[1] DORSEY E R, SHERER T, OKUN M S, et al. The Emerging Evidence of the Parkinson Pandemic [J]. J Parkinsons Dis, 2018, 8(s1): S3-S8.
[2] 汪锡金, 张煜, 陈生弟. 帕金森病发病机制与治疗研究十年进展 [J]. 中国现代神经疾病杂志, 2010, 10(01): 36-42.
[3] BRENNER S R. Smoking duration, intensity, and risk of Parkinson disease [J]. Neurology, 2010, 75(6): 574-5; author reply
[4] GAO X, CASSIDY A, SCHWARZSCHILD M A, et al. Habitual intake of dietary flavonoids and risk of Parkinson disease [J]. Neurology, 2012, 78(15): 1138-45.
[5] ZHANG S M, HERNAN M A, CHEN H, et al. Intakes of vitamins E and C, carotenoids, vitamin supplements, and PD risk [J]. Neurology, 2002, 59(8): 1161-9.
[6] ASCHERIO A, SCHWARZSCHILD M A. The epidemiology of Parkinson's disease: risk factors and prevention [J]. Lancet Neurol, 2016, 15(12): 1257-72.
[7] 王刚, 崔海伦, 刘军, et al. 帕金森病发病机制及诊断与治疗转化研究进展 [J]. 中国现代神经疾病杂志, 2018, 18(01): 19-24.
[8] JANKOVIC J. Parkinson's disease: clinical features and diagnosis [J]. J Neurol Neurosurg Psychiatry, 2008, 79(4): 368-76.
[9] WANG Z, BECKER K, DONADIO V, et al. Skin alpha-Synuclein Aggregation Seeding Activity as a Novel Biomarker for Parkinson Disease [J]. JAMA Neurol, 2020, 78(1): 1-11.
[10] HANSSON O, JANELIDZE S, HALL S, et al. Blood-based NfL: A biomarker for differential diagnosis of parkinsonian disorder [J]. Neurology, 2017, 88(10): 930-7.
[11] GARRIDO A, FAIRFOUL G, TOLOSA E S, et al. alpha-synuclein RT-QuIC in cerebrospinal fluid of LRRK2-linked Parkinson's disease [J]. Ann Clin Transl Neurol, 2019, 6(6): 1024-32.
[12] TOLOSA E, GARRIDO A, SCHOLZ S W, et al. Challenges in the diagnosis of Parkinson's disease [J]. Lancet Neurol, 2021, 20(5): 385-97.
[13] 中国帕金森病治疗指南(第三版) [J]. 中华神经科杂志, 2014, (6).
[14] 刘佳, 段春礼, 杨慧. 帕金森病发病机制与治疗研究进展 [J]. 生理科学进展, 2015, 46(03): 163-9.
[15] DHIVYA V, BALACHANDAR V. Cell replacement therapy is the remedial solution for treating Parkinson's disease [J]. Stem Cell Investig, 2017, 4: 59.
[16] 曹津津, 宋琼, 邹春林. 细胞治疗帕金森病的研究进展 [J]. 天津医药, 2022, 50(04): 428-33.
[17] 吕颖, 白琳, 秦川. 干细胞治疗帕金森病的研究进展 [J]. 中国比较医学杂志, 2019, 29(08): 142-8.
[18] Gene therapy for human genetic disease? [J]. Science, 1972, 178(4061): 648-9.
[19] LANG A E, GILL S, PATEL N K, et al. Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease [J]. Ann Neurol, 2006, 59(3): 459-66.
[20] AXELSEN T M, WOLDBYE D P D. Gene Therapy for Parkinson's Disease, An Update [J]. J Parkinsons Dis, 2018, 8(2): 195-215.
[21] GURUNG R B, KIM E H, OH T J, et al. Enzymatic synthesis of apigenin glucosides by glucosyltransferase (YjiC) from Bacillus licheniformis DSM 13 [J]. Mol Cells, 2013, 36(4): 355-61.
[22] KIM T Y, LEEM E, LEE J M, et al. Control of Reactive Oxygen Species for the Prevention of Parkinson's Disease: The Possible Application of Flavonoids [J]. Antioxidants (Basel), 2020, 9(7).
