[1] LOEVNER L A. Imaging of the thyroid gland[J]. Semin Ultrasound CT MR, 1996, 17(6): 539-562.
[2] BABIC LEKO M, GUNJACA I, PLEIC N, et al. Environmental Factors Affecting Thyroid-Stimulating Hormone and Thyroid Hormone Levels[J]. Int J Mol Sci, 2021, 22(12)
[3] HUGHES K, EASTMAN C. Thyroid disease: Long-term management of hyperthyroidism and hypothyroidism[J]. Aust J Gen Pract, 2021, 50(1-2): 36-42.
[4] WOEBER K A. Update on the management of hyperthyroidism and hypothyroidism[J]. Arch Intern Med, 2000, 160(8): 1067-1071.
[5] BRENT G A. Mechanisms of thyroid hormone action[J]. J Clin Invest, 2012, 122(9): 3035-3043.
[6] LIU Y, LAI F, LONG J, et al. Screening and the epidemic of thyroid cancer in China: An analysis of national representative inpatient and commercial insurance databases[J]. Int J Cancer, 2021, 148(5): 1106-1114.
[7] LAHA D, NILUBOL N, BOUFRAQECH M. New Therapies for Advanced Thyroid Cancer[J]. Front Endocrinol (Lausanne), 2020, 11: 82.
[8] LI M, ZHENG R, DAL MASO L, et al. Mapping overdiagnosis of thyroid cancer in China[J]. Lancet Diabetes Endocrinol, 2021, 9(6): 330-332.
[9] LI M, DAL MASO L, VACCARELLA S. Global trends in thyroid cancer incidence and the impact of overdiagnosis[J]. Lancet Diabetes Endocrinol, 2020, 8(6): 468-470.
[10] TAKANO T. Natural history of thyroid cancer [Review][J]. Endocr J, 2017, 64(3): 237-244.
[11] 中华人民共和国国家卫生健康委员会医政医管局. 甲状腺癌诊疗指南(2022年版)[J]. 中国实用外科杂志, 2022, 第42卷第12期: 16.
[12] CHENG G, LEWIS A E, MEINKOTH J L. Ras stimulates aberrant cell cycle progression and apoptosis in rat thyroid cells[J]. Mol Endocrinol, 2003, 17(3): 450-459.
[13] XING M. Molecular pathogenesis and mechanisms of thyroid cancer[J]. Nat Rev Cancer, 2013, 13(3): 184-199.
[14] CAUDILL C M, ZHU Z, CIAMPI R, et al. Dose-dependent generation of RET/PTC in human thyroid cells after in vitro exposure to gamma-radiation: a model of carcinogenic chromosomal rearrangement induced by ionizing radiation[J]. J Clin Endocrinol Metab, 2005, 90(4): 2364-2369.
[15] WILLIAMS D. Radiation carcinogenesis: lessons from Chernobyl[J]. Oncogene, 2008, 27 Suppl 2: S9-18.
[16] BIAN J, ZHANG M, LI F, et al. The Effects of Long-Term High Water Iodine Levels in the External Environment on the Carotid Artery[J]. Biol Trace Elem Res, 2022, 200(6): 2581-2587.
[17] FELDT-RASMUSSEN U. Iodine and cancer[J]. Thyroid, 2001, 11(5): 483-486.
[18] HIASA Y, KITAHORI Y, KITAMURA M, et al. Relationships between serum thyroid stimulating hormone levels and development of thyroid tumors in rats treated with N-bis-(2-hydroxypropyl)nitrosamine[J]. Carcinogenesis, 1991, 12(5): 873-877.
[19] PELLEGRITI G, FRASCA F, REGALBUTO C, et al. Worldwide increasing incidence of thyroid cancer: update on epidemiology and risk factors[J]. J Cancer Epidemiol, 2013, 2013: 965212.
[20] WARD M H, KILFOY B A, WEYER P J, et al. Nitrate intake and the risk of thyroid cancer and thyroid disease[J]. Epidemiology, 2010, 21(3): 389-395.
