[1] HE J, TRITT T M. Advances in thermoelectric materials research: looking back and moving forward[J]. Science, 2017, 357: aak9997.
[2] BELL L E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems[J]. Science, 2018, 321: 1457-1461.
[3] DISALVO F J. Thermoelectric cooling and power generation[J]. Science, 1999, 285: 703-706.
[4] MAO J, CHEN G. REN Z. Thermoelectric cooling materials[J]. Nature Materials, 2021, 20: 454-461.
[5] HARMAN T C, WALSH M P, LAFORGE B E, et al. Nanostructured thermoelectric materials[J]. Journal of Electronic Materials, 2005, 34: L19-L22.
[6] MAO J, ZHU H, DING Z, et al. High thermoelectric cooling performance of n-type Mg3Bi2-based materials[J]. Science, 2019, 365: 495-498.
[7] FU C, BAI S, LIU Y, et al. Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials[J]. Nature Communications, 2015, 6: 8144.
[8] ZHU H, HE R, MAO J, et al. Discovery of ZrCoBi based half Heuslers with high thermoelectric conversion efficiency[J]. Nature Communications, 2018, 9: 2497.
[9] CHANG C, WU M, HE D, et al. 3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals[J]. Science, 2018, 360: 778-783.
[10] ZHAO L D, LO S H, ZHANG Y, et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals[J]. Nature, 2014, 508: 373-377.
[11] XU X, XIE L, LOU Q, et al. Boosting the Thermoelectric performance of pseudo-layered Sb2Te3(GeTe)n via vacancy engineering[J]. Advanced Science, 2018, 5: 1801514.
[12] JIANG B, WANG W, LIU S, et al. High figure-of-merit and power generation in high-entropy GeTe-based thermoelectrics[J]. Science, 2022, 377: 208-213.
[13] LI W, ZHENG L, GE B, et al. Promoting SnTe as an eco-friendly solution for p-PbTe thermoelectric via band convergence and interstitial defects[J]. Advanced Materials, 2017, 29: 1605887.
[14] LI W, WU Y, LIN S, et al. Advances in environment-friendly SnTe thermoelectrics[J]. ACS Energy Letters, 2017, 2: 2349-2355.
[15] YANG D, SU X, LI J, et al. Blocking ion migration stabilizes the high thermoelectric performance in Cu2Se composites[J]. Advanced Materials, 2020, 32: 2003730.
[16] YANG Q, YANG S, QIU P, et al. Flexible thermoelectrics based on ductile semiconductors[J]. Science, 2022, 377: 854-858.
[17] WEI T R, JIN M, WANG Y, et al. Exceptional plasticity in the bulk single-crystalline van der Waals semiconductor InSe[J]. Science, 2020, 369: 542-545.
[18] CHEN C, XUE W, LI S, et al. Zintl-phase Eu2ZnSb2: A promising thermoelectric material with ultralow thermal conductivity[J]. Proceedings of the National Academy of Sciences, 2019, 116: 2831-2836.
[19] ROYCHOWDHURY S, GHOSH T, ARORA R, et al. Enhanced atomic ordering leads to high thermoelectric performance in AgSbTe2[J]. Science, 2021, 371: 722-727.
[20] PAN Y, HE B, HELM T, et al. Ultrahigh transverse thermoelectric power factor in flexible Weyl semimetal WTe2[J]. Nature Communications, 2022, 13: 3909.
[21] PAN Y, LE C, HE B, et al. Giant anomalous Nernst signal in the antiferromagnet YbMnBi2[J]. Nature Materials, 2022, 21: 203-209.
[22] LALONDE A D, PEI Y, WANG H, et al. Lead telluride alloy thermoelectrics[J]. Materials Today, 2011, 14(11): 526-532.
[23] VELMRE E. Thomas Johann Seebeck and his contribution to the modern science and technology[C]. 2010 12th Biennial Baltic Electronics Conference. IEEE, 2010: 17-24.
[24] IOFFE A F, STIL'BANS L S, IORDANISHVILI E K, et al. Semiconductor thermoelements and thermoelectric cooling[J]. Physics Today, 1959, 12: 42.
[25] THOMSON W. On a mechanical theory of thermo-electric currents[J]. Proceedings of the Royal Society of Edinburgh, 1857, 3: 91-98.
[26] 高敏, 张景韶. 温差电转换及其应用[M]. 北京: 兵器工业出版社, 1996.