[23] MAGALINGAM K B, RADHAKRISHNAN A, HALEAGRAHARA N. Rutin, a bioflavonoid antioxidant protects rat pheochromocytoma (PC-12) cells against 6-hydroxydopamine (6-OHDA)-induced neurotoxicity [J]. Int J Mol Med, 2013, 32(1): 235-40.
[24] CHATURVEDI R K, SHUKLA S, SETH K, et al. Neuroprotective and neurorescue effect of black tea extract in 6-hydroxydopamine-lesioned rat model of Parkinson's disease [J]. Neurobiol Dis, 2006, 22(2): 421-34.
[25] KARUPPAGOUNDER S S, MADATHIL S K, PANDEY M, et al. Quercetin up-regulates mitochondrial complex-I activity to protect against programmed cell death in rotenone model of Parkinson's disease in rats [J]. Neuroscience, 2013, 236: 136-48.
[26] 陈星宇, 谭魏, 汪虹, et al. 黄芪黄酮抗氧化活性的构效关系分析 [J]. 广州化工, 2021, 49(24): 26-30.
[27] PANCHE A N, DIWAN A D, CHANDRA S R. Flavonoids: an overview [J]. J Nutr Sci, 2016, 5: e47.
[28] SHAHMORADIAN S H, LEWIS A J, GENOUD C, et al. Lewy pathology in Parkinson's disease consists of crowded organelles and lipid membranes [J]. Nat Neurosci, 2019, 22(7): 1099-109.
[29] LASHUEL H A, OVERK C R, OUESLATI A, et al. The many faces of alpha-synuclein: from structure and toxicity to therapeutic target [J]. Nat Rev Neurosci, 2013, 14(1): 38-48.
[30] MARAGANORE D M, DE ANDRADE M, ELBAZ A, et al. Collaborative analysis of alpha-synuclein gene promoter variability and Parkinson disease [J]. JAMA, 2006, 296(6): 661-70.
[31] LEE H J, SUK J E, BAE E J, et al. Assembly-dependent endocytosis and clearance of extracellular alpha-synuclein [J]. Int J Biochem Cell Biol, 2008, 40(9): 1835-49.
[32] LUK K C, SONG C, O'BRIEN P, et al. Exogenous alpha-synuclein fibrils seed the formation of Lewy body-like intracellular inclusions in cultured cells [J]. Proc Natl Acad Sci U S A, 2009, 106(47): 20051-6.
[33] BENNETT E J, BENCE N F, JAYAKUMAR R, et al. Global impairment of the ubiquitin-proteasome system by nuclear or cytoplasmic protein aggregates precedes inclusion body formation [J]. Mol Cell, 2005, 17(3): 351-65.
[34] CUERVO A M, STEFANIS L, FREDENBURG R, et al. Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy [J]. Science, 2004, 305(5688): 1292-5.
[35] MARTINEZ-VICENTE M, CUERVO A M. Autophagy and neurodegeneration: when the cleaning crew goes on strike [J]. Lancet Neurol, 2007, 6(4): 352-61.
[36] NORRIS E H, GIASSON B I. Role of oxidative damage in protein aggregation associated with Parkinson's disease and related disorders [J]. Antioxid Redox Signal, 2005, 7(5-6): 672-84.
[37] BOSE A, BEAL M F. Mitochondrial dysfunction in Parkinson's disease [J]. Journal of Neurochemistry, 2016, 139: 216-31.
[38] PARK J S, DAVIS R L, SUE C M. Mitochondrial Dysfunction in Parkinson's Disease: New Mechanistic Insights and Therapeutic Perspectives [J]. Curr Neurol Neurosci Rep, 2018, 18(5): 21.
[39] GUARDIA-LAGUARTA C, AREA-GOMEZ E, RUB C, et al. alpha-Synuclein is localized to mitochondria-associated ER membranes [J]. J Neurosci, 2014, 34(1): 249-59.
[40] HSIEH C H, SHALTOUKI A, GONZALEZ A E, et al. Functional Impairment in Miro Degradation and Mitophagy Is a Shared Feature in Familial and Sporadic Parkinson's Disease [J]. Cell Stem Cell, 2016, 19(6): 709-24.
