中文版 | English
题名

应用于磷酸铁锂电池的低温电解液设计与性能研究

其他题名
DESIGN AND PERFORMANCE STUDY OF LOW TEMPERATURE ELECTROLYTES FOR LiFePO4- BASED LITHIUM-ION BATTERIES
姓名
姓名拼音
LIU Zuocheng
学号
12132056
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
徐保民
导师单位
材料科学与工程系
论文答辩日期
2023-05-19
论文提交日期
2023-06-26
学位授予单位
南方科技大学
学位授予地点
深圳
摘要
锂离子电池由于能量密度高,循环寿命长,被大量应用在电动汽车和储能域。然而,在低温条件下,锂离子电池中的电解液由于离子电导率下降 和Li+脱溶剂化过程困难等因素,导致充放电性能差,使用寿命降低,限制 了其应用场景。因此,本论文基于新型锂盐和三元溶剂设计电解液,制备了 低温条件下充放电性能优异的磷酸铁锂(LiFePO4)电池。
本论文选用碳酸二甲酯(DMC)、碳酸甲乙酯(EMC)、氟代碳酸乙烯 酯(FEC)、双氟磺酰亚胺锂(LiFSI)作为电解液组分,设计了低温电解液配方(DMC : EMC=3 : 7 (vol)+8 vol% FEC,1.2 M LiFSI)。该电解液在−20 °C 的离子电导率为 2.82 mS/cm,高于商用电解液的 2.27 mS/cm。通过扫描电 镜,透射电镜及电化学阻抗分析得知,该电解液能在正/负极表面上生成结构稳定且阻抗低的固体电解质界面(SEI)膜。该 SEI 膜均匀致密,有效地保护了石墨层的结构完整性,从而提升了低温性能。在−20 °C 下,使用该电解液的 Li‖LiFePO4 电池以 0.1 C 放电的比容量达到 107.66 mAh/g,与商用电解液(80 mAh/g)相比提升了 34.58%。以 0.2 C 循环 200 圈,容量保持率为 96.14%。
Li+在正负极界面处脱出/嵌入过程取决于 Li+与溶剂的结合能。因此,本文选用低溶剂化能的三氟乙酸乙酯(ETFA)设计了电解液(ETFA : EMC=3 : 7 (vol)+5 vol% FEC,1.2 M LiFSI)。在−20 °C 下,搭配该电解液的 Li‖C 电池放电容量达到 1.5 mAh @0.2 C,是常温放电容量的 49.5%。同时,使用ETFA 和 LiPF6 设计了电解液(ETFA : DMC : EMC=1 : 2~3 : 6~7 (vol)+5 vol% FEC,1.2 M LiPF6)。在−20 °C 下,应用该电解液的 Li‖LiFePO4 电池以 0.1C 放电的比容量表现出 127 mAh/g,即使以 2C 高倍率充放电,放比容量仍然有 50 mAh/g。该电解液显著改善了 Li‖LiFePO4 电池的低温倍率性能,展现了低温快速充电的能力。通过透射电镜和 X 射线光电子能谱表征发现,LiFSI 和 LiPF6 均能在石墨上形成 SEI 膜,但只有 LiFSI 才能形成以无机盐为主的致密 SEI 膜。该无机盐 SEI 膜具有较高的离子导电率和结构稳定性,因此能显著提高低温性能。
其他摘要
Due to their high energy density and long lifespan, lithium-ion batteries have been extensively used in electric vehicles and the energy storage. However, the ionic conductivity of the electrolyte decreases and the desolvation process of Li+ is difficult at low temperatures. These problems lead to poor charge and discharge performance and reduced cycling life of lithium-ion batteries, which limit their application scenarios. Therefore, in this thesis, based on a new lithium salt and ternary solvent electrolytes, lithium iron phosphate (LiFePO4) batteries with excellent charge and discharge performance under low-temperature conditions were obtained.
