[1] KIM A, EUSTICE R M. Real-Time Visual SLAM for Autonomous Underwater Hull Inspection Using Visual Saliency[J]. IEEE Transactions on Robotics, 2013, 29(3): 719-733.
[2] ZHOU H Z, ZOU D P, PEI L, et al. StructSLAM: Visual SLAM With Building Structure Lines[J]. IEEE Transactions on Vehicular Technology, 2015, 64(4): 1364-1375.
[3] NGUYEN D D, ELOUARDI A, FLOREZ S A R, et al. HOOFR SLAM System: An Embedded Vision SLAM Algorithm and Its Hardware-Software Mapping-Based Intelligent Vehicles Applications[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(11): 4103-4118.
[4] 权美香,朴松昊,李国. 视觉SLAM综述[J]. 智能系统学报,2016,11(6):768-776.
[5] MEIRELES M, LOURENCO R, DIAS A, et al. Real Time Visual SLAM for underwater robotic inspection; proceedings of the Oceans Conference, St Johns, CANADA, F Sep 14-19, 2014 [C]. 2014.
[6] WOOD R J, FINIO B, KARPELSON M, et al. Progress on 'pico' air vehicles[J]. International Journal of Robotics Research, 2012, 31(11): 1292-1302.
[7] MA K Y, CHIRARATTANANON P, FULLER S B, et al. Controlled Flight of a Biologically Inspired, Insect-Scale Robot[J]. Science, 2013, 340(6132): 603-607.
[8] SILVEIRA G, MALIS E, RIVES P. An Efficient Direct Approach to Visual SLAM[J]. IEEE Transactions on Robotics, 2008, 24(5): 969-979.
[9] NEWCOMBE R A, LOVEGROVE S J, DAVISON A J, et al. DTAM: Dense Tracking and Mapping in Real-Time; proceedings of the IEEE International Conference on Computer Vision (ICCV), Barcelona, SPAIN, F Nov 06-13, 2011 [C]. 2011.
[10] ENGEL J, STUCKLER J, CREMERS D, et al. Large-Scale Direct SLAM with Stereo Cameras; proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, GERMANY, F Sep 28-Oct 02, 2015 [C]. 2015.
[11] FORSTER C, PIZZOLI M, SCARAMUZZA D, et al. SVO: Fast Semi-Direct Monocular Visual Odometry; proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, PEOPLES R CHINA, F May 31-Jun 07, 2014 [C]. 2014.
[12] ENGEL J, KOLTUN V, CREMERS D. Direct Sparse Odometry[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(3): 611-625.
[13] SUN J M, WANG Y Q, SHEN Y Y, et al. Fully Scaled Monocular Direct Sparse Odometry with A Distance Constraint; proceedings of the 5th International Conference on Control, Automation and Robotics (ICCAR), Beijing, PEOPLES R CHINA, F Apr 19-22, 2019 [C]. 2019.
[14] WANG X G, WU F C, WANG Z H, et al. Harris Feature Vector Descriptor (HFVD); proceedings of the 19th International Conference on Pattern Recognition (ICPR 2008), Tampa, FL, F Dec 08-11, 2008 [C]. 2008.
[15] LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
[16] MEHROTRA R, NICHANI S, RANGANATHAN N. CORNER DETECTION[J]. Pattern Recognition, 1990, 23(11): 1223-1233.
[17] BAY H, ESS A, TUYTELAARS T, et al. Speeded-Up Robust Features (SURF)[J]. Computer Vision and Image Understanding, 2008, 110(3): 346-359.
[18] ROSTEN E, PORTER R, DRUMMOND T. Faster and Better: A Machine Learning Approach to Corner Detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(1): 105-119.
[19] RUBLEE E, RABAUD V, KONOLIGE K, et al. ORB: an efficient alternative to SIFT or SURF; proceedings of the IEEE International Conference on Computer Vision (ICCV), Barcelona, SPAIN, F Nov 06-13, 2011 [C]. 2011.
[20] CASTELLANOS J A, MONTIEL J M M, NEIRA J, et al. The SPmap: A probabilistic framework for simultaneous localization and map building[J]. IEEE Transactions on Robotics and Automation, 1999, 15(5): 948-952.
[21] HUANG G P, MOURIKIS A I, ROUMELIOTIS S I, et al. Analysis and improvement of the consistency of extended Kalman filter based SLAM; proceedings of the IEEE International Conference on Robotics and Automation, Pasadena, CA, F May 19-23, 2008 [C]. 2008.
