中文版 | English
题名

复合粒度聚晶金刚石的高温高压制备与表征

其他题名
HIGH PRESSURE AND HIGH TEMPERATURE PREPARATION AND CHARACTERIZATION OF COMPOSITE-GRAINED POLYCRYSTALLINE DIAMOND
姓名
姓名拼音
LI Xinyu
学号
12132926
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
王培
导师单位
前沿与交叉科学研究院
论文答辩日期
2023-05-25
论文提交日期
2023-06-26
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

金刚石由高原子密度的碳原子构成,由于碳原子半径小,相互键合能高,可在金刚石中形成超强的共价键结合的三维网状致密结构,因此金刚石是已知最硬最强的材料。但金刚石也具有固有缺陷,如较差的韧性和热稳定性,并且单晶金刚石容易解离,这些固有缺陷限制了它的工业应用,所以人们期望可以同时提高金刚石的力学性能和热稳定性。传统上利用高温高压烧结单一粒度的金刚石制备聚晶金刚石,容易在晶粒之间的堆积空隙处形成低压区,导致金刚石石墨化,严重影响其力学性能和热稳定性。根据霍尔佩奇效应和量子限域效应,可以通过调控材料的粒度,在晶界处形成粒度梯度,提高其力学性能和热稳定性。本课题采用10 μm、1 μm和80 nm的混合金刚石粉末作为初始材料,在15-17 GPa,1,800-2,500 °C的高温高压条件下,保温30 min,利用高温高压烧结方法制备出了一种具有复合晶粒尺寸与粒度梯度结构的超强超硬聚晶金刚石材料。维氏压痕表征显示聚晶金刚石块体样品中,纳米-亚微米复合区域维氏硬度为76 GPa,断裂韧性值为8.93 MPa·m1/2;而微米-纳米复合区域的维氏硬度则达到了123 GPa。维氏硬度值达到了单晶金刚石的极限,实现了增韧的作用(硬度为60-120 GPa,断裂韧性为3.4-5 MPa·m1/2);制备的聚晶金刚石材料的起始氧化温度高达984 °C,比人造金刚石粉高近400 °C。样品的微观结构表征显示出样品形成了纳米-亚微米复合区域和微米-纳米复合区域的粒度梯度结构,该微结构的形成可以有效避免以往单一粒度金刚石烧结中在晶粒之间的堆积空隙处的低压区石墨化,促进了金刚石键的键合,并且形成具有粒度梯度的框架结构可以有效抵抗外界的压、剪、切和高温,达到了同步提高金刚石硬度、韧性和热稳定性的目的。复合晶粒尺寸和粒度梯度结构聚晶金刚石的获得也为超硬材料的设计和制备提供了一种新的思路。

其他摘要

Diamond is composed of carbon atoms with high density. Due to small radiuses and high mutual bonding energy, carbon atoms can form a dense three-dimensional network structure of super-strong covalent bonds in diamond. Therefore, diamond is the hardest and strongest material known. However, diamond also has inherent drawbacks, which limit its industrial application, such as poor toughness and thermal stability, and single crystal diamond is easy to disintegrate. So it is anticipated to improve the mechanical properties and thermal stability of diamond simultaneously. Traditionally, polycrystalline diamond is prepared by sintering diamond with single particle size under high pressure and high temperature, which is easy to form low pressure areas in stacking voids among grains, leading to graphitization of diamond, which seriously affects its mechanical properties and thermal stability. According to the Hall-Petch effect and quantum confinement effect, the grainsized gradient can be formed at the grain boundaries by controlling the particle size of the material, to enhance its mechanical properties and thermal stability. In this study, diamond powder of 10 μm, 1 μm and 80 nm is mixed as starting materials. A superhard polycrystalline diamond material with a composite-grained and grainsized gradient structure is prepared by sintering at 15-17 GPa and 1,800 to 2,500 °C for 30 minutes. Vickers indentation shows that the Vickers hardness of nano-submicron grains is 76 GPa and the fracture toughness value is 8.93 MPa·m1/2, respectively. Meanwhile, The Vickers hardness of micron-nano composites is 123 GPa. The Vickers hardness of the sample has reached the limit of single crystal diamond, and the toughening effect has been realized (HV = 60-120 GPa and KIC = 3.4-5 MPa·m1/2). In addition, the onset oxidation temperature of prepared polycrystalline diamond material is up to 984 °C, nearly 400 °C higher than artificial diamond powder. The samples are found to form grainsized gradient structures of nano-submicron grains and micron-nano composites. The formation of the microstructure can effectively prevent the graphitization caused by low pressure areas in stacking voids among grains in the previous sintering diamond with single particle size, and promote the bonding of diamond bonds. Besides, Forming the frame structure with grainsized gradient can significantly resist the external compression, shear, cutting and high temperature, and achieve the purpose of improving the hardness, toughness and thermal stability of diamond simultaneously. The creation of polycrystalline diamond with composite-grained and grainsized gradient structure also provides a new idea for the design and preparation of superhard materials.

