[1] MCMILLAN PAUL F. Chemistry at high pressure[J]. Chemical Society Reviews, 2006, 35(10): 855-857.
[2] MCMILLAN PAUL F. Chemistry of materials under extreme high pressure-high-temperature conditions[J]. Chemical Communications, 2003(8): 919-923.
[3] 李翔, 刘清青, 冯少敏, 等. 六八型大腔体二级推进高压高温装置与新材料的高压合成[J]. 高压物理学报, 2013, 27(02): 223-229.
[4] SREEDHARA MB, HETTLER SIMON, KAPLAN-ASHIRI IFAT, et al. Asymmetric misfit nanotubes: Chemical affinity outwits the entropy at high-temperature solid-state reactions[J]. Proceedings of the National Academy of Sciences, 2021, 118(35): e2109945118.
[5] 牛文彬, 何盛金, 吴利翔, 等. SiC/Cr扩散偶在高温下的界面固相反应研究[J]. 热加工工艺, 2022, 51(04): 55-58+63.
[6] 唐虎. 纳米聚晶金刚石合成和碳纳米葱高温高压相变机理的研究[D]. 燕山大学, 2018.
[7] 连东洋, 杨经绥, 刘飞, 等. 金刚石分类、组成特征以及我国金刚石研究展望[J]. Earth Science-Journal of China University of Geosciences, 2019, 44(10)
[8] GUIGNARD J., PRAKASAM M., LARGETEAU A. A Review of Binderless Polycrystalline Diamonds: Focus on the High-Pressure-High-Temperature Sintering Process[J]. Materials (Basel), 2022, 15(6)
[9] NEMETH P., MCCOLL K., GARVIE L. A. J., et al. Complex nanostructures in diamond[J]. Nat Mater, 2020, 19(11): 1126-1131.
[10] DOBRZHINETSKAYA LARISSA F. Microdiamonds—frontier of ultrahigh-pressure metamorphism: a review[J]. Gondwana Research, 2012, 21(1): 207-223.
[11] More than a simple crystal[J]. Nat Mater, 2020, 19(11): 1125.
[12] 陨石中的金刚石[J]. 地质论评, 1963(01): 11.
[13] А.А.МАРАКУШЕВ, 叶德隆. 陨石中金刚石的成因[J]. 地质科学译丛, 1996(03): 7-9.
[14] OHFUJI H., IRIFUNE T., LITASOV K. D., et al. Natural occurrence of pure nano-polycrystalline diamond from impact crater[J]. Sci Rep, 2015, 5: 14702.
[15] ZHANG LIJUN, WANG YANCHAO, LV JIAN, et al. Materials discovery at high pressures[J]. Nature Reviews Materials, 2017, 2(4)
[16] WANG XUERONG, LIU XIAOYANG. High pressure: a feasible tool for the synthesis of unprecedented inorganic compounds[J]. Inorganic Chemistry Frontiers, 2020, 7(16): 2890-2908.
[17] 韩奇钢. 人造金刚石的制备方法及其超高压技术[J]. 高压物理学报, 2015, 29(04): 313-320.
[18] 岳江浩. 人造金刚石的制备方法与超高压技术研究[J]. 冶金与材料, 2020, 40(03): 46-47.
[19] ESWARAPPA PRAMEELA SUHAS, POLLOCK TRESA M, RAABE DIERK, et al. Materials for extreme environments[J]. Nature Reviews Materials, 2022: 1-8.
[20] DECARLI PAUL S, JAMIESON JOHN C. Formation of diamond by explosive shock[J]. Science, 1961, 133(3467): 1821-1822.
[21] 杨斌, 陆凤国, 赵旭东, et al. 1000t Walker型高温高压装置的使用与压力标定[J]. 高压物理学报, 2011, 25(04): 303-309.
[22] LIU JIN, ZHAN GUODONG, WANG QIANG, et al. Superstrong micro-grained polycrystalline diamond compact through work hardening under high pressure[J]. Applied Physics Letters, 2018, 112(6)
[23] 刘进, 贺端威. 超硬高韧微米颗粒聚晶金刚石块材的超高压制备[J]. 金刚石与磨料磨具工程, 2018, 38(06): 1-6.