[27] 赵立东, 张德培, 赵勇. 热电能源材料研究进展[J]. 西华大学学报, 2015, 34: 1-21.
[28] ELSHEIKH M H, SHNAWAH D A, SABRI M F M, et al. A review on thermoelectric renewable energy: principle parameters that affect their performance[J]. Renewable and Sustainable Energy Reviews, 2014, 30: 337-355.
[29] PEI Y, GIBBS Z M, GLOSKOVSKII A, et al. Optimum carrier concentration in n-type PbTe thermoelectrics[J]. Advanced Energy Materials, 2014, 4: 1400486.
[30] 于凤荣, 陈思彤, 刘文鑫, 等. Bi2Te3热电材料的研究现状与发展趋势[J]. 燕山大学学报, 2017, 41: 204-218.
[31] YU Y, XU X, WANG Y, et al. Tunable quantum gaps to decouple carrier and phonon transport leading to high-performance thermoelectrics[J]. Nature Communications, 2022, 13: 5612.
[32] MORI T. Novel principles and nanostructuring methods for enhanced thermoelectrics[J]. Small, 2017, 13: 1702013.
[33] HEREMANS J P, JOVOVIC V, TOBERER E S, et al. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states[J]. Science, 2008, 321: 554-557.
[34] NIELSEN M D, LEVIN E M, JAWORSKI C M, et al. Chromium as resonant donor impurity in PbTe[J]. Physical Review B, 2012, 85: 045210.
[35] JAWORSKI C M, KULBACHINSKII V, HEREMANS J P. Resonant level formed by tin in Bi2Te3 and the enhancement of room-temperature thermoelectric power[J]. Physical Review B, 2009, 80: 233201.
[36] SKIPETROV E P, SKIPETROVA L A, KNOTKO A V, et al. Scandium resonant impurity level in PbTe[J]. Journal of Applied Physics, 2014, 115: 133702.
[37] ZHANG Q, WANG H, LIU W, et al. Enhancement of thermoelectric figure-of-merit by resonant states of aluminium doping in lead selenide[J]. Energy & Environmental Science, 2012, 5: 5246-5251.
[38] ZHANG Q, LIAO B, LAN Y, et al. High thermoelectric performance by resonant dopant indium in nanostructured SnTe[J]. Proceedings of the National Academy of Sciences, 2013, 110: 13261-13266.
[39] WU L, LI X, WANG S, et al. Resonant level-induced high thermoelectric response in indium-doped GeTe[J]. NPG Asia Materials, 2017, 9: e343.
[40] PEI Y, SHI X, LALONDE A, et al. Convergence of electronic bands for high performance bulk thermoelectrics[J]. Nature, 2011, 473: 66-69.
[41] PEI Y, LALONDE A D, HEINZ N A, et al. High thermoelectric figure of merit in PbTe alloys demonstrated in PbTe-CdTe[J]. Advanced Energy Materials, 2012, 2: 670-675.
[42] MAO J, LIU Z, ZHOU J, et al. Advances in thermoelectrics[J]. Advances in Physics, 2018, 67: 69-147.
[43] NEOPHYTOU N, THESBERG M. Modulation doping and energy filtering as effective ways to improve the thermoelectric power factor[J]. Journal of Computational Electronics, 2016, 15: 16-26.
[44] ROWE D M, MIN G. Multiple potential barriers as a possible mechanism to increase the Seebeck coefficient and electrical power factor[C]. AIP Conference Proceedings. American Institute of Physics, 1994, 316: 339-342.
[45] MAKONGO J P A, MISRA D K, ZHOU X, et al. Simultaneous large enhancements in thermopower and electrical conductivity of bulk nanostructured half-Heusler alloys[J]. Journal of the American Chemical Society, 2011, 133: 18843-18852.
[46] FALEEV S V, LÉONARD F. Theory of enhancement of thermoelectric properties of materials with nanoinclusions[J]. Physical Review B, 2008, 77: 214304.
[47] MARTIN J, WANG L, CHEN L, et al. Enhanced Seebeck coefficient through energy-barrier scattering in PbTe nanocomposites[J]. Physical Review B, 2009, 79: 115311.
[48] SHUAI J, MAO J, SONG S, et al. Tuning the carrier scattering mechanism to effectively improve the thermoelectric properties[J]. Energy & Environmental Science, 2017, 10: 799-807.