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2023-06
参考文献列表

[1] MCMILLAN PAUL F. Chemistry at high pressure[J]. Chemical Society Reviews, 2006, 35(10): 855-857.
[2] MCMILLAN PAUL F. Chemistry of materials under extreme high pressure-high-temperature conditions[J]. Chemical Communications, 2003(8): 919-923.
[3] 李翔, 刘清青, 冯少敏, 等. 六八型大腔体二级推进高压高温装置与新材料的高压合成[J]. 高压物理学报, 2013, 27(02): 223-229.
[4] SREEDHARA MB, HETTLER SIMON, KAPLAN-ASHIRI IFAT, et al. Asymmetric misfit nanotubes: Chemical affinity outwits the entropy at high-temperature solid-state reactions[J]. Proceedings of the National Academy of Sciences, 2021, 118(35): e2109945118.
[5] 牛文彬, 何盛金, 吴利翔, 等. SiC/Cr扩散偶在高温下的界面固相反应研究[J]. 热加工工艺, 2022, 51(04): 55-58+63.
[6] 唐虎. 纳米聚晶金刚石合成和碳纳米葱高温高压相变机理的研究[D]. 燕山大学, 2018.
[7] 连东洋, 杨经绥, 刘飞, 等. 金刚石分类、组成特征以及我国金刚石研究展望[J]. Earth Science-Journal of China University of Geosciences, 2019, 44(10)
[8] GUIGNARD J., PRAKASAM M., LARGETEAU A. A Review of Binderless Polycrystalline Diamonds: Focus on the High-Pressure-High-Temperature Sintering Process[J]. Materials (Basel), 2022, 15(6)
[9] NEMETH P., MCCOLL K., GARVIE L. A. J., et al. Complex nanostructures in diamond[J]. Nat Mater, 2020, 19(11): 1126-1131.
[10] DOBRZHINETSKAYA LARISSA F. Microdiamonds—frontier of ultrahigh-pressure metamorphism: a review[J]. Gondwana Research, 2012, 21(1): 207-223.
[11] More than a simple crystal[J]. Nat Mater, 2020, 19(11): 1125.
[12] 陨石中的金刚石[J]. 地质论评, 1963(01): 11.
[13] А.А.МАРАКУШЕВ, 叶德隆. 陨石中金刚石的成因[J]. 地质科学译丛, 1996(03): 7-9.
[14] OHFUJI H., IRIFUNE T., LITASOV K. D., et al. Natural occurrence of pure nano-polycrystalline diamond from impact crater[J]. Sci Rep, 2015, 5: 14702.
[15] ZHANG LIJUN, WANG YANCHAO, LV JIAN, et al. Materials discovery at high pressures[J]. Nature Reviews Materials, 2017, 2(4)
[16] WANG XUERONG, LIU XIAOYANG. High pressure: a feasible tool for the synthesis of unprecedented inorganic compounds[J]. Inorganic Chemistry Frontiers, 2020, 7(16): 2890-2908.
[17] 韩奇钢. 人造金刚石的制备方法及其超高压技术[J]. 高压物理学报, 2015, 29(04): 313-320.
[18] 岳江浩. 人造金刚石的制备方法与超高压技术研究[J]. 冶金与材料, 2020, 40(03): 46-47.
[19] ESWARAPPA PRAMEELA SUHAS, POLLOCK TRESA M, RAABE DIERK, et al. Materials for extreme environments[J]. Nature Reviews Materials, 2022: 1-8.
[20] DECARLI PAUL S, JAMIESON JOHN C. Formation of diamond by explosive shock[J]. Science, 1961, 133(3467): 1821-1822.
