中文版 | English
题名

天然产物β-funebrene的全合成

其他题名
TOTAL SYNTHESIS OF NATURE PRODUCT β-FUNEBRENE
姓名
姓名拼音
ZHANG Peng
学号
12132819
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
汉京春
导师单位
深圳格拉布斯研究院
论文答辩日期
2023-05-25
论文提交日期
2023-06-26
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

天然产物及其衍生物是生物活性分子的重要来源,天然产物的发现、合成和活性研究对人类的生活和健康具有重大意义,例如人类在天然产物中发现抗疟疾活性分子奎宁和青蒿素、抗肿瘤活性分子紫杉醇等,以及在活性天然产物基础上发展的氯喹、蒿甲醚、艾瑞布林等都极大的推动了相关疾病的治疗研究,给人们的生命健康提供了重要保障。同时天然产物全合成作为有机化学的重要分支之一,也促进了有机化学等相关学科的发展。

高张力结构普遍存在于天然产物中,使得天然产物显示独特的生物活性,反式5/5并环结构就是高张力结构的代表之一。虽然反式5/5并环的天然产物在自然界中数量有限,但该类天然产物独特的活性以及较高的合成挑战性吸引了科学家的关注。但因其较高的合成难度,对反式5/5并环的合成研究报道较少,这些因素限制了对含有该类结构天然产物的活性研究。

本论文的研究目标是含有高张力反式5/5并环的天然产物β-funebrene就是其中的代表。在研究过程中,本文首先对目前已报道的反式5/5并环的合成策略做了简单总结。在此基础上,以课题组发展的分子内[3+2]环化反应为核心策略,一步构建反式5/5并环。随后采用aldol反应成功构建六元环,再经过两步官能团转化实现了天然产物β-funebrene的全合成,为接下来进一步的活性研究提供了物质基础。

 

其他摘要

Natural products and their derivatives are an important source of biologically active molecules. The discovery, synthesis and activity research of natural products are of great significance to human life and health. For example, humans have discovered antimalarial active molecules quinine and artemisinin in natural products, anti-tumor active molecule toxal, etc. in natural products. And chloroquine, artemether, eribulin, etc. developed on the basis of active natural products have greatly promoted the treatment research of related diseases, and provided an important guarantee for people's life and health. At the same time, as one of the important branches of organic chemistry, the total synthesis of natural products has also promoted the development of organic chemistry and other related disciplines.

High-tension structures are ubiquitous in natural products, leading to the unique biological activity of natural products. The trans 5/5 fused ring structure is one of the representatives of high-tension structures. Although the number of natural products with trans 5/5 fused ring is limited in nature, the unique activity and high synthesis challenges of this type of natural products have attracted the attention of scientists. However, due to the high difficulty of synthesis, there are few reports on the synthesis of trans 5/5 fused rings. These factors limit the research on the activity of natural products containing this type of structure.

The research goal of this thesis is that the natural product β-funebrene containing high-tension trans 5/5 fused ring is one of the representatives. In the course of the research, this paper first briefly summarizes the synthesis strategies of trans 5/5 fused rings that have been reported so far. On this basis, taking the intramolecular [3+2] cyclization reaction developed by the research group as the core strategy, a trans 5/5 cyclization was constructed in one step. Subsequently, the six-membered ring was successfully constructed by the aldol reaction, and the total synthesis of the natural product β-funebrene was realized after two steps of functional group transformation, which provided a material basis for further activity research.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2023-06
参考文献列表

