-decorated pmma nanoparticles as electrolyte component[J]. ACS Applied Energy Materials, 2018, 1(6): 2664-2670.
[35] LIU Q, JIANG L, ZHENG P, et al. Recent advances in stability issues of inorganic solid electrolytes and composite solid electrolytes for all-solid-state batteries[J]. Chemical Record, 2022, 22(10): 202200116.
[36] XING L, ZHENG X, SCHROEDER M, et al. Deciphering the ethylene carbonate-propylene carbonate mystery in Li-ion batteries[J]. Accounts of Chemical Research, 2018, 51(2): 282-289.
[37] XU J, WANG X, YUAN N, et al. Extending the low temperature operational limit of Li-ion battery to −80 °C[J]. Energy Storage Materials, 2019, 23: 383-389.
[38] 冯东, 郝思语, 谢于辉, 等. 锂离子电池电解质研究进展[J]. 化工新型材料, 2021, 51(02): 35-41.
[39] BOZ B, DEV T, SALVADORI A, et al. Review—electrolyte and electrode designs for enhanced ion transport properties to enable high performance lithium batteries[J]. Journal of The Electrochemical Society, 2021, 168(9): 090501.
[40] FEARS T M, SACCI R L, WINIARZ J G, et al. A study of perfluorocarboxylate ester solvents for lithium ion battery electrolytes[J]. Journal of Power Sources, 2015, 299: 434-442.
[41] QIAN Y, CHU Y, ZHENG Z, et al. A new cyclic carbonate enables high power/ low temperature lithium-ion batteries[J]. Energy Storage Materials, 2022, 45: 14-23.
[42] DIEDERICHSEN K M, MCSHANE E J, MCCLOSKEY B D. Promising routes to a high Li + transference number electrolyte for lithium ion batteries[J]. ACSEnergy Letters, 2017, 2(11): 2563-2575.
[43] GU Y, FANG S, YANG L, et al. A non-flammable electrolyte for long-life lithium ion batteries operating over a wide-temperature range[J]. Journal of Materials Chemistry A, 2021, 9(27): 15363-15372.
[44] HAREGEWOIN A M, WOTANGO A S, HWANG B-J. Electrolyte additives for lithium ion battery electrodes: Progress and perspectives[J]. Energy & Environmental Science, 2016, 9(6): 1955-1988.
[45] HE H, WANG Y, LI M, et al. Effect of fluoroethylene carbonate additive on the low–temperature performance of lithium–ion batteries[J]. Journal of Electroanalytical Chemistry, 2022, 925: 116870.
[46] LI Q, LU D, ZHENG J, et al. Li+-desolvation dictating lithium-ion battery's low-temperature performances[J]. ACS Applied Materials & Interfaces, 2017, 9(49): 42761-42768.
[47] HOU J, YANG M, WANG D, et al. Fundamentals and challenges of lithium ion batteries at temperatures between −40 and 60 °C[J]. Advanced Energy Materials, 2020, 10(18): 1904152.
[48] RAUHALA T, JALKANEN K, ROMANN T, et al. Low-temperature aging mechanisms of commercial graphite/LiFePO4 cells cycled with a simulated electric vehicle load profile—A post-mortem study[J]. Journal of Energy Storage, 2018, 20: 344-356.
[49] XU J, WANG X, YUAN N, et al. Graphite-based lithium ion battery with ultrafast charging and discharging and excellent low temperature performance[J]. Journal of Power Sources, 2019, 430: 74-79.
[50] GUO R, HAN W. The effects of electrolytes, electrolyte/electrode interphase, and binders on lithium-ion batteries at low temperature[J]. Materials Today Sustainability, 2022, 19: 100187.
[51] LI Q, LIU G, CHENG H, et al. Low-temperature electrolyte design for lithiumion batteries: Prospect and challenges[J]. Chemistry, 2021, 27(64): 15842-15865.
[52] 梁君飞, 李艳梅, 袁浩, 等. 低温锂离子电池研究进展[J]. 北京航空航天大学学报, 2021, 47(11): 2155-2174.
[53] HU D, CHEN L, TIAN J, et al. Research progress of lithium plating on graphite anode in lithium‐ion batteries[J]. Chinese Journal of Chemistry, 2020, 39(1): 165-173.
[54] YAN C, YAO Y-X, CAI W-L, et al. The influence of formation temperature on the solid electrolyte interphase of graphite in lithium ion batteries[J]. Journal of Energy Chemistry, 2020, 49: 335-338.
[55] WANG Q, JIANG L, YU Y, et al. Progress of enhancing the safety of lithium ion battery from the electrolyte aspect[J]. Nano Energy, 2019, 55: 93-114.
[56] DONG X, WANG Y G, XIA Y. Promoting rechargeable batteries operated at low temperature[J]. Accounts of Chemical Research, 2021, 54(20): 3883-3894.
