[1] Falkowska A, Gutowska I, Goschorska M, et al. Energy Metabolism of the Brain, Including the Cooperation between Astrocytes and Neurons, Especially in the Context of Glycogen Metabolism [J]. International Journal of Molecular Sciences, 2015, 16(11):25959-25981.
[2] Konan L M, Reddy V, Mesfin F B. Neuroanatomy, Cerebral Blood Supply [M]. Treasure Island: StatPearls Publishing, 2022.
[3] Ka, Sing, Wong, et al. Mechanisms of acute cerebral infarctions in patients with middle cerebral artery stenosis: a diffusion-weighted imaging and microemboli monitoring study [J]. Annals of Neurology, 2002, 52(1):74-81.
[4] Ghanekar S, Corey S, Lippert T, et al. Pathological links between stroke and cardiac arrest [J]. Chinese Journal of Neurosurgery, 2017, 3(1): 4.
[5] Mattson M P, Duan W, Pedersen W A, et al. Culmsee CNeurodegenerative disorders and ischemic brain diseases [J]. Apoptosis, 2001, 6:69-81.
[6] Kahl A, Blanco I, Jackman K, et al. Cerebral ischemia induces the aggregation of proteins linked to neurodegenerative diseases [J]. Rep, 2018, 8(1):2701.
[7] Iadecola, Costantino. The Neurovascular Unit Coming of Age: A Journey through Neurovascular Coupling in Health and Disease [J]. Neuron, 2017, 96(1): 17-42.
[8] Iadecola C. NEUROVASCULAR REGULATION IN THE NORMAL BRAIN AND IN ALZHEIMER'S DISEASE [J]. Nature reviews neuroscience, 2004, (5):5.
[9] Iadecola C. Regulation of the cerebral microcirculation during neural activity: Is nitric oxide the missing link? [J]. Trends in Neurosciences, 1993, 16(6):206-214.
[10] Rehberg B, Xiao Y H, Duch D S. Central nervous system sodium channels are significantly suppressed at clinical concentrations of volatile anesthetics [J]. Anesthesiology, 1996, 84(5):1223-1233.
[11] Ouyang, W. Depression by isoflurane of the action potential and underlying voltage-gated ion currents in isolated rat neurohypophysial nerve terminals [J]. Journal of Pharmacology & Experimental Therapeutics, 2005, 312(2):801-808.
[12] Haydon D A, Urban B W. The effects of some inhalation anaesthetics on the sodium current of the squid giant axon [J]. J Physiol, 1983, 341(1):429-439.
[13] Study R E. Isoflurane inhibits multiple voltage-gated calcium currents in hippocampal pyramidal neurons [J]. Anesthesiology, 1994, 81(1):104-16.
[14] Kamatchi G L, Chan C K, Snutch T, et al. Volatile anesthetic inhibition of neuronal Ca channel currents expressed in Xenopus oocytes [J]. Brain Research, 1999, 831(1-2):85-96.
[15] Wang H Y, Eguchi K, Yamashita T, et al. Frequency-Dependent Block of Excitatory Neurotransmission by Isoflurane via Dual Presynaptic Mechanisms [J]. The Journal of Neuroscience, 2020, 40(21):JN-RM-2946-19.
[16] Ries C R, Puil E. Ionic mechanism of isoflurane's actions on thalamocortical neurons [J]. Journal of Neurophysiology, 1999, 81(4):1802-1809.
[17] Franks N P, Eric Honoré. The TREK K2P channels and their role in general anaesthesia and neuroprotection [J]. Trends in Pharmacological Sciences, 2004, 25(11):601-608.
[18] Xie Z, McMillan K, Pike C M, et al. Interaction of anesthetics with neurotransmitter release machinery proteins [J]. J Neurophysiol, 2013, 109(3):758-767.
[19] Nagele P, Mendel J B, Placzek W J, et al. Volatile anesthetics bind rat synaptic snare proteins [J]. Anesthesiology, 2005, 103(4):768-778.
[20] Herring B E, Xie Z, Marks J, et al. Isoflurane inhibits the neurotransmitter release machinery [J]. J Neurophysiol, 2009, 102(2):1265-1273.
[21] Kaisti K K, Långsjö J W, Aalto S, et al. Effects of sevoflurane, propofol, and adjunct nitrous oxide on regional cerebral blood flow, oxygen consumption, and blood volume in humans [J]. Anesthesiology, 2003, 99(3):603-613.