[21] 杨斌, 陆凤国, 赵旭东, et al. 1000t Walker型高温高压装置的使用与压力标定[J]. 高压物理学报, 2011, 25(04): 303-309.
[22] LIU JIN, ZHAN GUODONG, WANG QIANG, et al. Superstrong micro-grained polycrystalline diamond compact through work hardening under high pressure[J]. Applied Physics Letters, 2018, 112(6)
[23] 刘进, 贺端威. 超硬高韧微米颗粒聚晶金刚石块材的超高压制备[J]. 金刚石与磨料磨具工程, 2018, 38(06): 1-6.
[24] ZHANG JIAWEI, ZHAN GUODONG DAVID, HE DUANWEI, et al. Transparent diamond ceramics from diamond powder[J]. Journal of the European Ceramic Society, 2023, 43(3): 853-861.
[25] XU CHAO, HE DUANWEI, WANG HAIKUO, et al. Nano-polycrystalline diamond formation under ultra-high pressure[J]. International Journal of Refractory Metals and Hard Materials, 2013, 36: 232-237.
[26] STOYANOV EMIL, HäUSSERMANN ULRICH, LEINENWEBER KURT. Large-volume multianvil cells designed for chemical synthesis at high pressures[J]. High Pressure Research, 2010, 30(1): 175-189.
[27] 李帅锜, 贺端威, 张佳威. 大腔体静高压技术的发展及应用[J]. 物理, 2022, 51(04): 228-238.
[28] 陈本富. 两面顶装置合成的金刚石特性研究[J]. 人工晶体学报, 1997(Z1): 158-159.
[29] 王光祖, 郭留希, 赵清国, et al. 高速发展的中国超硬材料[J]. 金刚石与磨料磨具工程, 2003(06): 65-69.
[30] 王光祖. 人造金刚石合成技术开拓创新的50年[J]. 金刚石与磨料磨具工程, 2004(06): 73-77.
[31] 王光祖. 我国第一颗人造金刚石的诞生[J]. 超硬材料工程, 2008(04): 45-47.
[32] YEUNG MICHAEL T., MOHAMMADI REZA, KANER RICHARD B. Ultraincompressible, Superhard Materials[J]. Annual Review of Materials Research, 2016, 46(1): 465-485.
[33] TIAN YONGJUN, XU BO, ZHAO ZHISHENG. Microscopic theory of hardness and design of novel superhard crystals[J]. International Journal of Refractory Metals and Hard Materials, 2012, 33: 93-106.
[34] KANER RICHARD B, GILMAN JOHN J, TOLBERT SARAH H. Designing superhard materials[J]. Science, 2005, 308(5726): 1268-1269.
[35] LE GODEC YANN, COURAC ALEXANDRE, SOLOZHENKO VLADIMIR L. High-pressure synthesis of superhard and ultrahard materials[J]. Journal of Applied Physics, 2019, 126(15): 151102.
[36] HAINES J, LEGER JM, BOCQUILLON G. Synthesis and design of superhard materials[J]. Annual Review of Materials Research, 2001, 31(1): 1-23.
[37] ZEIDLER ANITA, CRICHTON WILSON A. Materials under pressure[J]. MRS Bulletin, 2017, 42(10): 710-713.
[38] WHITE M. A., KAHWAJI S., FREITAS V. L. S., et al. The Relative Thermodynamic Stability of Diamond and Graphite[J]. Angew Chem Int Ed Engl, 2021, 60(3): 1546-1549.
[39] 余家国, 程蓓, 叶晓川, et al. 人造金刚石在空气中的热稳定性研究[J]. 无机材料学报, 1997(05): 739-743.
[40] 舒国阳, V. RALCHENKO, A. BOLSHAKOV, et al. 大尺寸单晶金刚石同质连接技术[J]. 自然杂志, 2019, 41(02): 100-110.
[41] JOSHI A, NIMMAGADDA R, HERRINGTON J. Oxidation kinetics of diamond, graphite, and chemical vapor deposited diamond films by thermal gravimetry[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1990, 8(3): 2137-2142.
[42] 肖建伟. 纳米孪晶金刚石和纳米孪晶铜的力学性质研究[D]. 燕山大学, 2018.