We used dimethyl carbonate (DMC), methyl ethyl carbonate (EMC), fluoroethylene carbonate (FEC), and lithium bis(fluorosulfonyl)imide (LiFSI) as electrolyte components, and designed a low-temperature electrolyte formulation (DMC: EMC = 3:7 (vol) + 8 vol% FEC, 1.2 M LiFSI). The ionic conductivity of this electrolyte is 2.82 mS/cm at −20 °C, which is higher than the commercial electrolyte of 2.27 mS/cm. Scanning electron microscope (SEM), transmission electron microscope (TEM) and electrochemical impedance analyses showed that the electrolyte can generate structurally stable solid electrolyte interface (SEI) films with low impedance on the cathode/anode surfaces. The SEI films are dense and uniform, effectively protecting the structural integrity of the graphite layer and thus enhancing the low-temperature performance of lithium-ion batteries. At −20 °C, the specific capacity of Li‖LiFePO4 batteries discharged at 0.1 C with this electrolyte reached 107.66 mAh/g, which is 34.58% higher than that of commercial electrolyte (80 mAh/g). After 200 cycles at 0.2 C rate, the Li‖ LiFePO4 batteries capacity retention ratio is 96.14%.
The process of Li+ detachment/embedding at the cathode and anode interfaces depends on the binding energy of Li+ to the solvent. Therefore, in this study, ethyl trifluoroacetate (ETFA) with low solvation energy was chosen to design the electrolyte (ETFA : EMC = 3 : 7 (vol) + 5 vol% FEC, 1.2 M LiFSI).The Li‖C batteries with this electrolyte had a discharge capacity of 1.5 mAh@0.2 C at −20 °C, which is 49.5% of the discharge capacity at room temperature.Also, the electrolyte was designed using ETFA and LiPF6 (ETFA : DMC : EMC= 1 : 2~3 : 6~7 (vol) + 5 vol% FEC, 1.2 M LiPF6). The Li‖LiFePO4 cells with this electrolyte applied at −20 °C exhibited a specific capacity of 127 mAh/g discharged at 0.1 C. Even when charged and discharged at a high rate of 2 C, the discharge specific capacity was still 50 mAh/g. This electrolyte greatly improved the low-temperature rate performance of the Li ‖ LiFePO4 batteries and demonstrated the ability for fast charging at low temperatures. The results of TEM and x-ray photoelectron spectroscopy (XPS) revealed that both LiFSI and LiPF6 could form SEI films on graphite, but only LiFSI could form a dense inorganic salt-based SEI film. This inorganic salt-based SEI films has high ion conductivity and structural stability, which can significantly improve low-temperature performance of lithium-ion batteries.
关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2023-06
参考文献列表

[1] DONG X, YANG Y, WANG B, et al. Low-temperature charge/discharge of rechargeable battery realized by intercalation pseudocapacitive behavior[J]. Advanced Science, 2020, 7(14): 2000196.
[2] HUBBLE D, BROWN D E, ZHAO Y, et al. Liquid electrolyte development for low-temperature lithium-ion batteries[J]. Energy & Environmental Science, 2022, 15: 550-578.
[3] MANTHIRAM A, GOODENOUGH J B. Layered lithium cobalt oxide cathodes[J]. Nature Energy, 2021, 6(3): 323-323.
[4] PETZL M, KASPER M, DANZER M A. Lithium plating in a commercial lithium-ion battery – A low-temperature aging study[J]. Journal of Power Sources, 2015, 275: 799-807.
[5] FAN X, WANG C. High-voltage liquid electrolytes for Li batteries: Progress and perspectives[J]. Chemical Society Reviews, 2021, 50(18): 10486-10566.
[6] DONG X, GUO Z, GUO Z, et al. Organic batteries operated at −70 °C[J]. Joule, 2018, 2(5): 902-913.
[7] 路露, 周小 红, 余 乐平,等. 锂离子电池 低温性能研究进展[J]. 化工新型材料, 2021, 49(1): 55-58.