[49] KIM H S, GIBBS Z M, TANG Y, et al. Characterization of Lorenz number with Seebeck coefficient measurement[J]. APL Materials, 2015, 3: 041506.
[50] HE J, KANATZIDIS M G, DRAVID V P. High performance bulk thermoelectrics via a panoscopic approach[J]. Materials Today, 2013, 16: 166-176.
[51] WU H, CARRETE J, ZHANG Z, et al. Strong enhancement of phonon scattering through nanoscale grains in lead sulfide thermoelectrics[J]. NPG Asia Materials, 2014, 6: e108-e108.
[52] JIA B, JIANG B, HE J. Recent advances of n-type low-cost PbSe-based thermoelectric materials[J]. Materials Today Advances, 2019, 4: 100029.
[53] HE J, SOOTSMAN J R, XU L Q, et al. Anomalous electronic transport in dual-nanostructured lead telluride[J]. Journal of the American Chemical Society, 2011, 133: 8786-8789.
[54] BISWAS K, HE J, BLUM I D, et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures[J]. Nature, 2012, 489: 414-418.
[55] JIANG B, YU Y, CUI J, et al. High-entropy-stabilized chalcogenides with high thermoelectric performance[J]. Science, 2021, 371: 830-834.
[56] SNYDER G J, CHRISTENSEN M, NISHIBORI E, et al. Disordered zinc in Zn4Sb3 with phonon-glass and electron-crystal thermoelectric properties[J]. Nature Materials, 2004, 3: 458-463.
[57] ZHU G, LIU W, LAN Y, et al. The effect of secondary phase on thermoelectric properties of Zn4Sb3 compound[J]. Nano Energy, 2013, 2: 1172-1178.
[58] BERRY T, FU C, AUFFERMANN G, et al. Enhancing thermoelectric performance of TiNiSn half-Heusler compounds via modulation doping[J]. Chemistry of Materials, 2017, 29: 7042-7048.
[59] KUMARASINGHE C, NEOPHYTOU N. Band alignment and scattering considerations for enhancing the thermoelectric power factor of complex materials: the case of co-based half-Heusler alloys[J]. Physical Review B, 2019, 99: 195202.
[60] ZHU Y, HAN Z, HAN B, et al. Enhanced thermoelectric performance by strong phonon scattering at the heterogeneous interfaces of the Mg2Sn/Mg3Sb2 high-content nanocomposite[J]. ACS Applied Materials & Interfaces, 2021, 13: 56164-56170.
[61] CHEN X, ZHU J, QIN D, et al. Excellent thermoelectric performance of boron-doped n-type Mg3Sb2-based materials via the manipulation of grain boundary scattering and control of Mg content[J]. Science China-Materials, 2021, 64: 1761-1769.
[62] NAN P, LI A, CHENG L, et al. Visualizing the Mg atoms in Mg3Sb2 thermoelectrics using advanced iDPC-STEM technique[J]. Materials Today Physics, 2021, 21: 100524.
[63] 余伟阳, 唐壁玉, 彭立明, 等. Mg3Sb2的电子结构和力学性能[J]. 物理学报, 2009, 58: S216-S223.
[64] DELAIRE O, MA J, MARTY K, et al. Giant anharmonic phonon scattering in PbTe[J]. Nature Materials, 2011, 10: 614-619.
[65] BOŽIN E S, MALLIAKAS C D, SOUVATZIS P, et al. Entropically stabilized local dipole formation in lead chalcogenides[J]. Science, 2010, 330: 1660-1663.
[66] LUO Z, HAO S, CAI S, et al. Enhancement of thermoelectric performance for n-type PbS through synergy of gap state and fermi level pinning[J]. Journal of the American Chemical Society, 2019, 141: 6403-6412.
[67] HE J, ZHAO L D, ZHENG J C, et al. Role of sodium doping in lead chalcogenide thermoelectrics[J]. Journal of the American Chemical Society, 2013, 135: 4624-4627.
[68] WU H, ZHAO L, ZHENG F, et al. Broad temperature plateau for thermoelectric figure of merit ZT>2 in phase-separated PbTe0.7S0.3[J]. Nature Communications, 2014, 5: 4515.
[69] BISWAS K, HE J, ZHANG Q, et al. Strained endotaxial nanostructures with high thermoelectric figure of merit[J]. Nature Chemistry, 2011, 3:160-166.
[70] WU H, ZHENG F, WU D, et al. Advanced electron microscopy for thermoelectric materials[J]. Nano Energy, 2015, 13:626-650.