[43] BREEDING CHRISTOPHER M, SHIGLEY JAMES E. The “type” classification system of diamonds and its importance in gemology[J]. Gems Gemol, 2009, 45(2): 96-111.
[44] XU BO, TIAN YONGJUN. Diamond gets harder, tougher, and more deformable[J]. Matter and Radiation at Extremes, 2020, 5(6)
[45] AL-SHARAB JAFAR F., TSE S. D., KEAR B. H. Defect Analysis of Single Crystal Synthetic Diamond[J]. Microscopy and Microanalysis, 2018, 24(S1): 1766-1767.
[46] 陈石林. 聚晶金刚石复合体界面及复合机理的研究[D]. 中南大学, 2004.
[47] TILLMANN W, GATHEN M, VOGLI E, et al. Powder Injection Moulding Sintering Processes: Novel Encapsulation-Technique for Diamond Impregnated Composites; proceedings of the European Congress and Exhibition on Powder Metallurgy European PM Conference Proceedings, F, 2006 [C]. The European Powder Metallurgy Association.
[48] DZEPINA BRANISLAV, BALINT DANIEL, DINI DANIELE. A phase field model of pressure-assisted sintering[J]. Journal of the European Ceramic Society, 2019, 39(2-3): 173-182.
[49] BOONYONGMANEERAT YUTTANANT. Mechanical properties of partially sintered materials[J]. Materials Science and Engineering: A, 2007, 452: 773-780.
[50] 邓福铭, 李丹, 毛峰, et al. 纳米金刚石高压烧结实验研究[J]. 超硬材料工程, 2013, 25(03): 16-19.
[51] PARK S., ABATE, II, LIU J., et al. Facile diamond synthesis from lower diamondoids[J]. Sci Adv, 2020, 6(8): eaay9405.
[52] BOCHECHKA O. O. Production of Polycrystalline Materials by Sintering of Nanodispersed Diamond Nanopowders at High Pressure. Review[J]. Journal of Superhard Materials, 2018, 40(5): 325-334.
[53] DOBRZHINETSKAYA LARISSA F. Microdiamonds — Frontier of ultrahigh-pressure metamorphism: A review[J]. Gondwana Research, 2012, 21(1): 207-223.
[54] YUAN X., CHENG Y., TANG H., et al. sp(2)-to-sp(3) transitions in graphite during cold-compression[J]. Phys Chem Chem Phys, 2022, 24(17): 10561-10566.
[55] 赵云良, 赵爽之, 闫森. 金刚石烧结体(PCD与PDC)的发展概况(一)[J]. 超硬材料工程, 2013, 25(04): 24-28.
[56] CAMPBELL JOHN. The origin of Griffith cracks[J]. Metallurgical and Materials Transactions B, 2011, 42: 1091-1097.
[57] UPADHYAYA GOPAL S. Materials science of cemented carbides—an overview[J]. Materials & Design, 2001, 22(6): 483-489.
[58] HUANG Q., YU D., XU B., et al. Nanotwinned diamond with unprecedented hardness and stability[J]. Nature, 2014, 510(7504): 250-253.
[59] LI Q., ZHAN G., LI D., et al. Ultrastrong catalyst-free polycrystalline diamond[J]. Sci Rep, 2020, 10(1): 22020.
[60] 何巨龙, 田永君. 合成比天然金刚石更硬的材料[J]. 科学世界, 2019(01): 106-111.
[61] TIAN Y., XU B., YU D., et al. Ultrahard nanotwinned cubic boron nitride[J]. Nature, 2013, 493(7432): 385-388.
[62] CHEN ZHAORAN, MA DEJIANG, WANG SHANMIN, et al. Effects of graphene addition on mechanical properties of polycrystalline diamond compact[J]. Ceramics International, 2020, 46(8): 11255-11260.
[63] 张志国. 人工合成金刚石的历史与现状[D]. 吉林大学, 2006.
[64] HALL H TRACY. Sintered diamond: a synthetic carbonado[J]. Science, 1970, 169(3948): 868-869.
[65] 赵云良, 赵爽之, 闫森. 金刚石烧结体(PCD与PDC)的发展概况(二)[J]. 超硬材料工程, 2013, 25(05): 42-46.
[66] 赵云良, 赵爽之, 闫森. 金刚石烧结体(PCD与PDC)的发展概况(三)[J]. 超硬材料工程, 2013, 25(06): 53-56.