[8] COLLINS G A, GEANEY H, RYAN K M. Alternative anodes for low temperature lithium-ion batteries[J]. Journal of Materials Chemistry A, 2021, 9(25): 14172-14213.
[9] SU X, XU Y, WU Y, et al. Liquid electrolytes for low-temperature lithium batteries: Main limitations, current advances, and future perspectives[J]. Energy Storage Materials, 2023, 56: 642-663.
[10] SCHIPPER F, AURBACH D. A brief review: Past, present and future of lithium ion batteries[J]. Russian Journal of Electrochemistry, 2016, 52(12): 1095-1121.
[11] GUO R, CHE Y, LAN G, et al. Tailoring low-temperature performance of a lithium-ion battery via rational designing interphase on an anode[J]. ACS Applied Materials & Interfaces, 2019, 11(41): 38285-38293.
[12] NITTA N, WU F, LEE J T, et al. Li-ion battery materials: Present and future[J]. Materials Today, 2015, 18(5): 252-264.
[13] XU K. Electrolytes and interphases in Li-ion batteries and beyond[J]. Chemical Reviews, 2014, 114(23): 11503-11618.
[14] PIAO Z, XIAO P, LUO R, et al. Constructing a stable interface layer by tailoring solvation chemistry in carbonate electrolytes for high-performancelithium-metal batteries[J]. Advanced Materials, 2021, 34(8): 2108400.
[15] QU H, KAFLE J, HARRIS J, et al. Application of ac impedance as diagnostic tool – low temperature electrolyte for a Li-ion battery[J]. Electrochimica Acta, 2019, 322: 134755.
[16] ZHU G, WEN K, LV W, et al. Materials insights into low-temperature performances of lithium-ion batteries[J]. Journal of Power Sources, 2015, 300: 29-40.
[17] MANTHIRAM A. A reflection on lithium-ion battery cathode chemistry[J]. Nature Communications, 2020, 11(1): 1550.
[18] LI M, LU J, CHEN Z, et al. 30 years of lithium-ion batteries[J]. Advanced Materials, 2018, 30(33): 1800561.
[19] 胡江涛, 郑家新, 潘锋. 锂电池磷酸铁锂正极材料的结构与性能相关性的研究进展[J]. 物理化学学报, 2019, 35(04): 361-370.
[20] MENG F, XIONG X, TAN L, et al. Strategies for improving electrochemical reaction kinetics of cathode materials for subzero-temperature Li-ion batteries: A review[J]. Energy Storage Materials, 2022, 44: 390-407.
[21] 李仲明, 李斌, 冯东, 等. 锂离子电池正极材料研究进展[J]. 复合材料学报, 2022, 39(02): 513-527.
[22] ZHANG W, LIANG L, ZHAO F, et al. Ni-rich LiNi 0 . 8Co0 . 1Mn0 . 1O2 coated with Li-ion conductive Li 3PO4 as competitive cathodes for high-energy-density lithium ion batteries[J]. Electrochimica Acta, 2020, 340: 135871.
[23] YAN W, YANG S, HUANG Y, et al. A review on doping/coating of nickel-rich cathode materials for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2020, 819: 153048.
[24] LU Y, ZHANG Y, ZHANG Q, et al. Recent advances in Ni-rich layered oxide particle materials for lithium-ion batteries[J]. Particuology, 2020, 53: 1-11.
[25] SUN H L, ZHANG Y F, LI W, et al. Effects of Ag coating on the structural and electrochemical properties of LiNi 0 . 8Co0 . 1Mn0 . 1O2 as cathode material for lithium ion batteries[J]. Electrochimica Acta, 2019, 327: 135054.
[26] LI Y, LAI F, ZHANG X, et al. Surface modification of Sr-doped LaMnO3coating by spray drying on Ni-rich LiNi 0 . 8Mn0 . 1Co0 . 1O2 cathode material for lithium-ion batteries[J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 102: 225-232.
