[参考文献
[1] NEWMAN D J, CRAGG G M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019[J]. Journal of Natural Products, 2020, 83(3): 770-803.
[2] NICOLAOU K C, VOURLOUMIS D, WINSSINGER N, et al. The art and science of total synthesis at the dawn of the twenty‐first century[J]. Angewandte Chemie International Edition, 2000, 39(1): 44-122.
[3] CHEN J S, NICOLAOU K C. Classics in Total Synthesis III: Further Targets, Strategies, Methods[J]. 2011.
[4] ROBINSON, ROBERT. LXIII.—A synthesis of tropinone[J]. Biochimica Et Biophysica Acta, 1917, 56:184-185.
[5] FISCHER H, ZEILE K. Synthese des haematoporphyrins, protoporphyrins und haemins[J]. Justus Liebigs Annalen der Chemie, 1929, 468(1): 98-116.
[6] World Health Organization. World malaria report 2022[M]. World Health Organization, 2022.
[7] 袁亚男, 姜廷良, 周兴, 刘盈. 青蒿素的发现和发展[J]. 科学通报, 2017, 62(18): 1914-1927.
[8] 张楠.抗疟药物的应用与发展[J].中国药物评价,2016,33(01):7-10.
[9] Woodward R B, Doering W E. The total synthesis of quinine [J]. J Am Chem Soc, 1944, 66(5): 849.
[10] ACHAN J, TALISUNA A O, ERHART A, et al. Quinine, an old anti-malarial drug in a modern world: role in the treatment of malaria[J]. Malaria Journal, 2011, 10(1): 1-12.
[11] RUOCCO V, RUOCCO E, SCHWARTZ R A, et al. Kaposi sarcoma and quinine: a potentially overlooked triggering factor in millions of Africans[J]. Journal of the American Academy of Dermatology, 2011, 64(2): 434-436.
[12] 郭瑞霞, 李力更, 付炎, 等. 天然药物化学史话: 奎宁的发现, 化学结构以及全合成[J]. 中草药, 2014, 45(19): 2737-2741.
[13] VON SEIDLEIN L, DONDORP A. Fighting fire with fire: mass antimalarial drug administrations in an era of antimalarial resistance[J]. Expert Review of Anti-Infective Therapy, 2015, 13(6): 715-730.
[14] 梁晓竟, 谢贤桂. 氯喹抗疟研究概况[J]. 预防医学情报杂志, 2002, 18(3): 219-219.
[15] 陈泽建. 氯喹的抗疟作用方式及其抗药性的产生机制[J]. 中国寄生虫病防治杂志, 2000, 13(4): 304-307.
[16] 青蒿素结构研究协作组. 一种新型的倍半萜内酯——青蒿素[J]. 科技导报, 1977, 33(20): 123-123.
[17] 刘静明, 倪慕云, 樊菊芬, 等. 青蒿素(Arteannuin)的结构和反应[J]. 化学学报, 1979, 37(2): 129.
[18] ROBERT A, DECHY-CABARET O, CAZELLES J, et al. From mechanistic studies on artemisinin derivatives to new modular antimalarial drugs[J]. Accounts of Chemical Research, 2002, 35(3): 167-174.
[19] 刘靖丽, 靳如意, 张光辉, 等. 青蒿素及其类似物抗疟构效关系的DFT研究[J]. 天然产物研究与开发, 2019, 31(1): 44-48.
[20] 黄静. 双氢青蒿素片剂的研制及溶出度研究[J]. 长春师范大学学报, 2018, 37(4): 60-64.
[21] 李英, 虞佩琳, 陈一心, 等. 青蒿素衍生物的合成[J]. 科学通报, 1979, 24(14): 667.
[22] 李英, 虞佩琳, 陈一心,等. 青蒿素类似物的研究——Ⅰ, 还原青蒿素的醚类, 羧酸酯类及碳酸酯类衍生物的合成[J]. 药学学报, 1981(06):31-41.
[23] 张亚红, 王丽娟, 甘淋玲, 等. 蒿甲醚及其制剂的临床应用研究进展[J]. 重庆医学, 2014, 43(29): 3967-3970.
[24] 费伟东, 叶轶青, 陈玥, 等. 双氢青蒿素诱导肿瘤细胞铁死亡及其机制研究[J]. 中草药, 2020, 51(13): 3473-3481.