[67] 新吉乐夫. PCD及PDC钻头在石油钻井中的应用[J]. 石化技术, 2016, 23(03): 86.
[68] 贾洪声, 鄂元龙, 李海波, et al. 金刚石的烧结形貌及物相结构; proceedings of the 第八届中国功能材料及其应用学术会议, 中国黑龙江哈尔滨, F, 2013 [C].
[69] JAWORSKA LUCYNA, OLSZOWKA-MYALSKA ANITA, CYGAN SLAWOMIR, et al. The influence of tungsten carbide contamination from the milling process on PCD materials oxidation[J]. International Journal of Refractory Metals and Hard Materials, 2017, 64: 60-65.
[70] WANG YANBIN, SHI FENG, OHFUJI HIROAKI, et al. Strength and plastic deformation of polycrystalline diamond composites[J]. High Pressure Research, 2019, 40(1): 35-53.
[71] LU JINGRUI, KOU ZILI, LIU TENG, et al. Submicron binderless polycrystalline diamond sintering under ultra-high pressure[J]. Diamond and Related Materials, 2017, 77: 41-45.
[72] ZENG YONGPAN, ZHANG QIAN, WANG YUJIA, et al. Toughening and crack healing mechanisms in nanotwinned diamond composites with various polytypes[J]. Physical Review Letters, 2021, 127(6): 066101.
[73] OSES COREY, TOHER CORMAC, CURTAROLO STEFANO. High-entropy ceramics[J]. Nature Reviews Materials, 2020, 5(4): 295-309.
[74] SUMIYA HITOSHI. Novel development of high-pressure synthetic diamonds ultra-hard nano-polycrystalline diamonds[J]. SEI Technical Review, 2012, 74: 15-23.
[75] VEPREK STAN. Recent search for new superhard materials: Go nano![J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2013, 31(5)
[76] ZHOU X., FENG Z., ZHU L., et al. High-pressure strengthening in ultrafine-grained metals[J]. Nature, 2020, 579(7797): 67-72.
[77] 卢柯. 梯度纳米结构材料[J]. 金属学报, 2015, 51(01): 1-10.
[78] CHENG Z., ZHOU H., LU Q., et al. Extra strengthening and work hardening in gradient nanotwinned metals[J]. Science, 2018, 362(6414)
[79] TIAN YONGJUN. Nanostructured superhard materials[J]. Chinese Science Bulletin, 2018, 63(14): 1320-1331.
[80] XU BO, TIAN YONGJUN. Superhard materials: recent research progress and prospects[J]. Science China Materials, 2015, 58(2): 132-142.
[81] XU BO, TIAN YONG-JUN. High pressure synthesis of nanotwinned ultrahard materials[J]. Acta Physica Sinica, 2017, 66(3)
[82] ZHAO ZHISHENG, XU BO, TIAN YONGJUN. Recent Advances in Superhard Materials[J]. Annual Review of Materials Research, 2016, 46(1): 383-406.
[83] PAN QINGSONG, ZHANG LIANGXUE, FENG RUI, et al. Gradient cell–structured high-entropy alloy with exceptional strength and ductility[J]. Science, 2021, 374(6570): 984-989.
[84] HU JIAN, SHI YN, SAUVAGE X, et al. Grain boundary stability governs hardening and softening in extremely fine nanograined metals[J]. Science, 2017, 355(6331): 1292-1296.
[85] CHEN XM, YANG B. A new approach for toughening of ceramics[J]. Materials letters, 1997, 33(3-4): 237-240.
[86] YOO SUNG CHAN, LEE DONGJU, RYU SEONG WOO, et al. Recent progress in low-dimensional nanomaterials filled multifunctional metal matrix nanocomposites[J]. Progress in Materials Science, 2022: 101034.
[87] LU LEI, CHEN XIANHUA, HUANG XIAOXU, et al. Revealing the maximum strength in nanotwinned copper[J]. Science, 2009, 323(5914): 607-610.
[88] SCHUH CHRISTOPHER A, NIEH TG. Hardness and abrasion resistance of nanocrystalline nickel alloys near the Hall-Petch breakdown regime[J]. MRS Online Proceedings Library (OPL), 2002, 740
[89] CARLTON CE, FERREIRA PJ. What is behind the inverse Hall–Petch effect in nanocrystalline materials?[J]. Acta Materialia, 2007, 55(11): 3749-3756.