[22] THRUN S, LIU Y F, KOLLER D, et al. Simultaneous localization and mapping with sparse extended information filters[J]. International Journal of Robotics Research, 2004, 23(7-8): 693-716.
[23] EUSTICE R M, SINGH H, LEONARD J J. Exactly sparse delayed-state filters for view-based SLAM[J]. IEEE Transactions on Robotics, 2006, 22(6): 1100-1114.
[24] MONTEMERLO M, THRUN S, KOLLER D, et al. FastSLAM: A factored solution to the simultaneous localization and mapping problem; proceedings of the 18th National Conference on Artificial Intelligence/14th Conference on Innovative Applications of Artificial Intelligence, Edmonton, Canada, F Jul 28-Aug 01, 2002 [C]. 2002.
[25] HAHNEL D, BURGARD W, FOX D, et al. An efficient FastSLAM algorithm for generating maps of large-scale cyclic environments from raw laser range measurements; proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, Nv, F Oct 27-31, 2003 [C]. 2003.
[26] GRISETTI G, STACHNISS C, BURGARD W. Improved techniques for grid mapping with Rao-Blackwellized particle filters[J]. IEEE Transactions on Robotics, 2007, 23(1): 34-46.
[27] DI K C, ZHAO Q, WAN W H, et al. RGB-D SLAM Based on Extended Bundle Adjustment with 2D and 3D Information[J]. Sensors, 2016, 16(8).
[28] ALISMAIL H, BROWNING B, LUCEY S. Photometric Bundle Adjustment for Vision-Based SLAM; proceedings of the 13th Asian Conference on Computer Vision (ACCV), Taipei, TAIWAN, F Nov 20-24, 2016 [C]. 2017.
[29] LIU H M, CHEN M Y, ZHANG G F, et al. ICE-BA: Incremental, Consistent and Efficient Bundle Adjustment for Visual-Inertial SLAM; proceedings of the 31st IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, F Jun 18-23, 2018 [C]. 2018.
[30] DAVISON A J, REID I D, MOLTON N D, et al. MonoSLAM: Real-time single camera SLAM[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(6): 1052-1067.
[31] KLEIN G, MURRAY D. Parallel Tracking and Mapping on a Camera Phone; proceedings of the 8th IEEE International Symposium on Mixed and Augmented Reality, Orlando, FL, F Oct 19-22, 2009 [C]. 2009.
[32] BLOESCH M, OMANI S, HUTTER M, et al. Robust Visual Inertial Odometry Using a Direct EKF-Based Approach; proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, GERMANY, F Sep 28-Oct 02, 2015 [C]. 2015.
[33] LEUTENEGGER S, LYNEN S, BOSSE M, et al. Keyframe-based visual-inertial odometry using nonlinear optimization[J]. International Journal of Robotics Research, 2015, 34(3): 314-334.
[34] QIN T, LI P L, SHEN S J. VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator[J]. IEEE Transactions on Robotics, 2018, 34(4): 1004-1020.
[35] JIANG C, GENG Z X, WEI X F, et al. SIFT implementation based on GPU; proceedings of the 5th International Symposium on Photoelectronic Detection and Imaging (ISPDI) - Optical Storage and Display Technology, Beijing, PEOPLES R CHINA, F Jun 25-27, 2013 [C]. 2013.
[36] CORNELIS N, VAN GOOL L, IEEE. Fast Scale Invariant Feature Detection and Matching on Programmable Graphics Hardware; proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, AK, F Jun 23-28, 2008 [C]. 2008.
[37] YUM J, LEE C H, KIM J S, et al. A Novel Hardware Architecture With Reduced Internal Memory for Real-Time Extraction of SIFT in an HD Video[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2016, 26(10): 1943-1954.
[38] WILSON C, ZICARI P, CRACIUN S, et al. A Power-Efficient Real-Time Architecture for SURF Feature Extraction; proceedings of the 2014 International Conference on Reconfigurable Computing and FAGAs, Natl I Astrophysics Optics Elect (INAOE), Cancun, MEXICO, F Dec 08-10, 2014 [C]. 2014.
[39] ULUSEL O, PICARDO C, HARRIS C B, et al. Hardware Acceleration of Feature Detection and Description Algorithms on Low-Power Embedded Platforms; proceedings of the 26th International Conference on Field-Programmable Logic and Applications (FPL), Ecole Polytechnique Federale de Lausanne, Lausanne, SWITZERLAND, F Aug 29-Sep 02, 2016 [C]. 2016.