[24] ZHANG JIAWEI, ZHAN GUODONG DAVID, HE DUANWEI, et al. Transparent diamond ceramics from diamond powder[J]. Journal of the European Ceramic Society, 2023, 43(3): 853-861.
[25] XU CHAO, HE DUANWEI, WANG HAIKUO, et al. Nano-polycrystalline diamond formation under ultra-high pressure[J]. International Journal of Refractory Metals and Hard Materials, 2013, 36: 232-237.
[26] STOYANOV EMIL, HäUSSERMANN ULRICH, LEINENWEBER KURT. Large-volume multianvil cells designed for chemical synthesis at high pressures[J]. High Pressure Research, 2010, 30(1): 175-189.
[27] 李帅锜, 贺端威, 张佳威. 大腔体静高压技术的发展及应用[J]. 物理, 2022, 51(04): 228-238.
[28] 陈本富. 两面顶装置合成的金刚石特性研究[J]. 人工晶体学报, 1997(Z1): 158-159.
[29] 王光祖, 郭留希, 赵清国, et al. 高速发展的中国超硬材料[J]. 金刚石与磨料磨具工程, 2003(06): 65-69.
[30] 王光祖. 人造金刚石合成技术开拓创新的50年[J]. 金刚石与磨料磨具工程, 2004(06): 73-77.
[31] 王光祖. 我国第一颗人造金刚石的诞生[J]. 超硬材料工程, 2008(04): 45-47.
[32] YEUNG MICHAEL T., MOHAMMADI REZA, KANER RICHARD B. Ultraincompressible, Superhard Materials[J]. Annual Review of Materials Research, 2016, 46(1): 465-485.
[33] TIAN YONGJUN, XU BO, ZHAO ZHISHENG. Microscopic theory of hardness and design of novel superhard crystals[J]. International Journal of Refractory Metals and Hard Materials, 2012, 33: 93-106.
[34] KANER RICHARD B, GILMAN JOHN J, TOLBERT SARAH H. Designing superhard materials[J]. Science, 2005, 308(5726): 1268-1269.
[35] LE GODEC YANN, COURAC ALEXANDRE, SOLOZHENKO VLADIMIR L. High-pressure synthesis of superhard and ultrahard materials[J]. Journal of Applied Physics, 2019, 126(15): 151102.
[36] HAINES J, LEGER JM, BOCQUILLON G. Synthesis and design of superhard materials[J]. Annual Review of Materials Research, 2001, 31(1): 1-23.
[37] ZEIDLER ANITA, CRICHTON WILSON A. Materials under pressure[J]. MRS Bulletin, 2017, 42(10): 710-713.
[38] WHITE M. A., KAHWAJI S., FREITAS V. L. S., et al. The Relative Thermodynamic Stability of Diamond and Graphite[J]. Angew Chem Int Ed Engl, 2021, 60(3): 1546-1549.
[39] 余家国, 程蓓, 叶晓川, et al. 人造金刚石在空气中的热稳定性研究[J]. 无机材料学报, 1997(05): 739-743.
[40] 舒国阳, V. RALCHENKO, A. BOLSHAKOV, et al. 大尺寸单晶金刚石同质连接技术[J]. 自然杂志, 2019, 41(02): 100-110.
[41] JOSHI A, NIMMAGADDA R, HERRINGTON J. Oxidation kinetics of diamond, graphite, and chemical vapor deposited diamond films by thermal gravimetry[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1990, 8(3): 2137-2142.
[42] 肖建伟. 纳米孪晶金刚石和纳米孪晶铜的力学性质研究[D]. 燕山大学, 2018.
[43] BREEDING CHRISTOPHER M, SHIGLEY JAMES E. The “type” classification system of diamonds and its importance in gemology[J]. Gems Gemol, 2009, 45(2): 96-111.
[44] XU BO, TIAN YONGJUN. Diamond gets harder, tougher, and more deformable[J]. Matter and Radiation at Extremes, 2020, 5(6)
[45] AL-SHARAB JAFAR F., TSE S. D., KEAR B. H. Defect Analysis of Single Crystal Synthetic Diamond[J]. Microscopy and Microanalysis, 2018, 24(S1): 1766-1767.