[25] 蒋为薇, 钱妍. 青蒿素及其衍生物抗菌活性的研究进展[J]. 中国药房, 2019, 30(14): 2003-2007.
[26] SCHMID G, HOFHEINZ W. ChemInform Abstract: Total synthesis of qinghaosu[J]. Chemischer Informationsdienst, 1983, 14(21).
[27] XU, XING-XIANG, and, et al. Total synthesis of arteannuin and deoxyarteannuin[J]. Tetrahedron, 1986.
[28] LI J, SHEN J, XIA C, et al. Asymmetric hydrogenation of α-substituted acrylic acids catalyzed by a ruthenocenyl phosphino-oxazoline–ruthenium complex[J]. Organic Letters, 2016, 18(9): 2122-2125.
[29] WHO. Global Health Estimates 2020: Deaths by Cause, Age, Sex, by Country and by Region, 2000-2019[Z/OL].
[2021-02-20]. https://www.who.int/data/gho/data/themes/mortality-andglobal-health-estimates/ghe-leading-causes-of-death.
[30] SUNG H , FERLAY J, SIEGEL R L, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J]. CA: a Cancer Journal for Clinicians, 2021, 71(3):209-249.
[31] 杨楠, 贾晓斌, 张振海, 等. 黄酮类化合物抗肿瘤活性及机制研究进展[J]. 中国中药杂志, 2015, 40(3): 373-381.
[32] LUCAS H. Ueber ein in den Blättern von Taxus baccata L. enthaltenes Alkaloid (das Taxin)[J]. Archiv der Pharmazie, 1856, 135(2): 145-149.
[33] WALL M E, WANI M C. Camptothecin and taxol: discovery to clinic—thirteenth Bruce F. Cain Memorial Award Lecture[J]. Cancer Research, 1995, 55(4): 753-760.
[34] WANI M C, TAYLOR H L, WALL M E, et al. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia[J]. J Am Chem Soc, 1971, 93(9): 2325-2327.
[35] SCHIFF P B, FANT J, HORWITZ S B. Promotion of microtubule assembly in vitro by taxol[J]. Nature, 1979, 277(5698): 665-667.
[36] PARNESS J, HORWITZ S B. Taxol binds to polymerized tubulin in vitro[J]. The Journal of Cell Biology, 1981, 91(2): 479-487.
[37] MANFREDI J J, PARNESS J, HORWITZ S B. Taxol binds to cellular microtubules[J]. The Journal of Cell Biology, 1982, 94(3): 688-696.
[38] SCHIFF P B, HORWITZ S B. Taxol stabilizes microtubules in mouse fibroblast cells[J]. Proc Natl Acad Sci USA, 1980, 77: 1561-1565.
[39] HORWITZ S B. Personal recollections on the early development of taxol[J]. Journal of Natural Products, 2004, 67(2): 136-138.
[40] MCGUIRE W P, ROWINSKY E K, ROSENSHEIN N B, et al. Taxol: a unique antineoplastic agent with significant activity in advanced ovarian epithelial neoplasms[J]. Annals of Internal Medicine, 1989, 111(4): 273-279.
[41] GUERITTE-VOEGELEIN F, GUENARD D, LAVELLE F, et al. Relationships between the structure of taxol analogs and their antimitotic activity[J]. Journal of Medicinal Chemistry, 1991, 34(3): 992-998.
[42] CHO J H, HONG S K, KIM E Y, et al. Overexpression of phospholipase D suppresses taxotere-induced cell death in stomach cancer cells[J]. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2008, 1783(5): 912-923.
[43] 唐培, 王锋鹏. 近年来紫杉醇的合成研究进展[J]. 有机化学, 2013, 33(03): 458.
[44] DENIS J N, GREENE A E, GUENARD D, et al. Highly efficient, practical approach to natural taxol[J]. Journal of the American Chemical Society, 1988, 110(17): 5917-5919.
[45] 王雪松, 孙剑秋, 臧威, 等. 从Strobel的发现看植物内生真菌研究的未来[J]. 生物学通报, 2012, 47(10): 1-3.
[46] WANG Y F, SHI Q W, DONG M, et al. Natural taxanes: developments since 1828[J]. Chemical Reviews, 2011, 111(12): 7652-7709.