[71] WU D, ZHAO L, ZHENG F, et al. Understanding nanostructuring processes in thermoelectrics and their effects on lattice thermal conductivity[J]. Advanced Materials, 2016, 28: 2737-2743.
[72] CALLAWAY J. Thermal resistance produced by point imperfections in crystals[J]. Il Nuovo Cimento (1955-1965), 1963, 29: 883-891.
[73] WALKER C T, POHL R O. Phonon scattering by point defects[J]. Physical Review, 1963, 131: 1433.
[74] HE J, ANDROULAKIS J, KANATZIDIS M G, et al. Seeing is believing: weak phonon scattering from nanostructures in alkali metal-doped lead telluride[J]. Nano Letters, 2012, 12: 343-347.
[75] ZHAO L, WU H, HAO S, et al. All-scale hierarchical thermoelectrics: MgTe in PbTe facilitates valence band convergence and suppresses bipolar thermal transport for high performance[J]. Energy & Environmental Science, 2013, 6: 3346-3355.
[76] CHEN Z, JIAN Z, LI W, et al. Lattice dislocations enhancing thermoelectric PbTe in addition to band convergence[J]. Advanced Materials, 2017, 29: 1606768.
[77] WU Y, NAN P, CHEN Z, et al. Thermoelectric enhancements in PbTe alloys due to dislocation-induced strains and converged bands[J]. Advanced Science, 2020, 7: 1902628.
[78] WU Y, CHEN Z, NAN P, et al. Lattice strain advances thermoelectrics[J]. Joule, 2019, 3: 1276-1288.
[79] URBAN J J. Anharmonic convergence: tuning two dials on phonons for high zT in p-type PbTe[J]. Joule, 2019, 3: 1180-1181.
[80] JOOD P, MALE J P, ANAND S, et al. Na doping in PbTe: solubility, band convergence, phase boundary mapping, and thermoelectric properties[J]. Journal of the American Chemical Society, 2020, 142: 15464-15475.
[81] ZHU Y, HU L, ZHAN S, et al. Breaking the sodium solubility limit for extraordinary thermoelectric performance in p-type PbTe[J]. Energy & Environmental Science, 2022, 15: 3958-3967.
[82] XIAO Y, WU H, CUI J, et al. Realizing high performance n-type PbTe by synergistically optimizing effective mass and carrier mobility and suppressing bipolar thermal conductivity[J]. Energy & Environmental Science, 2018, 11: 2486-2495.
[83] PEI Y, LALONDE A D, WANG H, et al. Low effective mass leading to high thermoelectric performance[J]. Energy & Environmental Science, 2012, 5: 7963-7969.
[84] TAKAGIWA Y, PEI Y, POMREHN G, et al. Dopants effect on the band structure of PbTe thermoelectric material[J]. Applied Physics Letters, 2012, 101: 092102.
[85] ZHANG Q, YANG S, ZHANG Q, et al. Effect of aluminum on the thermoelectric properties of nanostructured PbTe[J]. Nanotechnology, 2013, 24: 345705.
[86] FU L, YIN M, WU D, et al. Large enhancement of thermoelectric properties in n-type PbTe via dual-site point defects[J]. Energy & Environmental Science, 2017, 10: 2030-2040.
[87] SU X, HAO S, BAILEY T P, et al. Weak electron phonon coupling and deep level impurity for high thermoelectric performance Pb1-xGaxTe[J]. Advanced Energy Materials, 2018, 8: 1800659.
[88] LUO Z Z, CAI S, HAO S, et al. High figure of merit in gallium-doped nanostructured n-type PbTe-xGeTe with midgap states[J]. Journal of the American Chemical Society, 2019, 141(40): 16169-16177.
[89] ZHANG J, WU D, HE D, et al. Extraordinary thermoelectric performance realized in n-type PbTe through multiphase nanostructure engineering[J]. Advanced Materials, 2017, 29: 1703148.
[90] QIN C, CHENG L, XIAO Y, et al. Substitutions and dislocations enabled extraordinary n-type thermoelectric PbTe[J]. Materials Today Physics, 2021, 17: 100355.
[91] XU P, ZHAO W, LIU X, et al. Dramatic enhancement of thermoelectric performance in PbTe by unconventional grain shrinking in the sintering process[J]. Advanced Materials, 2022, 34(38): 2202949.