[参考文献
[1] NEWMAN D J, CRAGG G M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019[J]. Journal of Natural Products, 2020, 83(3): 770-803.
[2] NICOLAOU K C, VOURLOUMIS D, WINSSINGER N, et al. The art and science of total synthesis at the dawn of the twenty‐first century[J]. Angewandte Chemie International Edition, 2000, 39(1): 44-122.
[3] CHEN J S, NICOLAOU K C. Classics in Total Synthesis III: Further Targets, Strategies, Methods[J]. 2011.
[4] ROBINSON, ROBERT. LXIII.—A synthesis of tropinone[J]. Biochimica Et Biophysica Acta, 1917, 56:184-185.
[5] FISCHER H, ZEILE K. Synthese des haematoporphyrins, protoporphyrins und haemins[J]. Justus Liebigs Annalen der Chemie, 1929, 468(1): 98-116.
[6] World Health Organization. World malaria report 2022[M]. World Health Organization, 2022.
[7] 袁亚男, 姜廷良, 周兴, 刘盈. 青蒿素的发现和发展[J]. 科学通报, 2017, 62(18): 1914-1927.
[8] 张楠.抗疟药物的应用与发展[J].中国药物评价,2016,33(01):7-10.
[9] Woodward R B, Doering W E. The total synthesis of quinine [J]. J Am Chem Soc, 1944, 66(5): 849.
[10] ACHAN J, TALISUNA A O, ERHART A, et al. Quinine, an old anti-malarial drug in a modern world: role in the treatment of malaria[J]. Malaria Journal, 2011, 10(1): 1-12.
[11] RUOCCO V, RUOCCO E, SCHWARTZ R A, et al. Kaposi sarcoma and quinine: a potentially overlooked triggering factor in millions of Africans[J]. Journal of the American Academy of Dermatology, 2011, 64(2): 434-436.
[12] 郭瑞霞, 李力更, 付炎, 等. 天然药物化学史话: 奎宁的发现, 化学结构以及全合成[J]. 中草药, 2014, 45(19): 2737-2741.
[13] VON SEIDLEIN L, DONDORP A. Fighting fire with fire: mass antimalarial drug administrations in an era of antimalarial resistance[J]. Expert Review of Anti-Infective Therapy, 2015, 13(6): 715-730.
[14] 梁晓竟, 谢贤桂. 氯喹抗疟研究概况[J]. 预防医学情报杂志, 2002, 18(3): 219-219.
[15] 陈泽建. 氯喹的抗疟作用方式及其抗药性的产生机制[J]. 中国寄生虫病防治杂志, 2000, 13(4): 304-307.
[16] 青蒿素结构研究协作组. 一种新型的倍半萜内酯——青蒿素[J]. 科技导报, 1977, 33(20): 123-123.
[17] 刘静明, 倪慕云, 樊菊芬, 等. 青蒿素(Arteannuin)的结构和反应[J]. 化学学报, 1979, 37(2): 129.
[18] ROBERT A, DECHY-CABARET O, CAZELLES J, et al. From mechanistic studies on artemisinin derivatives to new modular antimalarial drugs[J]. Accounts of Chemical Research, 2002, 35(3): 167-174.
[19] 刘靖丽, 靳如意, 张光辉, 等. 青蒿素及其类似物抗疟构效关系的DFT研究[J]. 天然产物研究与开发, 2019, 31(1): 44-48.
[20] 黄静. 双氢青蒿素片剂的研制及溶出度研究[J]. 长春师范大学学报, 2018, 37(4): 60-64.
[21] 李英, 虞佩琳, 陈一心, 等. 青蒿素衍生物的合成[J]. 科学通报, 1979, 24(14): 667.
[22] 李英, 虞佩琳, 陈一心,等. 青蒿素类似物的研究——Ⅰ, 还原青蒿素的醚类, 羧酸酯类及碳酸酯类衍生物的合成[J]. 药学学报, 1981(06):31-41.
[23] 张亚红, 王丽娟, 甘淋玲, 等. 蒿甲醚及其制剂的临床应用研究进展[J]. 重庆医学, 2014, 43(29): 3967-3970.
[24] 费伟东, 叶轶青, 陈玥, 等. 双氢青蒿素诱导肿瘤细胞铁死亡及其机制研究[J]. 中草药, 2020, 51(13): 3473-3481.
[25] 蒋为薇, 钱妍. 青蒿素及其衍生物抗菌活性的研究进展[J]. 中国药房, 2019, 30(14): 2003-2007.
[26] SCHMID G, HOFHEINZ W. ChemInform Abstract: Total synthesis of qinghaosu[J]. Chemischer Informationsdienst, 1983, 14(21).
[27] XU, XING-XIANG, and, et al. Total synthesis of arteannuin and deoxyarteannuin[J]. Tetrahedron, 1986.
[28] LI J, SHEN J, XIA C, et al. Asymmetric hydrogenation of α-substituted acrylic acids catalyzed by a ruthenocenyl phosphino-oxazoline–ruthenium complex[J]. Organic Letters, 2016, 18(9): 2122-2125.
[29] WHO. Global Health Estimates 2020: Deaths by Cause, Age, Sex, by Country and by Region, 2000-2019[Z/OL].
[2021-02-20]. https://www.who.int/data/gho/data/themes/mortality-andglobal-health-estimates/ghe-leading-causes-of-death.