[46] 陈石林. 聚晶金刚石复合体界面及复合机理的研究[D]. 中南大学, 2004.
[47] TILLMANN W, GATHEN M, VOGLI E, et al. Powder Injection Moulding Sintering Processes: Novel Encapsulation-Technique for Diamond Impregnated Composites; proceedings of the European Congress and Exhibition on Powder Metallurgy European PM Conference Proceedings, F, 2006 [C]. The European Powder Metallurgy Association.
[48] DZEPINA BRANISLAV, BALINT DANIEL, DINI DANIELE. A phase field model of pressure-assisted sintering[J]. Journal of the European Ceramic Society, 2019, 39(2-3): 173-182.
[49] BOONYONGMANEERAT YUTTANANT. Mechanical properties of partially sintered materials[J]. Materials Science and Engineering: A, 2007, 452: 773-780.
[50] 邓福铭, 李丹, 毛峰, et al. 纳米金刚石高压烧结实验研究[J]. 超硬材料工程, 2013, 25(03): 16-19.
[51] PARK S., ABATE, II, LIU J., et al. Facile diamond synthesis from lower diamondoids[J]. Sci Adv, 2020, 6(8): eaay9405.
[52] BOCHECHKA O. O. Production of Polycrystalline Materials by Sintering of Nanodispersed Diamond Nanopowders at High Pressure. Review[J]. Journal of Superhard Materials, 2018, 40(5): 325-334.
[53] DOBRZHINETSKAYA LARISSA F. Microdiamonds — Frontier of ultrahigh-pressure metamorphism: A review[J]. Gondwana Research, 2012, 21(1): 207-223.
[54] YUAN X., CHENG Y., TANG H., et al. sp(2)-to-sp(3) transitions in graphite during cold-compression[J]. Phys Chem Chem Phys, 2022, 24(17): 10561-10566.
[55] 赵云良, 赵爽之, 闫森. 金刚石烧结体(PCD与PDC)的发展概况(一)[J]. 超硬材料工程, 2013, 25(04): 24-28.
[56] CAMPBELL JOHN. The origin of Griffith cracks[J]. Metallurgical and Materials Transactions B, 2011, 42: 1091-1097.
[57] UPADHYAYA GOPAL S. Materials science of cemented carbides—an overview[J]. Materials & Design, 2001, 22(6): 483-489.
[58] HUANG Q., YU D., XU B., et al. Nanotwinned diamond with unprecedented hardness and stability[J]. Nature, 2014, 510(7504): 250-253.
[59] LI Q., ZHAN G., LI D., et al. Ultrastrong catalyst-free polycrystalline diamond[J]. Sci Rep, 2020, 10(1): 22020.
[60] 何巨龙, 田永君. 合成比天然金刚石更硬的材料[J]. 科学世界, 2019(01): 106-111.
[61] TIAN Y., XU B., YU D., et al. Ultrahard nanotwinned cubic boron nitride[J]. Nature, 2013, 493(7432): 385-388.
[62] CHEN ZHAORAN, MA DEJIANG, WANG SHANMIN, et al. Effects of graphene addition on mechanical properties of polycrystalline diamond compact[J]. Ceramics International, 2020, 46(8): 11255-11260.
[63] 张志国. 人工合成金刚石的历史与现状[D]. 吉林大学, 2006.
[64] HALL H TRACY. Sintered diamond: a synthetic carbonado[J]. Science, 1970, 169(3948): 868-869.
[65] 赵云良, 赵爽之, 闫森. 金刚石烧结体(PCD与PDC)的发展概况(二)[J]. 超硬材料工程, 2013, 25(05): 42-46.
[66] 赵云良, 赵爽之, 闫森. 金刚石烧结体(PCD与PDC)的发展概况(三)[J]. 超硬材料工程, 2013, 25(06): 53-56.
[67] 新吉乐夫. PCD及PDC钻头在石油钻井中的应用[J]. 石化技术, 2016, 23(03): 86.