[92] LEE M H, PARK J H, PARK S D, et al. Grain growth mechanism and thermoelectric properties of hot press and spark plasma sintered Na-doped PbTe[J]. Journal of Alloys and Compounds, 2019, 786: 515-522.
[93] PICHANUSAKORN P, BANDARU P. Nanostructured thermoelectrics[J]. Materials Science and Engineering: R: Reports, 2010, 67: 19-63.
[94] VINEIS C J, SHAKOURI A, MAJUMDAR A, et al. Nanostructured thermoelectrics: big efficiency gains from small features[J]. Advanced Materials, 2010, 22(36): 3970-3980.
[95] ZHOU Y, LIU X, JIA B, et al. Physics-guided co-designing flexible thermoelectrics with techno-economic sustainability for low-grade heat harvesting[J]. Science Advances, 2023, 9: eadf5701.
[96] WANG N, WEST D, LIU J, et al. Microscopic origin of the p-type conductivity of the topological crystalline insulator SnTe and the effect of Pb alloying[J]. Physical Review B, 2014, 89: 045142.
[97] CUI J, WANG M, XU X, et al. Understanding the effects of iodine doping on the thermoelectric performance of n-type PbTe ingot materials[J]. Journal of Applied Physics, 2019, 126: 025108.
[98] WANG C, ZHAO X, NING S, et al. Phase boundary mapping and suppressing Pb vacancies for enhanced thermoelectric properties in n-type Sb doped PbTe compounds[J]. Materials Today Energy, 2022, 25: 100962.
[99] NIKOLIC M V, PARASKEVOPOULOS K M, HATZIKRANIOTIS E, et al. Thermal, electron transport and far infrared properties of PbTe single crystals doped with Br[C]. AIP Conference Proceedings. American Institute of Physics, 2012, 1449: 143-146.
[100] LEE M H, YUN J H, KIM G, et al. Synergetic enhancement of thermoelectric performance by selective charge Anderson localization–delocalization transition in n-type Bi-doped PbTe/Ag2Te nanocomposite[J]. ACS Nano, 2019, 13: 3806-3815.
[101] XIAO Y, WU H, LI W, et al. Remarkable roles of Cu to synergistically optimize phonon and carrier transport in n-type PbTe-Cu2Te[J]. Journal of the American Chemical Society, 2017, 139: 18732-18738.
[102] LALONDE A D, PEI Y, SNYDER G J. Reevaluation of PbTe1-xIx as high performance n-type thermoelectric material[J]. Energy & Environmental Science, 2011, 4: 2090-2096.
[103] WITKOSKE E, WANG X, LUNDSTROM M, et al. Thermoelectric band engineering: The role of carrier scattering[J]. Journal of Applied Physics, 2017, 122: 175102.
[104] YIN M, WU D, HE J. Evolvement of microstructure and lattice thermal conductivity in Na doped PbTe-PbS pseudo-binary system[J]. Journal of Materiomics, 2016, 2: 150-157.
[105] WANG Z, HE H, CUI X, et al. Synergistic tuning of carrier mobility, effective mass, and point defects scattering triggered high thermoelectric performance in n-type Ge-doped PbTe[J]. Journal of Applied Physics, 2019, 125(5): 055104.
[106] XIAO Y, LI W, CHANG C, et al. Synergistically optimizing thermoelectric transport properties of n-type PbTe via Se and Sn co-alloying[J]. Journal of Alloys and Compounds, 2017, 724: 208-221.
[107] DEXTER D L, SEITZ F. Effects of dislocations on mobilities in semiconductors[J]. Physical Review, 1952, 86: 964.
[108] PEI Y, LALONDE A D, HEINZ N A, et al. Stabilizing the optimal carrier concentration for high thermoelectric efficiency[J]. Advanced Materials, 2011, 23: 5674-5678.
[109] ZHOU B, CHEN L, LI C, et al. Significant enhancement in the thermoelectric performance of aluminum-doped ZnO tuned by pore structure[J]. ACS Applied Materials & Interfaces, 2020, 12: 51669-51678.
[110] LIU J D, CHENG B, ZHANG L J, et al. Monovacancies and Na substitutional defects in PbTe: theoretical positron annihilation study[C]. Journal of Physics: Conference Series. IOP Publishing, 2013, 443: 012030.
[111] LAN Y C, WANG D Z, CHEN G, et al. Diffusion of nickel and tin in p-type (Bi, Sb)2Te3 and n-type Bi2(Te, Se)3 thermoelectric materials[J]. Applied Physics Letters, 2008, 92: 101910.