[30] SUNG H , FERLAY J, SIEGEL R L, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J]. CA: a Cancer Journal for Clinicians, 2021, 71(3):209-249.
[31] 杨楠, 贾晓斌, 张振海, 等. 黄酮类化合物抗肿瘤活性及机制研究进展[J]. 中国中药杂志, 2015, 40(3): 373-381.
[32] LUCAS H. Ueber ein in den Blättern von Taxus baccata L. enthaltenes Alkaloid (das Taxin)[J]. Archiv der Pharmazie, 1856, 135(2): 145-149.
[33] WALL M E, WANI M C. Camptothecin and taxol: discovery to clinic—thirteenth Bruce F. Cain Memorial Award Lecture[J]. Cancer Research, 1995, 55(4): 753-760.
[34] WANI M C, TAYLOR H L, WALL M E, et al. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia[J]. J Am Chem Soc, 1971, 93(9): 2325-2327.
[35] SCHIFF P B, FANT J, HORWITZ S B. Promotion of microtubule assembly in vitro by taxol[J]. Nature, 1979, 277(5698): 665-667.
[36] PARNESS J, HORWITZ S B. Taxol binds to polymerized tubulin in vitro[J]. The Journal of Cell Biology, 1981, 91(2): 479-487.
[37] MANFREDI J J, PARNESS J, HORWITZ S B. Taxol binds to cellular microtubules[J]. The Journal of Cell Biology, 1982, 94(3): 688-696.
[38] SCHIFF P B, HORWITZ S B. Taxol stabilizes microtubules in mouse fibroblast cells[J]. Proc Natl Acad Sci USA, 1980, 77: 1561-1565.
[39] HORWITZ S B. Personal recollections on the early development of taxol[J]. Journal of Natural Products, 2004, 67(2): 136-138.
[40] MCGUIRE W P, ROWINSKY E K, ROSENSHEIN N B, et al. Taxol: a unique antineoplastic agent with significant activity in advanced ovarian epithelial neoplasms[J]. Annals of Internal Medicine, 1989, 111(4): 273-279.
[41] GUERITTE-VOEGELEIN F, GUENARD D, LAVELLE F, et al. Relationships between the structure of taxol analogs and their antimitotic activity[J]. Journal of Medicinal Chemistry, 1991, 34(3): 992-998.
[42] CHO J H, HONG S K, KIM E Y, et al. Overexpression of phospholipase D suppresses taxotere-induced cell death in stomach cancer cells[J]. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2008, 1783(5): 912-923.
[43] 唐培, 王锋鹏. 近年来紫杉醇的合成研究进展[J]. 有机化学, 2013, 33(03): 458.
[44] DENIS J N, GREENE A E, GUENARD D, et al. Highly efficient, practical approach to natural taxol[J]. Journal of the American Chemical Society, 1988, 110(17): 5917-5919.
[45] 王雪松, 孙剑秋, 臧威, 等. 从Strobel的发现看植物内生真菌研究的未来[J]. 生物学通报, 2012, 47(10): 1-3.
[46] WANG Y F, SHI Q W, DONG M, et al. Natural taxanes: developments since 1828[J]. Chemical Reviews, 2011, 111(12): 7652-7709.
[47] (a) HOLTON R A, SOMOZA C, KIM H B, et al. First total synthesis of taxol. 1. Functionalization of the B ring[J]. Journal of the American Chemical Society, 1994, 116(4): 1597-1598.(b) HOLTON R A, KIM H B, SOMOZA C, et al. First total synthesis of taxol. 2. Completion of the C and D rings[J]. Journal of the American Chemical society, 1994, 116(4): 1599-1600.
[48] NICOLAOU K C, YANG Z, LIU J J, et al. Total synthesis of taxol[J]. Nature, 1994, 367(6464): 630-634.
[49] Think globally about cancer[J]. Nature Medicine, 2019, 25(3):351-351.
[50] TRENDOWSKI M. Recent advances in the development of antineoplastic agents derived from natural products[J]. Drugs, 2015, 75: 1993-2016.
[51] JORDAN M A, WILSON L. Microtubules as a target for anticancer drugs[J]. Nature Reviews Cancer, 2004, 4(4): 253-265.