[22] Martin C, Martindale J, Berwick J, et al. Investigating neural-hemodynamic coupling and the hemodynamic response function in the awake rat [J]. Neuroimage, 2006, 32(1):33-48.
[23] Qiu M, Ramani R, Swetye M, et al. Anesthetic effects on regional CBF, BOLD, and the coupling between task-induced changes in CBF and BOLD: an fMRI study in normal human subjects [J]. Magnetic Resonance in Medicine, 2010, 60(4):987-996.
[24] Tang J, Xi L, Zhou J, et al. Noninvasive high-speed photoacoustic tomography of cerebral hemodynamics in awake-moving rats [J]. Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism, 2015, 35(8):1224-1232.
[25] Ahmmed R, Rahman M A, Hossain M F. An Advanced Algorithm Combining SVM and ANN Classifiers to Categorize Tumors with Position from Brain MRI Images [J]. Advances in Science Technology and Engineering Systems Journal, 2018, 3(2):40-48.
[26] Nicolakakis N, Hamel E. Neurovascular function in Alzheimer's disease patients and experimental models [J]. Journal of Cerebral Blood Flow, Metabolism, 2011, 31(6):1354-1370.
[27] Iadecola C. The pathobiology of vascular dementia [J]. Neuron, 2013, 80(4):844-866.
[28] Hu S, Maslov K, Tsytsarev V, et al. Functional transcranial brain imaging by optical-resolution photoacoustic microscopy [J]. Journal Of Biomedical Optics, 2009, 14(4):040503.
[29] Wang L, Maslov K, Wang L V. Single-cell label-free photoacoustic flowoxigraphy in vivo [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(15):5759-5764.
[30] Gong X, Jin T, Wang Y, et al. Photoacoustic microscopy visualizes glioma-induced disruptions of cortical microvascular structure and function [J]. Journal of neural engineering, 2022(2):19.
[31] Thomas, Paul, Matthews, et al. Label-free photoacoustic microscopy of peripheral nerves [J]. Journal of Biomedical Optics, 2014, 19(1):16004.
[32] Wei Q, Tian J, Guo H, et al. Large-field-of-view optical resolution photoacoustic microscopy [J]. Optics Express, 2018, 26(4):4271-4278.
[33] Wang L V, Yao J. A Practical Guide to Photoacoustic Tomography in the Life Sciences [J]. Nature Methods, 2016, 13(8):627-638.
[34] Yao J, Maslov K I, Zhang Y, et al. Label-free oxygen-metabolic photoacoustic microscopy in vivo [J]. Journal Of Biomedical Optics, 2011, 16(7): 076003.
[35] Kim J, Jin Y K, Jeon S, et al. Super-resolution localization photoacoustic microscopy using intrinsic red blood cells as contrast absorbers [J]. Light: Science & Applications, 2019(001):008.
[36] Cao R, Li J, Zhang C, et al. Photoacoustic microscopy of obesity-induced cerebrovascular alterations [J]. Neuroimage, 2018, 188:369-379.
[37] Cao R, Li J, Ning B, et al. Functional and oxygen-metabolic photoacoustic microscopy of the awake mouse brain [J]. Neuroimage, 2017, 150:77-87.
[38] Yao J, Wang L, Yang J M, et al. High-speed label-free functional photoacoustic microscopy of mouse brain in action [J]. Nat Methods, 2015, 12:407-410.
[39] Liu C, Chen J, Zhang Y, et al. Five-wavelength optical-resolution photoacoustic microscopy of blood and lymphatic vessels [J]. Advanced Photonics, 2021, 3(1):9.
[40] Xu Z, Wang Y, Sun N, et al. Parallel Computing for Quantitative Blood Flow Imaging in Photoacoustic Microscopy [J]. Sensors, 2019, 19(18):4000.
[41] Wang Y, Hu S, Maslov K, et al. Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy [J]. Applied Physics Letters, 2007, 90(5):1555.
[42] Zhang H F, Maslov K, Wang L V. Effects of wavelength-dependent fluence attenuation on the noninvasive photoacoustic imaging of hemoglobin oxygen saturation in subcutaneous vasculature in vivo [J]. Inverse Problems, 2007, 23(6):S113-S122.
[43] Hu S, Maslov K, Wang L V. Noninvasive label-free imaging of microhemodynamics by optical-resolution photoacoustic microscopy [J]. Optics Express, 2009, 17(9):7688-7693.
[44] Zhang H F, Maslov K, Stoica G, et al. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging [J]. Nature Biotechnology, 2006, 24(7):848-851.