[47] (a) HOLTON R A, SOMOZA C, KIM H B, et al. First total synthesis of taxol. 1. Functionalization of the B ring[J]. Journal of the American Chemical Society, 1994, 116(4): 1597-1598.(b) HOLTON R A, KIM H B, SOMOZA C, et al. First total synthesis of taxol. 2. Completion of the C and D rings[J]. Journal of the American Chemical society, 1994, 116(4): 1599-1600.
[48] NICOLAOU K C, YANG Z, LIU J J, et al. Total synthesis of taxol[J]. Nature, 1994, 367(6464): 630-634.
[49] Think globally about cancer[J]. Nature Medicine, 2019, 25(3):351-351.
[50] TRENDOWSKI M. Recent advances in the development of antineoplastic agents derived from natural products[J]. Drugs, 2015, 75: 1993-2016.
[51] JORDAN M A, WILSON L. Microtubules as a target for anticancer drugs[J]. Nature Reviews Cancer, 2004, 4(4): 253-265.
[52] ROHENA C C, MOOBERRY S L. Recent progress with microtubule stabilizers: new compounds, binding modes and cellular activities[J]. Natural Product Reports, 2014, 31(3): 335-355.
[53] KAUL R, RISINGER A L, MOOBERRY S L. Microtubule-targeting drugs: more than antimitotics[J]. Journal of Natural Products, 2019, 82(3): 680-685.
[54] UEMURA D, TAKAHASHI K, YAMAMOTO T, et al. Norhalichondrin A: an antitumor polyether macrolide from a marine sponge[J]. Journal of the American Chemical Society, 1985, 107(16): 4796-4798.
[55] HIRATA Y, UEMURA D. Halichondrins-antitumor polyether macrolides from a marine sponge[J]. Pure and Applied Chemistry, 1986, 58(5): 701-710.
[56] PETTIT G R, HERALD C L, BOYD M R, et al. Antineoplastic agents. 219. Isolation and structure of the cell growth inhibitory constituents from the western Pacific marine sponge Axinella sp[J]. Journal of Medicinal Chemistry, 1991, 34(11): 3339-3340.
[57] PETTIT G R, TAN R, GAO F, et al. : Isolation and structure of halistatin 1 from the eastern Indian Ocean marine sponge Phakellia carteri[J]. The Journal of Organic Chemistry, 1993, 58(9): 2538-2543.
[58] BAI R L, PAULL K D, HERALD C L, et al. Halichondrin B and homohalichondrin B, marine natural products binding in the vinca domain of tubulin. Discovery of tubulin-based mechanism of action by analysis of differential cytotoxicity data[J]. Journal of Biological Chemistry, 1991, 266(24): 15882-15889.
[59] AICHER T D, BUSZEK K R, FANG F G, et al. Total synthesis of halichondrin B and norhalichondrin B[J]. Journal of the American Chemical Society, 1992, 114(8): 3162-3164.
[60] CORTES J, O'SHAUGHNESSY J, LOESCH D, et al. Eribulin monotherapy versus treatment of physician's choice in patients with metastatic breast cancer (EMBRACE): a phase 3 open-label randomised study.[J]. Lancet, 2011, 377(9769):914-923.
[61] SUH E M, KISHI Y. Synthesis of palytoxin from palytoxin carboxylic acid[J]. Journal of the American Chemical Society, 1994, 116(24): 11205-11206.
[62] WOODWARD R B. The total synthesis of vitamin B12[J]. Pure and Applied Chemistry, 1973, 33(1): 145-178.
[63] WOODWARD R B, HOFFMANN R. Stereochemistry of electrocyclic reactions[J]. Journal of the American Chemical Society, 1965, 87(2): 395-397.
[64] COREY E J, JOHNSON A P, LONG A K. Computer-assisted synthetic analysis. Techniques for efficient long-range retrosynthetic searches applied to the Robinson annulation process[J]. The Journal of Organic Chemistry, 1980, 45(11): 2051-2057.
[65] KIRTANY J K, PAKNIKAR S K. Structure of α-funebrene[J]. Indian J. Chem., 1973, 11(5):508-509.
[66] DARWISH R S, SHAWKY E, EL NAGGAR E M B, et al. Evaluation of the effect of seasonal variation and organ selection on the chemical composition and antimicrobial activity of the essential oil of oriental-cedar (Platyclaudus orientalis (L.) Franco)[J]. Journal of Essential Oil Research, 2021, 33(1): 69-79.