[68] 贾洪声, 鄂元龙, 李海波, et al. 金刚石的烧结形貌及物相结构; proceedings of the 第八届中国功能材料及其应用学术会议, 中国黑龙江哈尔滨, F, 2013 [C].
[69] JAWORSKA LUCYNA, OLSZOWKA-MYALSKA ANITA, CYGAN SLAWOMIR, et al. The influence of tungsten carbide contamination from the milling process on PCD materials oxidation[J]. International Journal of Refractory Metals and Hard Materials, 2017, 64: 60-65.
[70] WANG YANBIN, SHI FENG, OHFUJI HIROAKI, et al. Strength and plastic deformation of polycrystalline diamond composites[J]. High Pressure Research, 2019, 40(1): 35-53.
[71] LU JINGRUI, KOU ZILI, LIU TENG, et al. Submicron binderless polycrystalline diamond sintering under ultra-high pressure[J]. Diamond and Related Materials, 2017, 77: 41-45.
[72] ZENG YONGPAN, ZHANG QIAN, WANG YUJIA, et al. Toughening and crack healing mechanisms in nanotwinned diamond composites with various polytypes[J]. Physical Review Letters, 2021, 127(6): 066101.
[73] OSES COREY, TOHER CORMAC, CURTAROLO STEFANO. High-entropy ceramics[J]. Nature Reviews Materials, 2020, 5(4): 295-309.
[74] SUMIYA HITOSHI. Novel development of high-pressure synthetic diamonds ultra-hard nano-polycrystalline diamonds[J]. SEI Technical Review, 2012, 74: 15-23.
[75] VEPREK STAN. Recent search for new superhard materials: Go nano![J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2013, 31(5)
[76] ZHOU X., FENG Z., ZHU L., et al. High-pressure strengthening in ultrafine-grained metals[J]. Nature, 2020, 579(7797): 67-72.
[77] 卢柯. 梯度纳米结构材料[J]. 金属学报, 2015, 51(01): 1-10.
[78] CHENG Z., ZHOU H., LU Q., et al. Extra strengthening and work hardening in gradient nanotwinned metals[J]. Science, 2018, 362(6414)
[79] TIAN YONGJUN. Nanostructured superhard materials[J]. Chinese Science Bulletin, 2018, 63(14): 1320-1331.
[80] XU BO, TIAN YONGJUN. Superhard materials: recent research progress and prospects[J]. Science China Materials, 2015, 58(2): 132-142.
[81] XU BO, TIAN YONG-JUN. High pressure synthesis of nanotwinned ultrahard materials[J]. Acta Physica Sinica, 2017, 66(3)
[82] ZHAO ZHISHENG, XU BO, TIAN YONGJUN. Recent Advances in Superhard Materials[J]. Annual Review of Materials Research, 2016, 46(1): 383-406.
[83] PAN QINGSONG, ZHANG LIANGXUE, FENG RUI, et al. Gradient cell–structured high-entropy alloy with exceptional strength and ductility[J]. Science, 2021, 374(6570): 984-989.
[84] HU JIAN, SHI YN, SAUVAGE X, et al. Grain boundary stability governs hardening and softening in extremely fine nanograined metals[J]. Science, 2017, 355(6331): 1292-1296.
[85] CHEN XM, YANG B. A new approach for toughening of ceramics[J]. Materials letters, 1997, 33(3-4): 237-240.
[86] YOO SUNG CHAN, LEE DONGJU, RYU SEONG WOO, et al. Recent progress in low-dimensional nanomaterials filled multifunctional metal matrix nanocomposites[J]. Progress in Materials Science, 2022: 101034.
[87] LU LEI, CHEN XIANHUA, HUANG XIAOXU, et al. Revealing the maximum strength in nanotwinned copper[J]. Science, 2009, 323(5914): 607-610.
[88] SCHUH CHRISTOPHER A, NIEH TG. Hardness and abrasion resistance of nanocrystalline nickel alloys near the Hall-Petch breakdown regime[J]. MRS Online Proceedings Library (OPL), 2002, 740
[89] CARLTON CE, FERREIRA PJ. What is behind the inverse Hall–Petch effect in nanocrystalline materials?[J]. Acta Materialia, 2007, 55(11): 3749-3756.