[21] BOGOVIC CRNCIC T, ILIC TOMAS M, GIROTTO N, et al. Risk Factors for Thyroid Cancer: What Do We Know So Far?[J]. Acta Clin Croat, 2020, 59(Suppl 1): 66-72.
[22] CHMIELIK E, RUSINEK D, OCZKO-WOJCIECHOWSKA M, et al. Heterogeneity of Thyroid Cancer[J]. Pathobiology, 2018, 85(1-2): 117-129.
[23] PRETE A, BORGES DE SOUZA P, CENSI S, et al. Update on Fundamental Mechanisms of Thyroid Cancer[J]. Front Endocrinol (Lausanne), 2020, 11: 102.
[24] COCA-PELAZ A, SHAH J P, HERNANDEZ-PRERA J C, et al. Papillary Thyroid Cancer-Aggressive Variants and Impact on Management: A Narrative Review[J]. Adv Ther, 2020, 37(7): 3112-3128.
[25] BIBLE K C, KEBEBEW E, BRIERLEY J, et al. 2021 American Thyroid Association Guidelines for Management of Patients with Anaplastic Thyroid Cancer[J]. Thyroid, 2021, 31(3): 337-386.
[26] WIRTH L J, BROSE M S, SHERMAN E J, et al. Open-Label, Single-Arm, Multicenter, Phase II Trial of Lenvatinib for the Treatment of Patients With Anaplastic Thyroid Cancer[J]. J Clin Oncol, 2021, 39(21): 2359-2366.
[27] SAINI S, TULLA K, MAKER A V, et al. Therapeutic advances in anaplastic thyroid cancer: a current perspective[J]. Mol Cancer, 2018, 17(1): 154.
[28] LEE S I, KIM D K, SEO E J, et al. Role of Kruppel-Like Factor 4 in the Maintenance of Chemoresistance of Anaplastic Thyroid Cancer[J]. Thyroid, 2017, 27(11): 1424-1432.
[29] ABDULLAH M I, JUNIT S M, NG K L, et al. Papillary Thyroid Cancer: Genetic Alterations and Molecular Biomarker Investigations[J]. Int J Med Sci, 2019, 16(3): 450-460.
[30] BOLIN J. Thyroid Follicular Epithelial Cell-Derived Cancer: New Approaches and Treatment Strategies[J]. J Nucl Med Technol, 2021, 49(3): 199-208.
[31] REGALBUTO C, FRASCA F, PELLEGRITI G, et al. Update on thyroid cancer treatment[J]. Future Oncol, 2012, 8(10): 1331-1348.
[32] RUAN X, SHI X, DONG Q, et al. Antitumor effects of anlotinib in thyroid cancer[J]. Endocr Relat Cancer, 2019, 26(1): 153-164.
[33] GREENBLATT D Y, WOLTMAN T, HARTER J, et al. Fine-needle aspiration optimizes surgical management in patients with thyroid cancer[J]. Ann Surg Oncol, 2006, 13(6): 859-863.
[34] DESHPANDE A H, MUNSHI M M, BOBHATE S K. Cytological diagnosis of paucicellular variant of anaplastic carcinoma of thyroid: report of two cases[J]. Cytopathology, 2001, 12(3): 203-208.
[35] NIKIFOROVA M N, WALD A I, ROY S, et al. Targeted next-generation sequencing panel (ThyroSeq) for detection of mutations in thyroid cancer[J]. J Clin Endocrinol Metab, 2013, 98(11): E1852-1860.
[36] TALBOTT I, WAKELY P E, JR. Undifferentiated (anaplastic) thyroid carcinoma: Practical immunohistochemistry and cytologic look-alikes[J]. Semin Diagn Pathol, 2015, 32(4): 305-310.
[37] DEEKEN-DRAISEY A, YANG G Y, GAO J, et al. Anaplastic thyroid carcinoma: an epidemiologic, histologic, immunohistochemical, and molecular single-institution study[J]. Hum Pathol, 2018, 82: 140-148.
[38] TAKANO T, ITO Y, MATSUZUKA F, et al. Quantitative measurement of telomerase reverse transcriptase, thyroglobulin and thyroid transcription factor 1 mRNAs in anaplastic thyroid carcinoma tissues and cell lines[J]. Oncol Rep, 2007, 18(3): 715-720.