[112] XIA H, DRYMIOTIS F, CHEN C L, et al. Bonding and interfacial reaction between Ni foil and n-type PbTe thermoelectric materials for thermoelectric module applications[J]. Journal of Materials Science, 2014, 49: 1716-1723.
[113] ORIHASHI M, NODA Y, CHEN L, et al. Ni/n-PbTe and Ni/p-Pb0.5Sn0.5Te joining by plasma activated sintering[C]. Seventeenth International Conference on Thermoelectrics. Proceedings ICT98 (Cat. No. 98TH8365). IEEE, 1998: 543-546.
[114] WEINSTEIN M, MLAVSKY A I. Bonding of lead telluride to pure iron electrodes[J]. Review of Scientific Instruments, 1962, 33: 1119-1120.
[115] HU X, JOOD P, OHTA M, et al. Power generation from nanostructured PbTe-based thermoelectrics: comprehensive development from materials to modules[J]. Energy & Environmental Science, 2016, 9: 517-529.
[116] XING Y, LIU R, LIAO J, et al. A device-to-material strategy guiding the “double-high” thermoelectric module[J]. Joule, 2020, 4: 2475-2483.
[117] ZHANG Q, LIAO J, TANG Y, et al. Realizing a thermoelectric conversion efficiency of 12% in bismuth telluride/skutterudite segmented modules through full-parameter optimization and energy-loss minimized integration[J]. Energy & Environmental Science, 2017, 10: 956-963.
[118] HERRING C. Role of low-energy phonons in thermal conduction[J]. Physical Review, 1954, 95: 954.
[119] ZHANG Q, SONG Q, WANG X, et al. Deep defect level engineering: a strategy of optimizing the carrier concentration for high thermoelectric performance[J]. Energy & Environmental Science, 2018, 11: 933-940.
[120] MALE J, AGNE M T, GOYAL A, et al. The importance of phase equilibrium for doping efficiency: iodine doped PbTe[J]. Materials Horizons, 2019, 6: 1444-1453.
[121] ORIHASHI M, NODA Y, CHEN L, et al. Carrier concentration dependence of thermal conductivity of iodine-doped n-type PbTe[J]. Materials Transactions, JIM, 2000, 41: 1282-1286.
[122] JIA B, HUANG Y, WANG Y, et al. Realizing high thermoelectric performance in non-nanostructured n-type PbTe[J]. Energy & Environmental Science, 2022, 15: 1920-1929.
[123] WANG Z, WANG G, WANG R, et al. Ga-doping-induced carrier tuning and multiphase engineering in n-type PbTe with enhanced thermoelectric performance[J]. ACS Applied Materials & Interfaces, 2018, 10: 22401-22407.
[124] SHAROV M K. Plasma resonance in IR spectra of reflection of solid solutions PbTe1−xBrx(c)[J]. Inorganic Materials, 2009, 45: 949-952.
[125] DONG Y, MCGUIRE M A, MALIK A S, et al. Transport properties of undoped and Br-doped PbTe sintered at high-temperature and pressure ≥ 4.0 GPa[J]. Journal of Solid State Chemistry, 2009, 182: 2602-2607.
[126] LUO Z, CAI S, HAO S, et al. Extraordinary role of Zn in enhancing thermoelectric performance of Ga-doped n-type PbTe[J]. Energy & Environmental Science, 2022, 15: 368-375.
[127] PAUL B, RAWAT P K, BANERJI P. Dramatic enhancement of thermoelectric power factor in PbTe: Cr co-doped with iodine[J]. Applied Physics Letters, 2011, 98: 262101.
[128] KRÓLICKA A, MICHALSKA M. Comparison of different sintering methods of Pb1-xCrxTe thermoelectric nanocomposites doped with iodine[J]. Physica B: Condensed Matter, 2017, 520: 89-96.
[129] LIU H, SUN Q, ZHONG Y, et al. High-performance in n-type PbTe-based thermoelectric materials achieved by synergistically dynamic doping and energy filtering[J]. Nano Energy, 2022, 91: 106706.
[130] LIU H, SUN Q, ZHONG Y, et al. Achieving high-performance n-type PbTe via synergistically optimizing effective mass and carrier concentration and suppressing lattice thermal conductivity[J]. Chemical Engineering Journal, 2022, 428: 132601.