[90] XU BO, TIAN YONGJUN. Ultrahardness: Measurement and Enhancement[J]. The Journal of Physical Chemistry C, 2015, 119(10): 5633-5638.
[91] XIE HONGBO, PAN HUCHENG, BAI JUNYUAN, et al. Twin boundary superstructures assembled by periodic segregation of solute atoms[J]. Nano Letters, 2021, 21(22): 9642-9650.
[92] HU WENTAO, WEN BIN, HUANG QUAN, et al. Role of plastic deformation in tailoring ultrafine microstructure in nanotwinned diamond for enhanced hardness[J]. Science China Materials, 2017, 60(2): 178-185.
[93] 傅凤理, 戚晓红. 人造金刚石热性能分析[J]. 磨料磨具与磨削, 1994(03): 10-13.
[94] 熊湘君, 陈启武, 彭振斌, et al. 金刚石热稳定性研究[J]. 地质与勘探, 1999(03): 62-65.
[95] 王适, 张弘弢. 金刚石热稳定性研究现状分析[J]. 金刚石与磨料磨具工程, 2001(05): 36-39+33-34.
[96] XU CHAO, HE DUANWEI, WANG HAIKUO, et al. Nano-polycrystalline diamond formation under ultra-high pressure[J]. International Journal of Refractory Metals and Hard Materials, 2013, 36: 232-237.
[97] LIU YIN-JUAN, HE DUAN-WEI, WANG PEI, et al. Syntheses and studies of superhard composites under high pressure[J]. Acta Physica Sinica, 2017, 66(3)
[98] IRIFUNE TETSUO, KURIO AYAKO, SAKAMOTO SHIZUE, et al. Formation of pure polycrystalline diamond by direct conversion of graphite at high pressure and high temperature[J]. Physics of the Earth and Planetary Interiors, 2004, 143-144: 593-600.
[99] XIAO J., YANG H., WU X., et al. Dislocation behaviors in nanotwinned diamond[J]. Sci Adv, 2018, 4(9): eaat8195.
[100] IRIFUNE TETSUO, KURIO AYAKO, SAKAMOTO SHIZUE, et al. Ultrahard polycrystalline diamond from graphite[J]. Nature, 2003, 421(6923): 599-600.
[101] SOLOZHENKO VLADIMIR L, KURAKEVYCH OLEKSANDR O, LE GODEC YANN. Creation of nanostuctures by extreme conditions: High‐pressure synthesis of ultrahard nanocrystalline cubic boron nitride[J]. Advanced materials, 2012, 24(12): 1540-1544.
[102] YAO MINGGUANG, SHEN FANGREN, GUO DEZHOU, et al. Super Strengthening Nano‐Polycrystalline Diamond through Grain Boundary Thinning[J]. Advanced Functional Materials, 2023: 2214696.
[103] SHANG Y., LIU Z., DONG J., et al. Ultrahard bulk amorphous carbon from collapsed fullerene[J]. Nature, 2021, 599(7886): 599-604.
[104] TANG H., YUAN X., CHENG Y., et al. Synthesis of paracrystalline diamond[J]. Nature, 2021, 599(7886): 605-610.
[105] LI CHUNCHING, OUYANG LILIANG, ARMSTRONG JAMES PK, et al. Advances in the fabrication of biomaterials for gradient tissue engineering[J]. Trends in Biotechnology, 2021, 39(2): 150-164.
[106] 闫佳鹤, 杜一飞, 冯运莉. 梯度纳米结构金属材料制备及力学性能研究现状[J]. 塑性工程学报, 2022, 29(05): 1-13.
[107] FANG TH, LI WL, TAO NR, et al. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper[J]. Science, 2011, 331(6024): 1587-1590.
[108] KAWAI NAOTO, ENDO SHOICHI. The generation of ultrahigh hydrostatic pressures by a split sphere apparatus[J]. Review of Scientific Instruments, 1970, 41(8): 1178-1181.