[27] LI Y, ZHU J, DENG S, et al. Towards superior cyclability of LiNi 0 . 8Co0 . 1Mn0 . 1O2 cathode material for lithium ion batteries via synergetic effects of Sb modification[J]. Journal of Alloys and Compounds, 2019, 798: 93-103.
[28] DONG X, YANG Y, LI P, et al. A high‐rate and long‐life rechargeable battery operated at −75 °C[J]. Batteries & Supercaps, 2020, 3(10): 1016-1020.
[29] XU K. Li-ion battery electrolytes[J]. Nature Energy, 2021, 6(7): 763-763.
[30] TURK M C, JOHNSON C A, ROY D. Electroanalytical evaluation of temperature dependent electrolyte functions for lithium ion batteries: Investigation of selected mixed carbonate solvents using a lithium titanate electrode[J]. Journal of Energy Storage, 2018, 20: 395-408.
[31] ZHANG W, SEO D-H, CHEN T. Kinetic pathways of ionic transport in fastcharging lithium titanate[J]. Science, 2020, 367(6481): 1030-1034.
[32] 彭盼盼, 来雪琦, 韩啸, 等. 锂离子电池负极材料的研究进展 [J]. 有色金属工程, 2021, 11(11): 80-91.
[33] NIU H, WANG L, GUAN P, et al. Recent advances in application of ionic liquids in electrolyte of lithium ion batteries[J]. Journal of Energy Storage, 2021, 40: 102659.
[34] LI Y, WONG K W, DOU Q, et al. Improvement of lithium-ion battery performance at low temperature by adopting ionic liquid-decorated pmma nanoparticles as electrolyte component[J]. ACS Applied Energy Materials, 2018, 1(6): 2664-2670.
[35] LIU Q, JIANG L, ZHENG P, et al. Recent advances in stability issues of inorganic solid electrolytes and composite solid electrolytes for all-solid-state batteries[J]. Chemical Record, 2022, 22(10): 202200116.
[36] XING L, ZHENG X, SCHROEDER M, et al. Deciphering the ethylene carbonate-propylene carbonate mystery in Li-ion batteries[J]. Accounts of Chemical Research, 2018, 51(2): 282-289.
[37] XU J, WANG X, YUAN N, et al. Extending the low temperature operational limit of Li-ion battery to −80 °C[J]. Energy Storage Materials, 2019, 23: 383-389.
[38] 冯东, 郝思语, 谢于辉, 等. 锂离子电池电解质研究进展[J]. 化工新型材料, 2021, 51(02): 35-41.
[39] BOZ B, DEV T, SALVADORI A, et al. Review—electrolyte and electrode designs for enhanced ion transport properties to enable high performance lithium batteries[J]. Journal of The Electrochemical Society, 2021, 168(9): 090501.
[40] FEARS T M, SACCI R L, WINIARZ J G, et al. A study of perfluorocarboxylate ester solvents for lithium ion battery electrolytes[J]. Journal of Power Sources, 2015, 299: 434-442.
[41] QIAN Y, CHU Y, ZHENG Z, et al. A new cyclic carbonate enables high power/ low temperature lithium-ion batteries[J]. Energy Storage Materials, 2022, 45: 14-23.
[42] DIEDERICHSEN K M, MCSHANE E J, MCCLOSKEY B D. Promising routes to a high Li + transference number electrolyte for lithium ion batteries[J]. ACSEnergy Letters, 2017, 2(11): 2563-2575.
[43] GU Y, FANG S, YANG L, et al. A non-flammable electrolyte for long-life lithium ion batteries operating over a wide-temperature range[J]. Journal of Materials Chemistry A, 2021, 9(27): 15363-15372.
[44] HAREGEWOIN A M, WOTANGO A S, HWANG B-J. Electrolyte additives for lithium ion battery electrodes: Progress and perspectives[J]. Energy & Environmental Science, 2016, 9(6): 1955-1988.