[67] MELKANI A B, NAILWAL M, MOHAN L, et al. Steam volatile oil from Scutellaria repens Buch-Ham. ex D. Don; its composition and antibacterial activity[J]. Journal of Essential Oil Research, 2013, 25(5): 368-371.
[68] ZHANG W, LI L, LI C C. Synthesis of natural products containing highly strained trans-fused bicyclo
[3.3.0] octane: historical overview and future prospects[J]. Chemical Society Reviews, 2021, 50(17): 9430-9442.
[69] CHANG S, MCNALLY D, SHARY-TEHRANY S, et al. Heats of combustion and strain energies of bicyclo [n.m.O] alkanes[J]. Journal of the American Chemical Society, 1970, 92(10): 3109-3118.
[70] ALLINGER N L, TRIBBLE M T, MILLER M A, et al. Conformational analysis. LXIX. Improved force field for the calculation of the structures and energies of hydrocarbons[J]. Journal of the American Chemical Society, 1971, 93(7): 1637-1648.
[71] KÖCK M, GRUBE A, SEIPLE I B, et al. The pursuit of palau'amine[J]. Angewandte Chemie International Edition, 2007, 46(35): 6586-6594.
[72] PRONIN S V, SHENVI R A. Synthesis of highly strained terpenes by non-stop tail-to-head polycyclization[J]. Nature Chemistry, 2012, 4(11): 915-920.
[73] KINNEL R B, GEHRKEN H P, SCHEUER P J. Palau'amine: a cytotoxic and immunosuppressive hexacyclic bisguanidine antibiotic from the sponge Stylotella agminata[J]. Journal of the American Chemical Society, 1993, 115(8): 3376-3377.
[74] BUCHANAN M S, CARROLL A R, QUINN R J. Revised structure of palau’amine[J]. Tetrahedron letters, 2007, 48(26): 4573-4574.
[75] JAMISON T F, SHAMBAYATI S, CROWE W E, et al. Cobalt-mediated total synthesis of (+)-epoxydictymene[J]. Journal of the American Chemical Society, 1994, 116(12): 5505-5506.
[76] JAMISON T F, SHAMBAYATI S, CROWE W E, et al. Tandem use of cobalt-mediated reactions to synthesize (+)-epoxydictymene, a diterpene containing a trans-fused 5−5 ring system[J]. Journal of the American Chemical Society, 1997, 119(19): 4353-4363.
[77] PAQUETTE L A, SUN L Q, FRIEDRICH D, et al. Total synthesis of (+)-epoxydictymene. Application of alkoxy-directed cyclization to diterpenoid construction[J]. Journal of the American Chemical Society, 1997, 119(36): 8438-8450.
[78] PAQUETTE L A, SUN L Q, FRIEDRICH D, et al. Highly enantioselective total synthesis of natural epoxydictymene. An alkoxy-directed cyclization route to highly strained trans-oxabicyclo
[3.3.0] octanes[J]. Tetrahedron Letters, 1997, 38(2): 195-198.
[79] SEIPLE I B, SU S, YOUNG I S, et al. Total synthesis of palau’amine[J]. Angewandte Chemie, 2010, 122(6): 1113-1116.
[80] SU S, SEIPLE I B, YOUNG I S, et al. Total syntheses of (±)-massadine and massadine chloride[J]. Journal of the American Chemical Society, 2008, 130(49): 16490-16491.
[81] NAMBA K, TAKEUCHI K, KAIHARA Y, et al. Total synthesis of palau’amine[J]. Nature Communications, 2015, 6(1): 8731.
[82] NAMBA K, KAIHARA Y, YAMAMOTO H, et al. Toward Palau’amine: Hg(OTf)2-Catalyzed Synthesis of the Cyclopentane Core[J]. Chemistry-A European Journal, 2009, 15(27): 6560-6563.
[83] HU P, SNYDER S A. Enantiospecific total synthesis of the highly strained (−)-presilphiperfolan-8-ol via a Pd-catalyzed tandem cyclization[J]. Journal of the American Chemical Society, 2017, 139(14): 5007-5010.