[57] NAN B, CHEN L, RODRIGO N D, et al. Enhancing Li+ transport in NMC811||graphite lithium-ion batteries at low temperatures by using lowpolarity-solvent electrolytes[J]. Angewandte Chemie - International Edition, 2022, 61(35): e202205967.
[58] LI J, YUAN C F, GUO Z H, et al. Limiting factors for low-temperature performance of electrolytes in LiFePO4 /Li and graphite/Li half cells[J]. Electrochimica Acta, 2012, 59: 69-74.
[59] YANG Y, FANG Z, YIN Y, et al. Synergy of weakly-solvated electrolyte and optimized interphase enables graphite anode charge at low temperature[J]. Angewandte Chemie - International Edition, 2022, 61(36): e202208345.
[60] TIAN Z, ZOU Y, LIU G, et al. Electrolyte solvation structure design for sodium ion batteries[J]. Advanced Science, 2022, 9(22): 2201207.
[61] YANG Y, LI P, WANG N, et al. Fluorinated carboxylate ester-based electrolyte for lithium ion batteries operated at low temperature[J]. Chemical Communications, 2020, 56(67): 9640-9643.
[62] ZOU Y, CHENG F, LU Y, et al. High performance low-temperature lithium metal batteries enabled by tailored electrolyte solvation structure[J]. Small, 2023, 19(14): 2203394.
[63] NIKIFORIDIS G, RAGHIBI M, SAYEGH A, et al. Low-concentrated lithium hexafluorophosphate ternary-based electrolyte for a reliable and safe NMC/graphite lithium-ion battery[J]. The Journal of Physical Chemistry Letters, 2021, 12(7): 1911-1917.
[64] XUE W, QIN T, LI Q, et al. Exploiting the synergistic effects of multiple components with a uniform design method for developing low-temperature electrolytes[J]. Energy Storage Materials, 2022, 50: 598-605.
[65] CEKIC-LASKOVIC I, VON ASPERN N, IMHOLT L, et al. Synergistic effect of blended components in nonaqueous electrolytes for lithium ion batteries[J]. Topics in Current Chemistry, 2017, 375(2): 37.
[66] LV W, ZHU C, CHEN J, et al. High performance of low-temperature electrolyte for lithium-ion batteries using mixed additives[J]. Chemical Engineering Journal, 2021, 418: 129400.
[67] YAO Y X, YAO N, ZHOU X R, et al. Ethylene-carbonate-free electrolytes for rechargeable Li-ion pouch cells at sub-freezing temperatures[J]. Advanced Materials, 2022, 34(45): 2206448.
[68] YANG Y, CHEN Y, TAN L, et al. Rechargeable LiNi 0 . 6 5Co0 . 1 5 Mn0 . 2O2||graphite batteries operating at -60 °C [J]. Angewandte Chemie - International Edition, 2022, 61(42): e202209619.
[69] LUO H, WANG Y, FENG Y H, et al. Lithium-ion batteries under lowtemperature environment: Challenges and prospects[J]. Materials, 2022, 15(22): 8166.
[70] HOLOUBEK J, LIU H, WU Z, et al. Tailoring electrolyte solvation for Li metal batteries cycled at ultra-low temperature[J]. Nature Energy, 2021, 6: 303–313.
[71] ZHANG L, CHAI L, ZHANG L, et al. Synergistic effect between lithium bis(fluorosulfonyl)imide (LiFSI) and lithium bis-oxalato borate (LiBOB) salts in LiPF6 -based electrolyte for high-performance Li-ion batteries[J]. Electrochimica Acta, 2014, 127: 39-44.
[72] CHEN L, WU H, AI X, et al. Toward wide‐temperature electrolyte for lithium–ion batteries[J]. Battery Energy, 2022, 1(2): 20210006.
[73] SHI J, EHTESHAMI N, MA J, et al. Improving the graphite/electrolyte interface in lithium-ion battery for fast charging and low temperature operation: Fluorosulfonyl isocyanate as electrolyte additive[J]. Journal of Power Sources, 2019, 429: 67-74.
[74] LIAO L, CHENG X, MA Y, et al. Fluoroethylene carbonate as electrolyte additive to improve low temperature performance of LiFePO4 electrode[J]. Electrochimica Acta, 2013, 87: 466-472.
[75] FENG Y, ZHOU L, MA H, et al. Challenges and advances in wide-temperature rechargeable lithium batteries[J]. Energy & Environmental Science, 2022, 15(5): 1711-1759.
[76] SONG G, YI Z, SU F, et al. New insights into the mechanism of LiDFBOP for improving the low-temperature performance via the rational design of an interphase on a graphite anode[J]. ACS Applied Materials & Interfaces, 2021, 13(33): 40042-40052.
[77] LIN W, ZHU M, FAN Y, et al. Low temperature lithium-ion batteries electrolytes: Rational design, advancements, and future perspectives[J]. Journal of Alloys and Compounds, 2022, 905: 164163.
修改评论