[39] MOLINARO E, ROMEI C, BIAGINI A, et al. Anaplastic thyroid carcinoma: from clinicopathology to genetics and advanced therapies[J]. Nat Rev Endocrinol, 2017, 13(11): 644-660.
[40] 殷德涛,张鹏宇. 甲状腺未分化癌的综合治疗[J]. 肿瘤防治研究, 2022, 第49卷第2期: 4.
[41] HOULIHAN O A, MOORE R, JAMALUDDIN M F, et al. Anaplastic thyroid cancer: outcomes of trimodal therapy[J]. Rep Pract Oncol Radiother, 2021, 26(3): 416-422.
[42] 季美超;付斌;张养军. 基于质谱的蛋白质组学方法新进展[J]. 质谱学报, 2021, 2021,42(05): 16.
[43] DIERKS C, SEUFERT J, AUMANN K, et al. Combination of Lenvatinib and Pembrolizumab Is an Effective Treatment Option for Anaplastic and Poorly Differentiated Thyroid Carcinoma[J]. Thyroid, 2021, 31(7): 1076-1085.
[44] KAWANO F, YONEKAWA T, YAMAGUCHI H, et al. Nasogastric administration of lenvatinib solution in a mechanically ventilated patient with rapidly growing anaplastic thyroid cancer[J]. Endocrinol Diabetes Metab Case Rep, 2020, 2020
[45] CHOI Y J, LEE J E, JI H D, et al. Tunicamycin as a Novel Redifferentiation Agent in Radioiodine Therapy for Anaplastic Thyroid Cancer[J]. Int J Mol Sci, 2021, 22(3)
[46] KIM S H, SHIN H Y, KIM Y S, et al. Tunicamycin induces paraptosis potentiated by inhibition of BRAFV600E in FRO anaplastic thyroid carcinoma cells[J]. Anticancer Res, 2014, 34(9): 4857-4868.
[47] HA H T, LEE J S, URBA S, et al. A phase II study of imatinib in patients with advanced anaplastic thyroid cancer[J]. Thyroid, 2010, 20(9): 975-980.
[48] GENTILE D, ORLANDI P, BANCHI M, et al. Preclinical and clinical combination therapies in the treatment of anaplastic thyroid cancer[J]. Med Oncol, 2020, 37(3): 19.
[49] FERRARI S M, ELIA G, RAGUSA F, et al. Novel treatments for anaplastic thyroid carcinoma[J]. Gland Surg, 2020, 9(Suppl 1): S28-S42.
[50] WEI T, XIAOJUN X, PEILONG C. Magnoflorine improves sensitivity to doxorubicin (DOX) of breast cancer cells via inducing apoptosis and autophagy through AKT/mTOR and p38 signaling pathways[J]. Biomed Pharmacother, 2020, 121: 109139.
[51] LEE J H, BERGER J M. Cell Cycle-Dependent Control and Roles of DNA Topoisomerase II[J]. Genes (Basel), 2019, 10(11)
[52] RENU K, V G A, P B T, et al. Molecular mechanism of doxorubicin-induced cardiomyopathy - An update[J]. Eur J Pharmacol, 2018, 818: 241-253.
[53] SRITHARAN S, SIVALINGAM N. A comprehensive review on time-tested anticancer drug doxorubicin[J]. Life Sci, 2021, 278: 119527.
[54] MARANO F, FRAIRIA R, RINELLA L, et al. Combining doxorubicin-nanobubbles and shockwaves for anaplastic thyroid cancer treatment: preclinical study in a xenograft mouse model[J]. Endocr Relat Cancer, 2017, 24(6): 275-286.
[55] LIN S F, GAO S P, PRICE D L, et al. Synergy of a herpes oncolytic virus and paclitaxel for anaplastic thyroid cancer[J]. Clin Cancer Res, 2008, 14(5): 1519-1528.
[56] TODARO M, IOVINO F, ETERNO V, et al. Tumorigenic and metastatic activity of human thyroid cancer stem cells[J]. Cancer Res, 2010, 70(21): 8874-8885.