[45] Yao J, Wang L V. Photoacoustic microscopy [J]. Laser & Photonics Reviews, 2013, 7(5):758-778.
[46] Li L, Zhu L, Ma C, et al. Single-impulse panoramic photoacoustic computed tomography of small-animal whole-body dynamics at high spatiotemporal resolution [J]. Nat Biomed Eng, 2017, 1(5): 0071.
[47] Lin L, Hu P, Tong X, et al. High-speed three-dimensional photoacoustic computed tomography for preclinical research and clinical translation [J]. Nature Communications, 2021, 12(1): 882.
[48] Na S, Russin J J, Lin L, et al. Massively parallel functional photoacoustic computed tomography of the human brain [J]. Nature Biomedical Engineering, 2022, 6(5):584-592.
[49] Mohesh M, Manojit P. Performance Characterization of a Switchable Acoustic Resolution and Optical Resolution Photoacoustic Microscopy System [J]. Sensors, 2017, 17(2): 357.
[50] Cai D, Wong T T W, Zhu L, et al. Dual-view photoacoustic microscopy for quantitative cell nuclear imaging [J]. Optics Letters, 2018, 43(20):4875-4878.
[51] Yang J M, Maslov K, Yang H C, et al. Photoacoustic Endoscopy [J]. Optics Letters, 2009, 34:1591-1593.
[52] Yang J M, Li C Y, Chen R M, et al. Label-free optical-resolution photoacoustic endomicroscopy in vivo[C]// Photons Plus Ultrasound: Imaging and Sensing 2015. International Society for Optics and Photonics, 2015.
[53] Salehi H S, Li H, Merkulov A, et al. Coregistered photoacoustic and ultrasound imaging and classification of ovarian cancer:ex vivoandin vivostudies [J]. Journal of Biomedical Optics, 2016, 21(4): 046006.
[54] Min W, Springeling G, Lovrak M, et al. Real-time volumetric lipid imaging in vivo by intravascular photoacoustics at 20 frames per second [J]. Biomedical Optics Express, 2017, 8(2):943-953.
[55] Peng, Lei, Xue, et al. Ultrafine intravascular photoacoustic endoscope with a 0.7 mm diameter probe [J]. Optics letters, 2019, 44(22):5406-5409.
[56] Ji X, Xiong K, Yang S, et al. Intravascular confocal photoacoustic endoscope with dual-element ultrasonic transducer [J]. Optics Express, 2015, 23(7):9130-9136.
[57] Yang J M, Favazza C, Yao J, et al. Three-dimensional photoacoustic endoscopic imaging of the rabbit esophagus [J]. PLos One, 2015, 10(4):0120269.
[58] Attia A B E, Balasundaram G, Moothanchery M, et al. A review of clinical photoacoustic imaging: Current and future trends [J]. Photoacoustics, 2019, 16: 100144.
[59] Qu Y, Li C, Shi J, et al. Transvaginal fast-scanning optical-resolution photoacoustic endoscopy [J]. Journal Of Biomedical Optics, 2018, 23(12): 121617.
[60] Hu S, Rao B, Maslov K, et al. Label-free photoacoustic ophthalmic angiography [J]. Optics Letters, 2010, 35(1): 1-3.
[61] Na S, Russin J J, Lin L, et al. Massively parallel functional photoacoustic computed tomography of the human brain [J]. Nat Biomed Eng, 2022, 6(5): 584-92.
[62] Matsumoto Y, Asao Y, Yoshikawa A, et al. Label-free photoacoustic imaging of human palmar vessels: a structural morphological analysis [J]. Scientific Reports, 2018, 8(1): 786.
[63] Toi M, Asao Y, Matsumoto Y, et al. Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array [J]. Scientific Reports, 2017, 7(1): 41970.
[64] Favazza C P, Jassim O, Cornelius L A, et al. In vivo photoacoustic microscopy of human cutaneous microvasculature and a nevus [J]. Journal Of Biomedical Optics, 2011, 16(1):016015.
[65] Lin L, Hu P, Shi J, et al. Single-breath-hold photoacoustic computed tomography of the breast [J]. Nature Communications, 2018, 9(1): 2352.
[66] Huang N, Guo H, Qi W, et al. Whole-body multispectral photoacoustic imaging of adult zebrafish [J]. Biomedical Optics Express, 2016, 7(9):3543-3550.
[67] Yao J, Wang L, Yang J M, et al. High-speed label-free functional photoacoustic microscopy of mouse brain in action [J]. Nature Methods, 2015, 12(5):407-410.