[40] TERTEI D T, PIAT J, DEVY M. FPGA design of EKF block accelerator for 3D visual SLAM[J]. Computers & Electrical Engineering, 2016, 55: 123-137.
[41] WANG J P, ZHAN Y, WANG Z X, et al. A Reconfigurable Matrix Multiplication Coprocessor with High Area and Energy Efficiency for Visual Intelligent and Autonomous Mobile Robots; proceedings of the 17th IEEE Asian Solid-State Circuits Conference (A-SSCC) - Integrated Circuits and Systems for the Connection of Intelligent Things, Busan, SOUTH KOREA, F Nov 07-10, 2021 [C]. 2021.
[42] LIU R Z, YANG J L, CHEN Y R, et al. eSLAM: An Energy-Efficient Accelerator for Real-Time ORB-SLAM on FPGA Platform; proceedings of the 56th ACM/EDAC/IEEE Design Automation Conference (DAC), Las Vegas, NV, F Jun 02-06, 2019 [C]. 2019.
[43] LI Z Y, CHEN Y, GONG L Y, et al. An 879GOPS 243mW 80fps VGA Fully Visual CNN-SLAM Processor for Wide-Range Autonomous Exploration; proceedings of the IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, F Feb 17-21, 2019 [C]. 2019.
[44] SULEIMAN A, ZHANG Z D, CARLONE L, et al. Navion: A 2-mW Fully Integrated Real-Time Visual-Inertial Odometry Accelerator for Autonomous Navigation of Nano Drones[J]. IEEE Journal of Solid-State Circuits, 2019, 54(4): 1106-1119.
[45] ZHANG Z D, SULEIMAN A, CARLONE L, et al. Visual-Inertial Odometry on Chip: An Algorithm-and-Hardware Co-design Approach; proceedings of the 13th Conference on Robotics - Science and Systems, Massachusetts Inst Technol, Cambridge, MA, F Jul 12-16, 2017 [C]. 2017.
[46] WANG C, LIU Y K, ZUO K D, et al. ac(2)SLAM: FPGA Accelerated High-Accuracy SLAM with Heapsort and Parallel Keypoint Extractor; proceedings of the 20th International Conference on Field-Programmable Technology (ICFPT), Electr Network, F Dec 06-10, 2021 [C]. 2021.
[47] LUPTON T, SUKKARIEH S. Visual-Inertial-Aided Navigation for High-Dynamic Motion in Built Environments Without Initial Conditions[J]. IEEE Transactions on Robotics, 2012, 28(1): 61-76.
[48] FORSTER C, CARLONE L, DELLAERT F, et al. IMU Preintegration on Manifold for Efficient Visual-Inertial Maximum-a-Posteriori Estimation; proceedings of the 11th Conference on Robotics - Science and Systems, Sapienza Univ Rome, Rome, ITALY, F Jul 13-17, 2015 [C]. 2015.
[49] GAUTSCHI M, SCHAFFNER M, GURKAYNAK F K, et al. An Extended Shared Logarithmic Unit for Nonlinear Function Kernel Acceleration in a 65-nm CMOS Multicore Cluster[J]. IEEE Journal of Solid-State Circuits, 2017, 52(1): 98-112.
[50] CAO N Y, CHANG M Y, RAYCHOWDHURY A. A 65-nm 8-to-3-b 1.0-0.36-V 9.1-1.1-TOPS/W Hybrid-Digital-Mixed-Signal Computing Platform for Accelerating Swarm Robotics[J]. IEEE Journal of Solid-State Circuits, 2020, 55(1): 49-59.
[51] KIM Y, SHIN D, LEE J, et al. A 0.55 V 1.1 mW Artificial Intelligence Processor With On-Chip PVT Compensation for Autonomous Mobile Robots[J]. IEEE Transactions on Circuits and Systems I-Regular Papers, 2018, 65(2): 567-580.
[52] LIU Q, WAN Z S, YU B, et al. An Energy-Efficient and Runtime-Reconfigurable FPGA-Based Accelerator for Robotic Localization Systems; proceedings of the IEEE Custom Integrated Circuits Conference (CICC), Newport Beach, CA, USA, F Apr 24-27, 2022, [C]. 2022.
修改评论