[57] KUMAR K, RANI V, MISHRA M, et al. New paradigm in combination therapy of siRNA with chemotherapeutic drugs for effective cancer therapy[J]. Curr Res Pharmacol Drug Discov, 2022, 3: 100103.
[58] ZHU L, CHEN L. Progress in research on paclitaxel and tumor immunotherapy[J]. Cell Mol Biol Lett, 2019, 24: 40.
[59] HAMADNEH L, ABU-IRMAILEH B, AL-MAJAWLEH M, et al. Doxorubicin-paclitaxel sequential treatment: insights of DNA methylation and gene expression changes of luminal A and triple negative breast cancer cell lines[J]. Mol Cell Biochem, 2021, 476(10): 3647-3654.
[60] SCHNEEWEISS A, MICHEL L L, MOBUS V, et al. Survival analysis of the randomised phase III GeparOcto trial comparing neoadjuvant chemotherapy of intense dose-dense epirubicin, paclitaxel, cyclophosphamide versus weekly paclitaxel, liposomal doxorubicin (plus carboplatin in triple-negative breast cancer) for patients with high-risk early breast cancer[J]. Eur J Cancer, 2022, 160: 100-111.
[61] GHOSH S. Cisplatin: The first metal based anticancer drug[J]. Bioorg Chem, 2019, 88: 102925.
[62] TEMPFER C B, GIGER-PABST U, SEEBACHER V, et al. A phase I, single-arm, open-label, dose escalation study of intraperitoneal cisplatin and doxorubicin in patients with recurrent ovarian cancer and peritoneal carcinomatosis[J]. Gynecol Oncol, 2018, 150(1): 23-30.
[63] SONG X, LIU X, CHI W, et al. Hypoxia-induced resistance to cisplatin and doxorubicin in non-small cell lung cancer is inhibited by silencing of HIF-1alpha gene[J]. Cancer Chemother Pharmacol, 2006, 58(6): 776-784.
[64] TEIXEIRA M P, HADDAD N F, PASSOS E F, et al. Ouabain Effects on Human Anaplastic Thyroid Carcinoma 8505C Cells[J]. Cancers (Basel), 2022, 14(24)
[65] LOPEZ J P, WANG-RODRIGUEZ J, CHANG C, et al. Gefitinib inhibition of drug resistance to doxorubicin by inactivating ABCG2 in thyroid cancer cell lines[J]. Arch Otolaryngol Head Neck Surg, 2007, 133(10): 1022-1027.
[66] SHIELDS J M, CHRISTY R J, YANG V W. Identification and characterization of a gene encoding a gut-enriched Kruppel-like factor expressed during growth arrest[J]. J Biol Chem, 1996, 271(33): 20009-20017.
[67] ELFADADNY A, EL-HUSSEINY H M, ABUGOMAA A, et al. Role of multidrug resistance-associated proteins in cancer therapeutics: past, present, and future perspectives[J]. Environ Sci Pollut Res Int, 2021, 28(36): 49447-49466.
[68] MAASHI M S, AL-MUALM M, AL-AWSI G R L, et al. Apigenin alleviates resistance to doxorubicin in breast cancer cells by acting on the JAK/STAT signaling pathway[J]. Mol Biol Rep, 2022, 49(9): 8777-8784.
[69] MA L, CHENG Q. Inhibiting 6-phosphogluconate dehydrogenase reverses doxorubicin resistance in anaplastic thyroid cancer via inhibiting NADPH-dependent metabolic reprogramming[J]. Biochem Biophys Res Commun, 2018, 498(4): 912-917.
[70] ELEUTHERIO E C A, SILVA MAGALHAES R S, DE ARAUJO BRASIL A, et al. SOD1, more than just an antioxidant[J]. Arch Biochem Biophys, 2021, 697: 108701.
[71] KAWAMATA H, MANFREDI G. Import, maturation, and function of SOD1 and its copper chaperone CCS in the mitochondrial intermembrane space[J]. Antioxid Redox Signal, 2010, 13(9): 1375-1384.