[68] Wang X, Geng K, Wegiel M A, et al. Noninvasive photoacoustic angiography of animal brains in vivo with near-infrared light and an optical contrast agent [J]. Optics Letters, 2004, 29(7):730-732.
[69] Wang Z, Yang F, Cheng Z, et al. Photoacoustic-guided photothermal therapy by mapping of tumor microvasculature and nanoparticle [J]. Nanophotonics, 2021, 10(12):3359-3368.
[70] Jin T, Guo H, Yao L, et al. Portable optical-resolution photoacoustic microscopy for volumetric imaging of multiscale organisms [J]. Journal of Biophotonics, 2018, 11(4):e201700250.
[71] Qin W, Gan Q, Yang L, et al. High-resolution in vivo imaging of rhesus cerebral cortex with ultrafast portable photoacoustic microscopy [J]. Neuroimage, 2021, 238: 118260.
[72] Cha S S, Bucklin M E, Han X. Removable cranial window for sustained wide-field optical imaging in mouse neocortex [M]. Cold Spring Harbor Laboratory, 2020.
[73] Silva A C, Lee S P, Yang G, et al. Simultaneous blood oxygenation level-dependent and cerebral blood flow functional magnetic resonance imaging during forepaw stimulation in the rat [J]. J Cereb Blood Flow Metab, 1999, 1999(8):871-879.
[74] Seuwen A, Schroeter A, Grandjean J, et al. Functional spectroscopic imaging reveals specificity of glutamate response in mouse brain to peripheral sensory stimulation [J]. Scientific Reports, 2019, 9(1):10563.
[75] Bosshard S C, Baltes C, Wyss M T, et al. Assessment of brain responses to innocuous and noxious electrical forepaw stimulation in mice using BOLD fMRI [J]. Pain, 2012, 151(3):655-663.
[76] Nair G, Duong T Q. Echo-planar BOLD fMRI of mice on a narrow-bore 9.4 T magnet [J]. Magnetic Resonance in Medicine, 2010, 52(2):430-434.
[77] Kim J, Kim G, Li L, et al. Deep learning acceleration of multiscale superresolution localization photoacoustic imaging [J]. Light: Science & Applications, 2022, 11(1):131.
[78] Qin W, Qi W, Xi L. Quantitative investigation of vascular response to mesenteric venous thrombosis using large-field-of-view photoacoustic microscopy [J]. Journal of Biophotonics, 2019, 12(12):e201900198.
[79] Schroeter A, Schlegel F, Seuwen A, et al. Specificity of stimulus-evoked fMRI responses in the mouse: the influence of systemic physiological changes associated with innocuous stimulation under four different anesthetics [J]. Neuroimage, 2014, 94(1):372-384.
[80] Xiong B, Li A, Lou Y, et al. Precise Cerebral Vascular Atlas in Stereotaxic Coordinates of Whole Mouse Brain [J]. Front Neuroanat, 2017, 11:128.
[81] Dorr A, Sled J G, Kabani N. Three-dimensional cerebral vasculature of the CBA mouse brain: a magnetic resonance imaging and micro computed tomography study [J]. Neuroimage, 2007, 35(4):1409-1423.
[82] Tang P, Li Y, Rakymzhan A, et al. Measurement and visualization of stimulus-evoked tissue dynamics in mouse barrel cortex using phase-sensitive optical coherence tomography [J]. Biomedical Optics Express, 2020, 11(2):699-710.
[83] Yi Y, Yanchao Z, Hongshuai J, et al. Cortical Hemodynamic Responses Under Focused Ultrasound Stimulation Using Real-Time Laser Speckle Contrast Imaging [J]. Frontiers in Neuroence, 2018, 12:269.
[84] Silva A C, Koretsky A P, Duyn J H. Functional MRI impulse response for BOLD and CBV contrast in rat somatosensory cortex [J]. Magnetic Resonance in Medicine, 2010, 57(6):1110-1118.
[85] Ivanov K P, Kalinina M K, Levkovich Y I. Blood flow velocity in capillaries of brain and muscles and its physiological significance [J]. Microvascular Research, 1981, 22(2):143-155.
[86] Sicard K, Shen Q, Brevard M E, et al. Regional cerebral blood flow and BOLD responses in conscious and anesthetized rats under basal and hypercapnic conditions: implications for functional MRI studies [J]. Journal of Cerebral Blood Flow & Metabolism, 2003, 23(4):472-481.
修改评论