[41] TANG F L, LIU W, HU J X, et al. VPS35 Deficiency or Mutation Causes Dopaminergic Neuronal Loss by Impairing Mitochondrial Fusion and Function [J]. Cell Rep, 2015, 12(10): 1631-43.
[42] ZHENG B, LIAO Z, LOCASCIO J J, et al. PGC-1alpha, a potential therapeutic target for early intervention in Parkinson's disease [J]. Sci Transl Med, 2010, 2(52): 52ra73.
[43] MUDO G, MAKELA J, DI LIBERTO V, et al. Transgenic expression and activation of PGC-1alpha protect dopaminergic neurons in the MPTP mouse model of Parkinson's disease [J]. Cell Mol Life Sci, 2012, 69(7): 1153-65.
[44] CARDOSO S M, ESTEVES A R, ARDUINO D M. Mitochondrial Metabolic Control of Microtubule Dynamics Impairs the Autophagic Pathway in Parkinson's Disease [J]. Neurodegener Dis, 2012, 10(1-4): 38-40.
[45] ANVRET A, WESTERLUND M, SYDOW O, et al. Variations of the CAG trinucleotide repeat in DNA polymerase gamma (POLG1) is associated with Parkinson's disease in Sweden [J]. Neurosci Lett, 2010, 485(2): 117-20.
[46] SUBRAMANIAM S R, CHESSELET M F. Mitochondrial dysfunction and oxidative stress in Parkinson's disease [J]. Prog Neurobiol, 2013, 106-107: 17-32.
[47] PISSADAKI E K, BOLAM J P. The energy cost of action potential propagation in dopamine neurons: clues to susceptibility in Parkinson's disease [J]. Front Comput Neurosci, 2013, 7: 13.
[48] SURMEIER D J, SCHUMACKER P T, GUZMAN J D, et al. Calcium and Parkinson's disease [J]. Biochem Biophys Res Commun, 2017, 483(4): 1013-9.
[49] LOTHARIUS J, BRUNDIN P. Pathogenesis of Parkinson's disease: dopamine, vesicles and alpha-synuclein [J]. Nat Rev Neurosci, 2002, 3(12): 932-42.
[50] DEHAY B, BOVE J, RODRIGUEZ-MUELA N, et al. Pathogenic lysosomal depletion in Parkinson's disease [J]. J Neurosci, 2010, 30(37): 12535-44.
[51] ANGLADE P, VYAS S, JAVOY-AGID F, et al. Apoptosis and autophagy in nigral neurons of patients with Parkinson's disease [J]. Histol Histopathol, 1997, 12(1): 25-31.
[52] XILOURI M, BREKK O R, STEFANIS L. Autophagy and Alpha-Synuclein: Relevance to Parkinson's Disease and Related Synucleopathies [J]. Mov Disord, 2016, 31(2): 178-92.
[53] WONG K, SIDRANSKY E, VERMA A, et al. Neuropathology provides clues to the pathophysiology of Gaucher disease [J]. Mol Genet Metab, 2004, 82(3): 192-207.
[54] KHAN Z, ALI S A. Oxidative stress-related biomarkers in Parkinson's disease: A systematic review and meta-analysis [J]. Iran J Neurol, 2018, 17(3): 137-44.
[55] MINAKAKI G, KRAINC D, BURBULLA L F. The Convergence of Alpha-Synuclein, Mitochondrial, and Lysosomal Pathways in Vulnerability of Midbrain Dopaminergic Neurons in Parkinson's Disease [J]. Front Cell Dev Biol, 2020, 8: 580634.
[56] ZUCCA F A, VANNA R, CUPAIOLI F A, et al. Neuromelanin organelles are specialized autolysosomes that accumulate undegraded proteins and lipids in aging human brain and are likely involved in Parkinson's disease [J]. NPJ Parkinsons Dis, 2018, 4: 17.
[57] NOYCE A J, BESTWICK J P, SILVEIRA-MORIYAMA L, et al. Meta-analysis of early nonmotor features and risk factors for Parkinson disease [J]. Ann Neurol, 2012, 72(6): 893-901.