[45] HE H, WANG Y, LI M, et al. Effect of fluoroethylene carbonate additive on the low–temperature performance of lithium–ion batteries[J]. Journal of Electroanalytical Chemistry, 2022, 925: 116870.
[46] LI Q, LU D, ZHENG J, et al. Li+-desolvation dictating lithium-ion battery's low-temperature performances[J]. ACS Applied Materials & Interfaces, 2017, 9(49): 42761-42768.
[47] HOU J, YANG M, WANG D, et al. Fundamentals and challenges of lithium ion batteries at temperatures between −40 and 60 °C[J]. Advanced Energy Materials, 2020, 10(18): 1904152.
[48] RAUHALA T, JALKANEN K, ROMANN T, et al. Low-temperature aging mechanisms of commercial graphite/LiFePO4 cells cycled with a simulated electric vehicle load profile—A post-mortem study[J]. Journal of Energy Storage, 2018, 20: 344-356.
[49] XU J, WANG X, YUAN N, et al. Graphite-based lithium ion battery with ultrafast charging and discharging and excellent low temperature performance[J]. Journal of Power Sources, 2019, 430: 74-79.
[50] GUO R, HAN W. The effects of electrolytes, electrolyte/electrode interphase, and binders on lithium-ion batteries at low temperature[J]. Materials Today Sustainability, 2022, 19: 100187.
[51] LI Q, LIU G, CHENG H, et al. Low-temperature electrolyte design for lithiumion batteries: Prospect and challenges[J]. Chemistry, 2021, 27(64): 15842-15865.
[52] 梁君飞, 李艳梅, 袁浩, 等. 低温锂离子电池研究进展[J]. 北京航空航天大学学报, 2021, 47(11): 2155-2174.
[53] HU D, CHEN L, TIAN J, et al. Research progress of lithium plating on graphite anode in lithium‐ion batteries[J]. Chinese Journal of Chemistry, 2020, 39(1): 165-173.
[54] YAN C, YAO Y-X, CAI W-L, et al. The influence of formation temperature on the solid electrolyte interphase of graphite in lithium ion batteries[J]. Journal of Energy Chemistry, 2020, 49: 335-338.
[55] WANG Q, JIANG L, YU Y, et al. Progress of enhancing the safety of lithium ion battery from the electrolyte aspect[J]. Nano Energy, 2019, 55: 93-114.
[56] DONG X, WANG Y G, XIA Y. Promoting rechargeable batteries operated at low temperature[J]. Accounts of Chemical Research, 2021, 54(20): 3883-3894.
[57] NAN B, CHEN L, RODRIGO N D, et al. Enhancing Li+ transport in NMC811||graphite lithium-ion batteries at low temperatures by using lowpolarity-solvent electrolytes[J]. Angewandte Chemie - International Edition, 2022, 61(35): e202205967.
[58] LI J, YUAN C F, GUO Z H, et al. Limiting factors for low-temperature performance of electrolytes in LiFePO4 /Li and graphite/Li half cells[J]. Electrochimica Acta, 2012, 59: 69-74.
[59] YANG Y, FANG Z, YIN Y, et al. Synergy of weakly-solvated electrolyte and optimized interphase enables graphite anode charge at low temperature[J]. Angewandte Chemie - International Edition, 2022, 61(36): e202208345.
[60] TIAN Z, ZOU Y, LIU G, et al. Electrolyte solvation structure design for sodium ion batteries[J]. Advanced Science, 2022, 9(22): 2201207.
[61] YANG Y, LI P, WANG N, et al. Fluorinated carboxylate ester-based electrolyte for lithium ion batteries operated at low temperature[J]. Chemical Communications, 2020, 56(67): 9640-9643.
[62] ZOU Y, CHENG F, LU Y, et al. High performance low-temperature lithium metal batteries enabled by tailored electrolyte solvation structure[J]. Small, 2023, 19(14): 2203394.