[131] 周玉. 材料分析方法[M]. 北京: 机械工业出版社, 2004.
[132] LIU Z, GAO W, OSHIMA H, et al. Maximizing the performance of n-type Mg3Bi2 based materials for room-temperature power generation and thermoelectric cooling[J]. Nature Communications, 2022, 13: 1120.
[133] ZHANG F, CHEN C, YAO H, et al. High-performance N-type Mg3Sb2 towards thermoelectric application near room temperature[J]. Advanced Functional Materials, 2020, 30: 1906143.
[134] ZHANG J, SONG L, PEDERSEN S H, et al. Discovery of high-performance low-cost n-type Mg3Sb2-based thermoelectric materials with multi-valley conduction bands[J]. Nature Communications, 2017, 8: 13901.
[135] XIAO Y, WU H, SHI H, et al. High-ranged zT value promotes thermoelectric cooling and power generation in n-Type PbTe[J]. Advanced Energy Materials, 2022, 12: 2200204.
[136] ZHU B, LIU X, WANG Q, et al. Realizing record high performance in n-type Bi2Te3-based thermoelectric materials[J]. Energy & Environmental Science, 2020, 13: 2106-2114.
[137] HAO F, QIU P, TANG Y, et al. High efficiency Bi2Te3-based materials and devices for thermoelectric power generation between 100 and 300 ℃[J]. Energy & Environmental Science, 2016, 9: 3120-3127.
[138] HU X, NAGASE K, JOOD P, et al. Power generation evaluated on a bismuth telluride unicouple module[J]. Journal of Electronic Materials, 2015, 44: 1785-1790.
[139] WANG S, XIE W, LI H, et al. Enhanced performances of melt spun Bi2(Te, Se)3 for n-type thermoelectric legs[J]. Intermetallics, 2011, 19: 1024-1031.
[140] DENG R, SU X, HAO S, et al. High thermoelectric performance in Bi0.46Sb1.54Te3 nanostructured with ZnTe[J]. Energy & Environmental Science, 2018, 11: 1520-1535.
[141] GOLDSMID H. Thermoelectric refrigeration[M]. Springer, 2013.
[142] YANG J, LI G, ZHU H, et al. Next-generation thermoelectric cooling modules based on high-performance Mg3(Bi, Sb)2 material[J]. Joule, 2022, 6: 193-204.
[143] SHARP J, BIERSCHENK J, LYON H B. Overview of solid-state thermoelectric refrigerators and possible applications to on-chip thermal management[J]. Proceedings of the IEEE, 2006, 94: 1602-1612.
[144] ZEBARJADI M. Electronic cooling using thermoelectric devices[J]. Applied Physics Letters, 2015, 106: 203506.
[145] PARK J, DYLLA M, XIA Y, et al. When band convergence is not beneficial for thermoelectrics[J]. Nature Communications, 2021, 12: 3425.
[146] HONG M, CHEN Z G, PEI Y, et al. Limit of zT enhancement in rocksalt structured chalcogenides by band convergence[J]. Physical Review B, 2016, 94: 161201.
[147] PEI Y, TAN G, FENG D, et al. Integrating band structure engineering with all-scale hierarchical structuring for high thermoelectric performance in PbTe system[J]. Advanced Energy Materials, 2017, 7: 1601450.
[148] JOOD P, OHTA M, YAMAMOTO A, et al. Excessively doped PbTe with Ge-induced nanostructures enables high-efficiency thermoelectric modules[J]. Joule, 2018, 2: 1339-1355.
[149] SWORAKOWSKI J. On the origin of trapping centres in organic molecular crystals[J]. Molecular Crystals and Liquid Crystals, 1970, 11: 1-11.
[150] TANG J, YAO Z, WU Y, et al. Atomic disordering advances thermoelectric group IV telluride alloys with a multiband transport[J]. Materials Today Physics, 2020, 15: 100247.
[151] BERMAN R, NETTLEY P T, SHEARD F W, et al. The effect of point imperfections on lattice conduction in solids[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1959, 253: 403-419.
[152] KLEMENS P G. Thermal resistance due to point defects at high temperatures[J]. Physical Review, 1960, 119: 507.
[153] KLEMENS P G, WHITE G K, TAINSH R J. Scattering of lattice waves by point defects[J]. Philosophical Magazine, 1962, 7: 1323-1335.