[52] ROHENA C C, MOOBERRY S L. Recent progress with microtubule stabilizers: new compounds, binding modes and cellular activities[J]. Natural Product Reports, 2014, 31(3): 335-355.
[53] KAUL R, RISINGER A L, MOOBERRY S L. Microtubule-targeting drugs: more than antimitotics[J]. Journal of Natural Products, 2019, 82(3): 680-685.
[54] UEMURA D, TAKAHASHI K, YAMAMOTO T, et al. Norhalichondrin A: an antitumor polyether macrolide from a marine sponge[J]. Journal of the American Chemical Society, 1985, 107(16): 4796-4798.
[55] HIRATA Y, UEMURA D. Halichondrins-antitumor polyether macrolides from a marine sponge[J]. Pure and Applied Chemistry, 1986, 58(5): 701-710.
[56] PETTIT G R, HERALD C L, BOYD M R, et al. Antineoplastic agents. 219. Isolation and structure of the cell growth inhibitory constituents from the western Pacific marine sponge Axinella sp[J]. Journal of Medicinal Chemistry, 1991, 34(11): 3339-3340.
[57] PETTIT G R, TAN R, GAO F, et al. : Isolation and structure of halistatin 1 from the eastern Indian Ocean marine sponge Phakellia carteri[J]. The Journal of Organic Chemistry, 1993, 58(9): 2538-2543.
[58] BAI R L, PAULL K D, HERALD C L, et al. Halichondrin B and homohalichondrin B, marine natural products binding in the vinca domain of tubulin. Discovery of tubulin-based mechanism of action by analysis of differential cytotoxicity data[J]. Journal of Biological Chemistry, 1991, 266(24): 15882-15889.
[59] AICHER T D, BUSZEK K R, FANG F G, et al. Total synthesis of halichondrin B and norhalichondrin B[J]. Journal of the American Chemical Society, 1992, 114(8): 3162-3164.
[60] CORTES J, O'SHAUGHNESSY J, LOESCH D, et al. Eribulin monotherapy versus treatment of physician's choice in patients with metastatic breast cancer (EMBRACE): a phase 3 open-label randomised study.[J]. Lancet, 2011, 377(9769):914-923.
[61] SUH E M, KISHI Y. Synthesis of palytoxin from palytoxin carboxylic acid[J]. Journal of the American Chemical Society, 1994, 116(24): 11205-11206.
[62] WOODWARD R B. The total synthesis of vitamin B12[J]. Pure and Applied Chemistry, 1973, 33(1): 145-178.
[63] WOODWARD R B, HOFFMANN R. Stereochemistry of electrocyclic reactions[J]. Journal of the American Chemical Society, 1965, 87(2): 395-397.
[64] COREY E J, JOHNSON A P, LONG A K. Computer-assisted synthetic analysis. Techniques for efficient long-range retrosynthetic searches applied to the Robinson annulation process[J]. The Journal of Organic Chemistry, 1980, 45(11): 2051-2057.
[65] KIRTANY J K, PAKNIKAR S K. Structure of α-funebrene[J]. Indian J. Chem., 1973, 11(5):508-509.
[66] DARWISH R S, SHAWKY E, EL NAGGAR E M B, et al. Evaluation of the effect of seasonal variation and organ selection on the chemical composition and antimicrobial activity of the essential oil of oriental-cedar (Platyclaudus orientalis (L.) Franco)[J]. Journal of Essential Oil Research, 2021, 33(1): 69-79.
[67] MELKANI A B, NAILWAL M, MOHAN L, et al. Steam volatile oil from Scutellaria repens Buch-Ham. ex D. Don; its composition and antibacterial activity[J]. Journal of Essential Oil Research, 2013, 25(5): 368-371.
[68] ZHANG W, LI L, LI C C. Synthesis of natural products containing highly strained trans-fused bicyclo
[3.3.0] octane: historical overview and future prospects[J]. Chemical Society Reviews, 2021, 50(17): 9430-9442.