[72] BANKS C J, ANDERSEN J L. Mechanisms of SOD1 regulation by post-translational modifications[J]. Redox Biol, 2019, 26: 101270.
[73] GLORIEUX C, CALDERON P B. Catalase, a remarkable enzyme: targeting the oldest antioxidant enzyme to find a new cancer treatment approach[J]. Biol Chem, 2017, 398(10): 1095-1108.
[74] LI X, CHEN Y, ZHAO J, et al. The Specific Inhibition of SOD1 Selectively Promotes Apoptosis of Cancer Cells via Regulation of the ROS Signaling Network[J]. Oxid Med Cell Longev, 2019, 2019: 9706792.
[75] LIN J, ZAHURAK M, BEER T M, et al. A non-comparative randomized phase II study of 2 doses of ATN-224, a copper/zinc superoxide dismutase inhibitor, in patients with biochemically recurrent hormone-naive prostate cancer[J]. Urol Oncol, 2013, 31(5): 581-588.
[76] YU Q J, YANG Y. Function of SOD1, SOD2, and PI3K/AKT signaling pathways in the protection of propofol on spinal cord ischemic reperfusion injury in a rabbit model[J]. Life Sci, 2016, 148: 86-92.
[77] YIMING Z, ZHAOYI L, JING L, et al. Cadmium induces the thymus apoptosis of pigs through ROS-dependent PTEN/PI3K/AKT signaling pathway[J]. Environ Sci Pollut Res Int, 2021, 28(29): 39982-39992.
[78] ESCRIBANO A, GARCIA-GRANDE A, MONTANES P, et al. Aerosol orgotein (Ontosein) for the prevention of radiotherapy-induced adverse effects in head and neck cancer patients: a feasibility study[J]. Neoplasma, 2002, 49(3): 201-208.
[79] MARZANO C, GANDIN V, FOLDA A, et al. Inhibition of thioredoxin reductase by auranofin induces apoptosis in cisplatin-resistant human ovarian cancer cells[J]. Free Radic Biol Med, 2007, 42(6): 872-881.
[80] BROWN D P, CHIN-SINEX H, NIE B, et al. Targeting superoxide dismutase 1 to overcome cisplatin resistance in human ovarian cancer[J]. Cancer Chemother Pharmacol, 2009, 63(4): 723-730.
[81] DIEHN M, CHO R W, LOBO N A, et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells[J]. Nature, 2009, 458(7239): 780-783.
[82] WANG L, FAN J, HITRON J A, et al. Cancer Stem-Like Cells Accumulated in Nickel-Induced Malignant Transformation[J]. Toxicol Sci, 2016, 151(2): 376-387.
[83] CARRACEDO A, CANTLEY L C, PANDOLFI P P. Cancer metabolism: fatty acid oxidation in the limelight[J]. Nat Rev Cancer, 2013, 13(4): 227-232.
[84] WONG N, OJO D, YAN J, et al. PKM2 contributes to cancer metabolism[J]. Cancer Lett, 2015, 356(2 Pt A): 184-191.
[85] LI S, FU L, TIAN T, et al. Disrupting SOD1 activity inhibits cell growth and enhances lipid accumulation in nasopharyngeal carcinoma[J]. Cell Commun Signal, 2018, 16(1): 28.
[86] ZHANG S, QI L, LI M, et al. Chemokine CXCL12 and its receptor CXCR4 expression are associated with perineural invasion of prostate cancer[J]. J Exp Clin Cancer Res, 2008, 27(1): 62.
[87] YOUNG B, PURCELL C, KUANG Y Q, et al. Superoxide Dismutase 1 Regulation of CXCR4-Mediated Signaling in Prostate Cancer Cells is Dependent on Cellular Oxidative State[J]. Cell Physiol Biochem, 2015, 37(6): 2071-2084.
[88] YEHYA A H S, ASIF M, PETERSEN S H, et al. Angiogenesis: Managing the Culprits behind Tumorigenesis and Metastasis[J]. Medicina (Kaunas), 2018, 54(1)
[89] GHADIR M, KHAMSEH M E, PANAHI-SHAMSABAD M, et al. Cell proliferation, apoptosis, and angiogenesis in non-functional pituitary adenoma: association with tumor invasiveness[J]. Endocrine, 2020, 69(3): 596-603.