[154] TAN G, SHI F, HAO S, et al. Non-equilibrium processing leads to record high thermoelectric figure of merit in PbTe-SrTe[J]. Nature Communications, 2016, 7: 12167.
[155] GIRARD S N, HE J, ZHOU X, et al. High performance Na-doped PbTe-PbS thermoelectric materials: electronic density of states modification and shape-controlled nanostructures[J]. Journal of the American Chemical Society, 2011, 133: 16588-16597.
[156] WU D, ZHAO L D, TONG X, et al. Superior thermoelectric performance in PbTe-PbS pseudo-binary: extremely low thermal conductivity and modulated carrier concentration[J]. Energy & Environmental Science, 2015, 8: 2056-2068.
[157] AHN K, BISWAS K, HE J, et al. Enhanced thermoelectric properties of p-type nanostructured PbTe-MTe(M=Cd, Hg) materials[J]. Energy & Environmental Science, 2013, 6: 1529-1537.
[158] LUO J, YOU L, ZHANG J, et al. Enhanced average thermoelectric figure of merit of the PbTe-SrTe-MnTe alloy[J]. ACS Applied Materials & Interfaces, 2017, 9: 8729-8736.
[159] ZHU Y, HU L, ZHAN S, et al. Breaking the sodium solubility limit for extraordinary thermoelectric performance in p-type PbTe[J]. Energy & Environmental Science, 2022, 15: 3958-3967.
[160] OHTA M, BISWAS K, LO S H, et al. Enhancement of thermoelectric figure of merit by the insertion of MgTe nanostructures in p-type PbTe doped with Na2Te[J]. Advanced Energy Materials, 2012, 2: 1117-1123.
[161] BISWAS K, HE J, WANG G, et al. High thermoelectric figure of merit in nanostructured p-type PbTe-MTe (M= Ca, Ba)[J]. Energy & Environmental Science, 2011, 4: 4675-4684.
[162] KIM H S, LEE K H, KIM S. Understanding bipolar thermal conductivity in terms of concentration ratio of minority to majority carriers[J]. Journal of Materials Research and Technology, 2021, 14: 639-646.
[163] BAHK J H, SHAKOURI A. Enhancing the thermoelectric figure of merit through the reduction of bipolar thermal conductivity with heterostructure barriers[J]. Applied Physics Letters, 2014, 105: 052106.
[164] NETTLETON R E. Foundations of the Callaway theory of thermal conductivity[J]. Physical Review, 1963, 132: 2032.
[165] YANG J, MEISNER G P, CHEN L. Strain field fluctuation effects on lattice thermal conductivity of ZrNiSn-based thermoelectric compounds[J]. Applied Physics Letters, 2004, 85: 1140-1142.
[166] GELBSTEIN Y, DAVIDOW J, LESHEM E, et al. Significant lattice thermal conductivity reduction following phase separation of the highly efficient GexPb1–xTe thermoelectric alloys[J]. Physica Status Solidi (b), 2014, 251: 1431-1437.
[167] LUO Z, HAO S, ZHANG X, et al. Soft phonon modes from off-center Ge atoms lead to ultralow thermal conductivity and superior thermoelectric performance in n-type PbSe-GeSe[J]. Energy & Environmental Science, 2018, 11: 3220-3230.
[168] CAO J, DANGIĆ Đ, QUERALES-FLORES J D, et al. Electron-phonon coupling and electronic thermoelectric properties of n-type PbTe driven near the soft-mode phase transition via lattice expansion[J]. Physical Review B, 2021, 104: 045202.
[169] XIE H, LI Z, LIU Y, et al. Silver atom off-centering in diamondoid solid solutions causes crystallographic distortion and suppresses lattice thermal conductivity[J]. Journal of the American Chemical Society, 2023, 145: 3211-3220.
[170] SARKAR S, HUA X, HAO S, et al. Dissociation of GaSb in n-type PbTe: off-centered Gallium atom and weak electron–phonon coupling provide high thermoelectric performance[J]. Chemistry of Materials, 2021, 33: 1842-1851.
[171] CAI S, HAO S, LUO Z, et al. Discordant nature of Cd in PbSe: off-centering and core-shell nanoscale CdSe precipitates lead to high thermoelectric performance[J]. Energy & Environmental Science, 2020, 13: 200-211.
[172] ABBASZADEH D, KUNZ A, WETZELAER G A H, et al. Elimination of charge carrier trapping in diluted semiconductors[J]. Nature Materials, 2016, 15: 628-633.
修改评论