[58] RANSOHOFF R M. How neuroinflammation contributes to neurodegeneration [J]. Science, 2016, 353(6301): 777-83.
[59] LEE S Y H, YATES N J, TYE S J. Inflammatory Mechanisms in Parkinson's Disease: From Pathogenesis to Targeted Therapies [J]. Neuroscientist, 2022, 28(5): 485-506.
[60] ZHOU Y, LU M, DU R H, et al. MicroRNA-7 targets Nod-like receptor protein 3 inflammasome to modulate neuroinflammation in the pathogenesis of Parkinson's disease [J]. Mol Neurodegener, 2016, 11: 28.
[61] SLOTA J A, BOOTH S A. MicroRNAs in Neuroinflammation: Implications in Disease Pathogenesis, Biomarker Discovery and Therapeutic Applications [J]. Noncoding RNA, 2019, 5(2).
[62] INDEN M, KITAMURA Y, ABE M, et al. Parkinsonian rotenone mouse model: reevaluation of long-term administration of rotenone in C57BL/6 mice [J]. Biol Pharm Bull, 2011, 34(1): 92-6.
[63] ZENG X S, GENG W S, JIA J J. Neurotoxin-Induced Animal Models of Parkinson Disease: Pathogenic Mechanism and Assessment [J]. ASN Neuro, 2018, 10: 1759091418777438.
[64] XICOY H, WIERINGA B, MARTENS G J. The SH-SY5Y cell line in Parkinson's disease research: a systematic review [J]. Mol Neurodegener, 2017, 12(1): 10.
[65] KRISHNA A, BIRYUKOV M, TREFOIS C, et al. Systems genomics evaluation of the SH-SY5Y neuroblastoma cell line as a model for Parkinson's disease [J]. Bmc Genomics, 2014, 15.
[66] DAWSON T M, KO H S, DAWSON V L. Genetic animal models of Parkinson's disease [J]. Neuron, 2010, 66(5): 646-61.
[67] REY N L, GEORGE S, STEINER J A, et al. Spread of aggregates after olfactory bulb injection of alpha-synuclein fibrils is associated with early neuronal loss and is reduced long term [J]. Acta Neuropathol, 2018, 135(1): 65-83.
[68] PATTERSON J R, POLINSKI N K, DUFFY M F, et al. Generation of Alpha-Synuclein Preformed Fibrils from Monomers and Use In Vivo [J]. J Vis Exp, 2019, (148).
[69] GOMEZ-BENITO M, GRANADO N, GARCIA-SANZ P, et al. Modeling Parkinson's Disease With the Alpha-Synuclein Protein [J]. Front Pharmacol, 2020, 11: 356.
[70] TANNER C M, KAMEL F, ROSS G W, et al. Rotenone, paraquat, and Parkinson's disease [J]. Environ Health Perspect, 2011, 119(6): 866-72.
[71] POUCHIEU C, PIEL C, CARLES C, et al. Pesticide use in agriculture and Parkinson's disease in the AGRICAN cohort study [J]. Int J Epidemiol, 2018, 47(1): 299-310.
[72] SCHAPIRA A H, COOPER J M, DEXTER D, et al. Mitochondrial complex I deficiency in Parkinson's disease [J]. Lancet, 1989, 1(8649): 1269.
[73] MAGALINGAM K B, RADHAKRISHNAN A K, HALEAGRAHARA N. Protective Mechanisms of Flavonoids in Parkinson's Disease [J]. Oxid Med Cell Longev, 2015, 2015: 314560.
[74] SHERER T B, BETARBET R, TESTA C M, et al. Mechanism of toxicity in rotenone models of Parkinson's disease [J]. J Neurosci, 2003, 23(34): 10756-64.
[75] JIANG X, JIN T, ZHANG H, et al. Current Progress of Mitochondrial Quality Control Pathways Underlying the Pathogenesis of Parkinson's Disease [J]. Oxid Med Cell Longev, 2019, 2019: 4578462.
[76] HASEGAWA K, YASUDA T, SHIRAISHI C, et al. Promotion of mitochondrial biogenesis by necdin protects neurons against mitochondrial insults [J]. Nat Commun, 2016, 7: 10943.
修改评论