[90] XU BO, TIAN YONGJUN. Ultrahardness: Measurement and Enhancement[J]. The Journal of Physical Chemistry C, 2015, 119(10): 5633-5638.
[91] XIE HONGBO, PAN HUCHENG, BAI JUNYUAN, et al. Twin boundary superstructures assembled by periodic segregation of solute atoms[J]. Nano Letters, 2021, 21(22): 9642-9650.
[92] HU WENTAO, WEN BIN, HUANG QUAN, et al. Role of plastic deformation in tailoring ultrafine microstructure in nanotwinned diamond for enhanced hardness[J]. Science China Materials, 2017, 60(2): 178-185.
[93] 傅凤理, 戚晓红. 人造金刚石热性能分析[J]. 磨料磨具与磨削, 1994(03): 10-13.
[94] 熊湘君, 陈启武, 彭振斌, et al. 金刚石热稳定性研究[J]. 地质与勘探, 1999(03): 62-65.
[95] 王适, 张弘弢. 金刚石热稳定性研究现状分析[J]. 金刚石与磨料磨具工程, 2001(05): 36-39+33-34.
[96] XU CHAO, HE DUANWEI, WANG HAIKUO, et al. Nano-polycrystalline diamond formation under ultra-high pressure[J]. International Journal of Refractory Metals and Hard Materials, 2013, 36: 232-237.
[97] LIU YIN-JUAN, HE DUAN-WEI, WANG PEI, et al. Syntheses and studies of superhard composites under high pressure[J]. Acta Physica Sinica, 2017, 66(3)
[98] IRIFUNE TETSUO, KURIO AYAKO, SAKAMOTO SHIZUE, et al. Formation of pure polycrystalline diamond by direct conversion of graphite at high pressure and high temperature[J]. Physics of the Earth and Planetary Interiors, 2004, 143-144: 593-600.
[99] XIAO J., YANG H., WU X., et al. Dislocation behaviors in nanotwinned diamond[J]. Sci Adv, 2018, 4(9): eaat8195.
[100] IRIFUNE TETSUO, KURIO AYAKO, SAKAMOTO SHIZUE, et al. Ultrahard polycrystalline diamond from graphite[J]. Nature, 2003, 421(6923): 599-600.
[101] SOLOZHENKO VLADIMIR L, KURAKEVYCH OLEKSANDR O, LE GODEC YANN. Creation of nanostuctures by extreme conditions: High‐pressure synthesis of ultrahard nanocrystalline cubic boron nitride[J]. Advanced materials, 2012, 24(12): 1540-1544.
[102] YAO MINGGUANG, SHEN FANGREN, GUO DEZHOU, et al. Super Strengthening Nano‐Polycrystalline Diamond through Grain Boundary Thinning[J]. Advanced Functional Materials, 2023: 2214696.
[103] SHANG Y., LIU Z., DONG J., et al. Ultrahard bulk amorphous carbon from collapsed fullerene[J]. Nature, 2021, 599(7886): 599-604.
[104] TANG H., YUAN X., CHENG Y., et al. Synthesis of paracrystalline diamond[J]. Nature, 2021, 599(7886): 605-610.
[105] LI CHUNCHING, OUYANG LILIANG, ARMSTRONG JAMES PK, et al. Advances in the fabrication of biomaterials for gradient tissue engineering[J]. Trends in Biotechnology, 2021, 39(2): 150-164.
[106] 闫佳鹤, 杜一飞, 冯运莉. 梯度纳米结构金属材料制备及力学性能研究现状[J]. 塑性工程学报, 2022, 29(05): 1-13.
[107] FANG TH, LI WL, TAO NR, et al. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper[J]. Science, 2011, 331(6024): 1587-1590.
[108] KAWAI NAOTO, ENDO SHOICHI. The generation of ultrahigh hydrostatic pressures by a split sphere apparatus[J]. Review of Scientific Instruments, 1970, 41(8): 1178-1181.
[109] WALKER D, CARPENTER MA, HITCH CM. Some simplifications to multianvil devices for high pressure experiments[J]. American Mineralogist, 1990, 75(9-10): 1020-1028.