[63] NIKIFORIDIS G, RAGHIBI M, SAYEGH A, et al. Low-concentrated lithium hexafluorophosphate ternary-based electrolyte for a reliable and safe NMC/graphite lithium-ion battery[J]. The Journal of Physical Chemistry Letters, 2021, 12(7): 1911-1917.
[64] XUE W, QIN T, LI Q, et al. Exploiting the synergistic effects of multiple components with a uniform design method for developing low-temperature electrolytes[J]. Energy Storage Materials, 2022, 50: 598-605.
[65] CEKIC-LASKOVIC I, VON ASPERN N, IMHOLT L, et al. Synergistic effect of blended components in nonaqueous electrolytes for lithium ion batteries[J]. Topics in Current Chemistry, 2017, 375(2): 37.
[66] LV W, ZHU C, CHEN J, et al. High performance of low-temperature electrolyte for lithium-ion batteries using mixed additives[J]. Chemical Engineering Journal, 2021, 418: 129400.
[67] YAO Y X, YAO N, ZHOU X R, et al. Ethylene-carbonate-free electrolytes for rechargeable Li-ion pouch cells at sub-freezing temperatures[J]. Advanced Materials, 2022, 34(45): 2206448.
[68] YANG Y, CHEN Y, TAN L, et al. Rechargeable LiNi 0 . 6 5Co0 . 1 5 Mn0 . 2O2||graphite batteries operating at -60 °C [J]. Angewandte Chemie - International Edition, 2022, 61(42): e202209619.
[69] LUO H, WANG Y, FENG Y H, et al. Lithium-ion batteries under lowtemperature environment: Challenges and prospects[J]. Materials, 2022, 15(22): 8166.
[70] HOLOUBEK J, LIU H, WU Z, et al. Tailoring electrolyte solvation for Li metal batteries cycled at ultra-low temperature[J]. Nature Energy, 2021, 6: 303–313.
[71] ZHANG L, CHAI L, ZHANG L, et al. Synergistic effect between lithium bis(fluorosulfonyl)imide (LiFSI) and lithium bis-oxalato borate (LiBOB) salts in LiPF6 -based electrolyte for high-performance Li-ion batteries[J]. Electrochimica Acta, 2014, 127: 39-44.
[72] CHEN L, WU H, AI X, et al. Toward wide‐temperature electrolyte for lithium–ion batteries[J]. Battery Energy, 2022, 1(2): 20210006.
[73] SHI J, EHTESHAMI N, MA J, et al. Improving the graphite/electrolyte interface in lithium-ion battery for fast charging and low temperature operation: Fluorosulfonyl isocyanate as electrolyte additive[J]. Journal of Power Sources, 2019, 429: 67-74.
[74] LIAO L, CHENG X, MA Y, et al. Fluoroethylene carbonate as electrolyte additive to improve low temperature performance of LiFePO4 electrode[J]. Electrochimica Acta, 2013, 87: 466-472.
[75] FENG Y, ZHOU L, MA H, et al. Challenges and advances in wide-temperature rechargeable lithium batteries[J]. Energy & Environmental Science, 2022, 15(5): 1711-1759.
[76] SONG G, YI Z, SU F, et al. New insights into the mechanism of LiDFBOP for improving the low-temperature performance via the rational design of an interphase on a graphite anode[J]. ACS Applied Materials & Interfaces, 2021, 13(33): 40042-40052.
[77] LIN W, ZHU M, FAN Y, et al. Low temperature lithium-ion batteries electrolytes: Rational design, advancements, and future perspectives[J]. Journal of Alloys and Compounds, 2022, 905: 164163.

所在学位评定分委会
材料科学与工程
国内图书分类号
TM912.9
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544001
专题工学院_材料科学与工程系
推荐引用方式
GB/T 7714
刘作成. 应用于磷酸铁锂电池的低温电解液设计与性能研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132056-刘作成-材料科学与工程(5682KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[刘作成]的文章
百度学术
百度学术中相似的文章
[刘作成]的文章
必应学术
必应学术中相似的文章
[刘作成]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。