[69] CHANG S, MCNALLY D, SHARY-TEHRANY S, et al. Heats of combustion and strain energies of bicyclo [n.m.O] alkanes[J]. Journal of the American Chemical Society, 1970, 92(10): 3109-3118.
[70] ALLINGER N L, TRIBBLE M T, MILLER M A, et al. Conformational analysis. LXIX. Improved force field for the calculation of the structures and energies of hydrocarbons[J]. Journal of the American Chemical Society, 1971, 93(7): 1637-1648.
[71] KÖCK M, GRUBE A, SEIPLE I B, et al. The pursuit of palau'amine[J]. Angewandte Chemie International Edition, 2007, 46(35): 6586-6594.
[72] PRONIN S V, SHENVI R A. Synthesis of highly strained terpenes by non-stop tail-to-head polycyclization[J]. Nature Chemistry, 2012, 4(11): 915-920.
[73] KINNEL R B, GEHRKEN H P, SCHEUER P J. Palau'amine: a cytotoxic and immunosuppressive hexacyclic bisguanidine antibiotic from the sponge Stylotella agminata[J]. Journal of the American Chemical Society, 1993, 115(8): 3376-3377.
[74] BUCHANAN M S, CARROLL A R, QUINN R J. Revised structure of palau’amine[J]. Tetrahedron letters, 2007, 48(26): 4573-4574.
[75] JAMISON T F, SHAMBAYATI S, CROWE W E, et al. Cobalt-mediated total synthesis of (+)-epoxydictymene[J]. Journal of the American Chemical Society, 1994, 116(12): 5505-5506.
[76] JAMISON T F, SHAMBAYATI S, CROWE W E, et al. Tandem use of cobalt-mediated reactions to synthesize (+)-epoxydictymene, a diterpene containing a trans-fused 5−5 ring system[J]. Journal of the American Chemical Society, 1997, 119(19): 4353-4363.
[77] PAQUETTE L A, SUN L Q, FRIEDRICH D, et al. Total synthesis of (+)-epoxydictymene. Application of alkoxy-directed cyclization to diterpenoid construction[J]. Journal of the American Chemical Society, 1997, 119(36): 8438-8450.
[78] PAQUETTE L A, SUN L Q, FRIEDRICH D, et al. Highly enantioselective total synthesis of natural epoxydictymene. An alkoxy-directed cyclization route to highly strained trans-oxabicyclo
[3.3.0] octanes[J]. Tetrahedron Letters, 1997, 38(2): 195-198.
[79] SEIPLE I B, SU S, YOUNG I S, et al. Total synthesis of palau’amine[J]. Angewandte Chemie, 2010, 122(6): 1113-1116.
[80] SU S, SEIPLE I B, YOUNG I S, et al. Total syntheses of (±)-massadine and massadine chloride[J]. Journal of the American Chemical Society, 2008, 130(49): 16490-16491.
[81] NAMBA K, TAKEUCHI K, KAIHARA Y, et al. Total synthesis of palau’amine[J]. Nature Communications, 2015, 6(1): 8731.
[82] NAMBA K, KAIHARA Y, YAMAMOTO H, et al. Toward Palau’amine: Hg(OTf)2-Catalyzed Synthesis of the Cyclopentane Core[J]. Chemistry-A European Journal, 2009, 15(27): 6560-6563.
[83] HU P, SNYDER S A. Enantiospecific total synthesis of the highly strained (−)-presilphiperfolan-8-ol via a Pd-catalyzed tandem cyclization[J]. Journal of the American Chemical Society, 2017, 139(14): 5007-5010.
[84] BURNS A S, RYCHNOVSKY S D. Total Synthesis and Structure Revision of (−)-Illisimonin A, a Neuroprotective Sesquiterpenoid from the Fruits of Illicium simonsii[J]. Journal of the American Chemical Society, 2019, 141(34): 13295-13300.
[85] ZHANG W, ZHOU Z X, ZHU X J, et al. Asymmetric total synthesis of the highly strained 4β-acetoxyprobotryane-9β, 15α-diol[J]. Journal of the American Chemical Society, 2020, 142(47): 19868-19873.