[109] WALKER D, CARPENTER MA, HITCH CM. Some simplifications to multianvil devices for high pressure experiments[J]. American Mineralogist, 1990, 75(9-10): 1020-1028.
[110] ISHII TAKAYUKI, LIU ZHAODONG, KATSURA TOMOO. A breakthrough in pressure generation by a Kawai-type multi-anvil apparatus with tungsten carbide anvils[J]. Engineering, 2019, 5(3): 434-440.
[111] YAMAZAKI D, ITO E. High pressure generation in the Kawai-type multianvil apparatus equipped with sintered diamond anvils[J]. High Pressure Research, 2020, 40(1): 3-11.
[112] BONDAR DMITRY, FEI HONGZHAN, WITHERS ANTHONY C, et al. A rapid-quench technique for multi-anvil high-pressure-temperature experiments[J]. Review of Scientific Instruments, 2020, 91(6): 065105.
[113] KAWAZOE T, OHTANI E. Reaction between liquid iron and (Mg, Fe) SiO3-perovskite and solubilities of Si and O in molten iron at 27 GPa[J]. Physics and chemistry of minerals, 2006, 33: 227-234.
[114] ISHII TAKAYUKI, SHI LEI, HUANG R, et al. Generation of pressures over 40 GPa using Kawai-type multi-anvil press with tungsten carbide anvils[J]. Review of Scientific Instruments, 2016, 87(2): 024501.
[115] YAMAZAKI DAISUKE, ITO EIJI, YOSHINO TAKASHI, et al. High-pressure generation in the Kawai-type multianvil apparatus equipped with tungsten-carbide anvils and sintered-diamond anvils, and X-ray observation on CaSnO3 and (Mg, Fe) SiO3[J]. Comptes Rendus Geoscience, 2019, 351(2-3): 253-259.
[116] LI WEIWEI, WANG PEI, XU CHAO, et al. High-Pressure and High-Temperature Synthesis and In Situ High-Pressure Synchrotron X-ray Diffraction Study of HfSi2[J]. Inorganic Chemistry, 2021, 60(20): 15215-15222.
[117] 赵云良, 赵爽之, 闫森. 金刚石烧结体(PCD与PDC)的发展概况(四)[J]. 超硬材料工程, 2014, 26(01): 48-51.
[118] 韩奇钢, 马红安, 李瑞, et al. 六面顶压机硬质合金顶锤应力与破裂机理的有限元分析[J]. 重型机械, 2007(03): 27-31.
[119] LUO HU, AJMAL KHAN MUHAMMAD, LIU WANG, et al. Polishing and planarization of single crystal diamonds: state-of-the-art and perspectives[J]. International Journal of Extreme Manufacturing, 2021, 3(2): 022003.
[120] LI BAOZHONG, YING PAN, GAO YUFEI, et al. Heterogeneous Diamond-cBN Composites with Superb Toughness and Hardness[J]. Nano Letters, 2022, 22(12): 4979-4984.
[121] DUBROVINSKAIA NATALIA, SOLOZHENKO VLADIMIR L, MIYAJIMA NOBUYOSHI, et al. Superhard nanocomposite of dense polymorphs of boron nitride: Noncarbon material has reached diamond hardness[J]. Applied Physics Letters, 2007, 90(10): 101912.
[122] LIU GUODUAN, KOU ZILI, YAN XIAOZHI, et al. Submicron cubic boron nitride as hard as diamond[J]. Applied Physics Letters, 2015, 106(12)
[123] LIU JIN, ZOU YONGTAO, ZHAN GUODONG DAVID, et al. Is the hardness of material harder than diamond reliable?[J]. Journal of Materials Science & Technology, 2023, 144: 111-117.
[124] YAN CHIH-SHIUE, MAO HO-KWANG, LI WEI, et al. Ultrahard diamond single crystals from chemical vapor deposition[J]. physica status solidi (a), 2004, 201(4): R25-R27.
[125] LIU YINJUAN, HE DUANWEI, KOU ZILI, et al. Hardness and thermal stability enhancement of polycrystalline diamond compact through additive hexagonal boron nitride[J]. Scripta Materialia, 2018, 149: 1-5.
修改评论