[90] JUAREZ J C, BETANCOURT O, JR., PIRIE-SHEPHERD S R, et al. Copper binding by tetrathiomolybdate attenuates angiogenesis and tumor cell proliferation through the inhibition of superoxide dismutase 1[J]. Clin Cancer Res, 2006, 12(16): 4974-4982.
[91] FOSTER J R, BILLIMORIA K, DEL CASTILLO BUSTO M E, et al. Accumulation of molybdenum in major organs following repeated oral administration of bis-choline tetrathiomolybdate in the Sprague Dawley rat[J]. J Appl Toxicol, 2022, 42(11): 1807-1821.
[92] GLASAUER A, SENA L A, DIEBOLD L P, et al. Targeting SOD1 reduces experimental non-small-cell lung cancer[J]. J Clin Invest, 2014, 124(1): 117-128.
[93] CHEN Y L, KAN W M. Down-regulation of superoxide dismutase 1 by PMA is involved in cell fate determination and mediated via protein kinase D2 in myeloid leukemia cells[J]. Biochim Biophys Acta, 2015, 1853(10 Pt A): 2662-2675.
[94] RAGIN C C, MODUGNO F, GOLLIN S M. The epidemiology and risk factors of head and neck cancer: a focus on human papillomavirus[J]. J Dent Res, 2007, 86(2): 104-114.
[95] FERLITO A, SHAHA A R, SILVER C E, et al. Incidence and sites of distant metastases from head and neck cancer[J]. ORL J Otorhinolaryngol Relat Spec, 2001, 63(4): 202-207.
[96] KUMAR P, YADAV A, PATEL S N, et al. Tetrathiomolybdate inhibits head and neck cancer metastasis by decreasing tumor cell motility, invasiveness and by promoting tumor cell anoikis[J]. Mol Cancer, 2010, 9: 206.
[97] XU M, CASIO M, RANGE D E, et al. Copper Chelation as Targeted Therapy in a Mouse Model of Oncogenic BRAF-Driven Papillary Thyroid Cancer[J]. Clin Cancer Res, 2018, 24(17): 4271-4281.
[98] YOO J Y, YU J G, KAKA A, et al. ATN-224 enhances antitumor efficacy of oncolytic herpes virus against both local and metastatic head and neck squamous cell carcinoma[J]. Mol Ther Oncolytics, 2015, 2: 15008.
[99] AHUJA S, ERNST H. Chemotherapy of thyroid carcinoma[J]. J Endocrinol Invest, 1987, 10(3): 303-310.
[100] MATTHIESEN R, BUNKENBORG J. Introduction to mass spectrometry-based proteomics[J]. Methods Mol Biol, 2013, 1007: 1-45.
[101] LI X, WANG W, CHEN J. Recent progress in mass spectrometry proteomics for biomedical research[J]. Sci China Life Sci, 2017, 60(10): 1093-1113.
[102] BANTSCHEFF M, SCHIRLE M, SWEETMAN G, et al. Quantitative mass spectrometry in proteomics: a critical review[J]. Anal Bioanal Chem, 2007, 389(4): 1017-1031.
[103] ASLAM B, BASIT M, NISAR M A, et al. Proteomics: Technologies and Their Applications[J]. J Chromatogr Sci, 2017, 55(2): 182-196.
[104] HAN X, ASLANIAN A, YATES J R, 3RD. Mass spectrometry for proteomics[J]. Curr Opin Chem Biol, 2008, 12(5): 483-490.
[105] ROZANOVA S, BARKOVITS K, NIKOLOV M, et al. Quantitative Mass Spectrometry-Based Proteomics: An Overview[J]. Methods Mol Biol, 2021, 2228: 85-116.
[106] TYANOVA S, TEMU T, COX J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics[J]. Nat Protoc, 2016, 11(12): 2301-2319.
[107] TYANOVA S, COX J. Perseus: A Bioinformatics Platform for Integrative Analysis of Proteomics Data in Cancer Research[J]. Methods Mol Biol, 2018, 1711: 133-148.