[86] DANHEISER R L, CARINI D J, BASAK A. (Trimethylsilyl) cyclopentene annulation: a regiocontrolled approach to the synthesis of five-membered rings[J]. Journal of the American Chemical Society, 1981, 103(6): 1604-1606.
[87] DANHEISER R L, CARINI D J, FINK D M, et al. Scope and stereochemical course of the (trimethylsilyl) cyclopentene annulation[J]. Tetrahedron, 1983, 39(6): 935-947.
[88] DANHEISER R L, FINK D M. The reaction of allenylsilanes with α, β-unsaturated acylsilanes: new annulation approaches to five and six-membered carbocyclic compounds[J]. Tetrahedron Letters, 1985, 26(21): 2513-2516.
[89] DANHEISER R L, KWASIGROCH C A, TSAI Y M. Application of allenylsilanes in
[3+2] annulation approaches to oxygen and nitrogen heterocycles[J]. Journal of the American Chemical Society, 1985, 107(24): 7233-7235.
[90] Danheiser R L, Becker D A. Application of Allylsilanes in a Regiocontrolled
[3+2] Annulation Route to Substituted Isoxazoles[J]. Heterocycles, 1987, 25(1):277.
[91] DANHEISER R L, FINK D M, TSAI Y M. A general
[3+2] annulation-cis-4-exo-isopropenyl-1, 9-dimethyl-8-(trimethylsilyl) bicyclo
[4.3.0] non-8-en-2-one[j]. Organic Syntheses, 1988, 66: 8-13.
[92] BECKER D A, DANHEISER R L. A new synthesis of substituted azulenes[J]. Journal of the American Chemical Society, 1989, 111(1): 389-391.
[93] DANHEISER R L, DIXON B R, GLEASON R W. Five-membered ring annulation via propargyl-and allylsilanes[J]. The Journal of Organic Chemistry, 1992, 57(23): 6094-6097.
[94] SUGINOME M, MATSUNAGA S, ITO Y. Disilanyl group as a synthetic equivalent of the hydroxyl group[J]. Synlett, 1995, 1995(09): 941-942.
[95] KNÖLKER H J, FOITZIK N, GOESMANN H, et al. Highly Stereoselective Synthesis of Bicyclo [n.3.0] alkanes by Titanium Tetrachloride Promoted
[3+2] Cycloaddition of Allylsilanes and 1-Acetylcycloalkenes[J]. Chemistry-A European Journal, 1997, 3(4): 538-551.
[96] FRIESE J C, KRAUSE S, SCHÄFER H J. Formal total synthesis of the trinorguaiane sesquiterpenes (+/−)-clavukerin A and (+/−)-isoclavukerin[J]. Tetrahedron Letters, 2002, 43(15): 2683-2685.
[97] SABORIT G V, CATIVIELA C, JIMÉNEZ A I, et al. Synthesis of cis-hydrindan-2, 4-diones bearing an all-carbon quaternary center by a Danheiser annulation[J]. Beilstein Journal of Organic Chemistry, 2018, 14(1): 2597-2601.
[98] COBO A A, ARMSTRONG B M, FETTINGER J C, et al. Catalytic Asymmetric Synthesis of Cyclopentene-spirooxindoles Bearing Vinylsilanes Capable of Further Transformations[J]. Organic Letters, 2019, 21(20): 8196-8200.
[99] BORZILLERI R M, WEINREB S M, PARVEZ M. Total synthesis of papuamine via a stereospecific intramolecular imino ene reaction of an allenylsilane[J]. Journal of the American Chemical Society, 1994, 116(21): 9789-9790.
[100]YASUDA A, YAMAMOTO H, NOZAKI H. A Highly Stereospecific Isomerization of Oxiranes into Allylic Alcohols by Means of Organoaluminum Amides[J]. Bulletin of the Chemical Society of Japan, 1979, 52(6): 1705-1708.

所在学位评定分委会
化学
国内图书分类号
O621.3
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544021
专题理学院_化学系
推荐引用方式
GB/T 7714
张鹏. 天然产物β-funebrene的全合成[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132819-张鹏-化学系.pdf(8914KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[张鹏]的文章
百度学术
百度学术中相似的文章
[张鹏]的文章
必应学术
必应学术中相似的文章
[张鹏]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。