[84] BURNS A S, RYCHNOVSKY S D. Total Synthesis and Structure Revision of (−)-Illisimonin A, a Neuroprotective Sesquiterpenoid from the Fruits of Illicium simonsii[J]. Journal of the American Chemical Society, 2019, 141(34): 13295-13300.
[85] ZHANG W, ZHOU Z X, ZHU X J, et al. Asymmetric total synthesis of the highly strained 4β-acetoxyprobotryane-9β, 15α-diol[J]. Journal of the American Chemical Society, 2020, 142(47): 19868-19873.
[86] DANHEISER R L, CARINI D J, BASAK A. (Trimethylsilyl) cyclopentene annulation: a regiocontrolled approach to the synthesis of five-membered rings[J]. Journal of the American Chemical Society, 1981, 103(6): 1604-1606.
[87] DANHEISER R L, CARINI D J, FINK D M, et al. Scope and stereochemical course of the (trimethylsilyl) cyclopentene annulation[J]. Tetrahedron, 1983, 39(6): 935-947.
[88] DANHEISER R L, FINK D M. The reaction of allenylsilanes with α, β-unsaturated acylsilanes: new annulation approaches to five and six-membered carbocyclic compounds[J]. Tetrahedron Letters, 1985, 26(21): 2513-2516.
[89] DANHEISER R L, KWASIGROCH C A, TSAI Y M. Application of allenylsilanes in
[3+2] annulation approaches to oxygen and nitrogen heterocycles[J]. Journal of the American Chemical Society, 1985, 107(24): 7233-7235.
[90] Danheiser R L, Becker D A. Application of Allylsilanes in a Regiocontrolled
[3+2] Annulation Route to Substituted Isoxazoles[J]. Heterocycles, 1987, 25(1):277.
[91] DANHEISER R L, FINK D M, TSAI Y M. A general
[3+2] annulation-cis-4-exo-isopropenyl-1, 9-dimethyl-8-(trimethylsilyl) bicyclo
[4.3.0] non-8-en-2-one[j]. Organic Syntheses, 1988, 66: 8-13.
[92] BECKER D A, DANHEISER R L. A new synthesis of substituted azulenes[J]. Journal of the American Chemical Society, 1989, 111(1): 389-391.
[93] DANHEISER R L, DIXON B R, GLEASON R W. Five-membered ring annulation via propargyl-and allylsilanes[J]. The Journal of Organic Chemistry, 1992, 57(23): 6094-6097.
[94] SUGINOME M, MATSUNAGA S, ITO Y. Disilanyl group as a synthetic equivalent of the hydroxyl group[J]. Synlett, 1995, 1995(09): 941-942.
[95] KNÖLKER H J, FOITZIK N, GOESMANN H, et al. Highly Stereoselective Synthesis of Bicyclo [n.3.0] alkanes by Titanium Tetrachloride Promoted
[3+2] Cycloaddition of Allylsilanes and 1-Acetylcycloalkenes[J]. Chemistry-A European Journal, 1997, 3(4): 538-551.
[96] FRIESE J C, KRAUSE S, SCHÄFER H J. Formal total synthesis of the trinorguaiane sesquiterpenes (+/−)-clavukerin A and (+/−)-isoclavukerin[J]. Tetrahedron Letters, 2002, 43(15): 2683-2685.
[97] SABORIT G V, CATIVIELA C, JIMÉNEZ A I, et al. Synthesis of cis-hydrindan-2, 4-diones bearing an all-carbon quaternary center by a Danheiser annulation[J]. Beilstein Journal of Organic Chemistry, 2018, 14(1): 2597-2601.
[98] COBO A A, ARMSTRONG B M, FETTINGER J C, et al. Catalytic Asymmetric Synthesis of Cyclopentene-spirooxindoles Bearing Vinylsilanes Capable of Further Transformations[J]. Organic Letters, 2019, 21(20): 8196-8200.
[99] BORZILLERI R M, WEINREB S M, PARVEZ M. Total synthesis of papuamine via a stereospecific intramolecular imino ene reaction of an allenylsilane[J]. Journal of the American Chemical Society, 1994, 116(21): 9789-9790.
[100]YASUDA A, YAMAMOTO H, NOZAKI H. A Highly Stereospecific Isomerization of Oxiranes into Allylic Alcohols by Means of Organoaluminum Amides[J]. Bulletin of the Chemical Society of Japan, 1979, 52(6): 1705-1708.
修改评论