[108] NAKAYAMA M, KOBAYASHI H, TAKAHARA T, et al. A comparison of overall survival with 40 and 50mg/m(2) pegylated liposomal doxorubicin treatment in patients with recurrent epithelial ovarian cancer: Propensity score-matched analysis of real-world data[J]. Gynecol Oncol, 2016, 143(2): 246-251.
[109] DONATE F, JUAREZ J C, BURNETT M E, et al. Identification of biomarkers for the antiangiogenic and antitumour activity of the superoxide dismutase 1 (SOD1) inhibitor tetrathiomolybdate (ATN-224)[J]. Br J Cancer, 2008, 98(4): 776-783.
[110] JANKO C, JEREMIC I, BIERMANN M, et al. Cooperative binding of Annexin A5 to phosphatidylserine on apoptotic cell membranes[J]. Phys Biol, 2013, 10(6): 065006.
[111] DONG A, JIAO X, CHEN D, et al. Targeting of slug sensitizes anaplastic thyroid carcinoma SW1736 cells to doxorubicin via PUMA upregulation[J]. Int J Biochem Mol Biol, 2016, 7(3): 48-55.
[112] LEE K, BRIEHL M M, MAZAR A P, et al. The copper chelator ATN-224 induces peroxynitrite-dependent cell death in hematological malignancies[J]. Free Radic Biol Med, 2013, 60: 157-167.
[113] LEE K, HART M R, BRIEHL M M, et al. The copper chelator ATN-224 induces caspase-independent cell death in diffuse large B cell lymphoma[J]. Int J Oncol, 2014, 45(1): 439-447.
[114] GUPTA G, CAPPELLINI F, FARCAL L, et al. Copper oxide nanoparticles trigger macrophage cell death with misfolding of Cu/Zn superoxide dismutase 1 (SOD1)[J]. Part Fibre Toxicol, 2022, 19(1): 33.
[115] PAPA L, MANFREDI G, GERMAIN D. SOD1, an unexpected novel target for cancer therapy[J]. Genes Cancer, 2014, 5(1-2): 15-21.
[116] ZHANG M, ZHANG X. The role of PI3K/AKT/FOXO signaling in psoriasis[J]. Arch Dermatol Res, 2019, 311(2): 83-91.
[117] WEI D, RUI B, QINGQUAN F, et al. KIF11 promotes cell proliferation via ERBB2/PI3K/AKT signaling pathway in gallbladder cancer[J]. Int J Biol Sci, 2021, 17(2): 514-526.
[118] QIAN X, HE L, HAO M, et al. YAP mediates the interaction between the Hippo and PI3K/Akt pathways in mesangial cell proliferation in diabetic nephropathy[J]. Acta Diabetol, 2021, 58(1): 47-62.
[119] YU J, CHEN W X, XIE W J, et al. Silencing of the CrkL gene reverses the doxorubicin resistance of K562/ADR cells through regulating PI3K/Akt/MRP1 signaling[J]. J Clin Lab Anal, 2021, 35(8): e23817.
[120] RAKSHIT S, CHANDRASEKAR B S, SAHA B, et al. Interferon-gamma induced cell death: Regulation and contributions of nitric oxide, cJun N-terminal kinase, reactive oxygen species and peroxynitrite[J]. Biochim Biophys Acta, 2014, 1843(11): 2645-2661.
[121] HE H, ZOU Z, WANG B, et al. Copper Oxide Nanoparticles Induce Oxidative DNA Damage and Cell Death via Copper Ion-Mediated P38 MAPK Activation in Vascular Endothelial Cells[J]. Int J Nanomedicine, 2020, 15: 3291-3302.
[122] SUDHAHAR V, DAS A, HORIMATSU T, et al. Copper Transporter ATP7A (Copper-Transporting P-Type ATPase/Menkes ATPase) Limits Vascular Inflammation and Aortic Aneurysm Development: Role of MicroRNA-125b[J]. Arterioscler Thromb Vasc Biol, 2019, 39(11): 2320-2337.
修改评论