[110] ISHII TAKAYUKI, LIU ZHAODONG, KATSURA TOMOO. A breakthrough in pressure generation by a Kawai-type multi-anvil apparatus with tungsten carbide anvils[J]. Engineering, 2019, 5(3): 434-440.
[111] YAMAZAKI D, ITO E. High pressure generation in the Kawai-type multianvil apparatus equipped with sintered diamond anvils[J]. High Pressure Research, 2020, 40(1): 3-11.
[112] BONDAR DMITRY, FEI HONGZHAN, WITHERS ANTHONY C, et al. A rapid-quench technique for multi-anvil high-pressure-temperature experiments[J]. Review of Scientific Instruments, 2020, 91(6): 065105.
[113] KAWAZOE T, OHTANI E. Reaction between liquid iron and (Mg, Fe) SiO3-perovskite and solubilities of Si and O in molten iron at 27 GPa[J]. Physics and chemistry of minerals, 2006, 33: 227-234.
[114] ISHII TAKAYUKI, SHI LEI, HUANG R, et al. Generation of pressures over 40 GPa using Kawai-type multi-anvil press with tungsten carbide anvils[J]. Review of Scientific Instruments, 2016, 87(2): 024501.
[115] YAMAZAKI DAISUKE, ITO EIJI, YOSHINO TAKASHI, et al. High-pressure generation in the Kawai-type multianvil apparatus equipped with tungsten-carbide anvils and sintered-diamond anvils, and X-ray observation on CaSnO3 and (Mg, Fe) SiO3[J]. Comptes Rendus Geoscience, 2019, 351(2-3): 253-259.
[116] LI WEIWEI, WANG PEI, XU CHAO, et al. High-Pressure and High-Temperature Synthesis and In Situ High-Pressure Synchrotron X-ray Diffraction Study of HfSi2[J]. Inorganic Chemistry, 2021, 60(20): 15215-15222.
[117] 赵云良, 赵爽之, 闫森. 金刚石烧结体(PCD与PDC)的发展概况(四)[J]. 超硬材料工程, 2014, 26(01): 48-51.
[118] 韩奇钢, 马红安, 李瑞, et al. 六面顶压机硬质合金顶锤应力与破裂机理的有限元分析[J]. 重型机械, 2007(03): 27-31.
[119] LUO HU, AJMAL KHAN MUHAMMAD, LIU WANG, et al. Polishing and planarization of single crystal diamonds: state-of-the-art and perspectives[J]. International Journal of Extreme Manufacturing, 2021, 3(2): 022003.
[120] LI BAOZHONG, YING PAN, GAO YUFEI, et al. Heterogeneous Diamond-cBN Composites with Superb Toughness and Hardness[J]. Nano Letters, 2022, 22(12): 4979-4984.
[121] DUBROVINSKAIA NATALIA, SOLOZHENKO VLADIMIR L, MIYAJIMA NOBUYOSHI, et al. Superhard nanocomposite of dense polymorphs of boron nitride: Noncarbon material has reached diamond hardness[J]. Applied Physics Letters, 2007, 90(10): 101912.
[122] LIU GUODUAN, KOU ZILI, YAN XIAOZHI, et al. Submicron cubic boron nitride as hard as diamond[J]. Applied Physics Letters, 2015, 106(12)
[123] LIU JIN, ZOU YONGTAO, ZHAN GUODONG DAVID, et al. Is the hardness of material harder than diamond reliable?[J]. Journal of Materials Science & Technology, 2023, 144: 111-117.
[124] YAN CHIH-SHIUE, MAO HO-KWANG, LI WEI, et al. Ultrahard diamond single crystals from chemical vapor deposition[J]. physica status solidi (a), 2004, 201(4): R25-R27.
[125] LIU YINJUAN, HE DUANWEI, KOU ZILI, et al. Hardness and thermal stability enhancement of polycrystalline diamond compact through additive hexagonal boron nitride[J]. Scripta Materialia, 2018, 149: 1-5.

所在学位评定分委会
材料与化工
国内图书分类号
中国
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544014
专题理学院_物理系
推荐引用方式
GB/T 7714
李昕宇. 复合粒度聚晶金刚石的高温高压制备与表征[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132926-李昕宇-物理系.pdf(9188KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[李昕宇]的文章
百度学术
百度学术中相似的文章
[李昕宇]的文章
必应学术
必应学术中相似的文章
[李昕宇]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。