[1] JAVOY S, NAUDET V, ABID S, et al. Elementary reaction kinetics studies of interestin H2 supersonic combustion chemistry [J]. Experimental Thermal and Fluid Science,2003, 27(4): 371-377.
[2] MILLER J A, PILLING M J, TROE J. Unravelling combustion mechanisms through aquantitative understanding of elementary reactions [J]. Proceedings of the Combustion Institute, 2005, 30(1): 43-88.
[3] PETERSEN E L, DAVIDSON D F, HANSON R K. Kinetics modeling of shockinducedignition in low-dilution CH4/O2 mixtures at high pressures and intermediate temperatures [J]. Combustion and Flame, 1999, 117(1): 272-290.
[4] SEISER R, PITSCH H, SESHADRI K, et al. Extinction and autoignition of n-heptane in counterflow configuration [J]. Proceedings of the Combustion Institute, 2000, 28(2): 2029-2037.
[5] KUMAR M, SHEE J, RUDSHTEYN B, et al. Multiple Stable Isoprene-Ozone Complexes Reveal Complex Entrance Channel Dynamics in the Isoprene + Ozone Reaction [J]. J Am Chem Soc, 2020, 142(24): 10806-10813.
[6] GU X, KAISER R I. Reaction Dynamics of Phenyl Radicals in Extreme Environments:A Crossed Molecular Beam Study [J]. Accounts of Chemical Research, 2009, 42(2):290-302.
[7] FERRIèRE K M. The interstellar environment of our galaxy [J]. Reviews of ModernPhysics, 2001, 73(4): 1031-1066.
[8] VAN DISHOECK E F. Astrochemistry: overview and challenges [J]. Proceedings ofthe International Astronomical Union, 2018, 13(S332): 3-22.
[9] WALKER G A H, BOHLENDER D A, MAIER J P, et al. IDENTIFICATION OF MORE INTERSTELLAR C60+ BANDS [J]. The Astrophysical Journal, 2015, 812(L8): 1-5.
[10] METZ R B, THOEMKE J D, PFEIFFER J M, et al. Selectively breaking either bond in the bimolecular reaction of HOD with hydrogen atoms [J]. The Journal of Chemical Physics, 1993, 99(3): 1744-1751.
[11] AQUILANTI V, CAVALLI S, DE FAZIO D, et al. Exact reaction dynamics by the hyperquantization algorithm: integral and differential cross sections for F + H2, including long-range and spin–orbit effects [J]. Physical Chemistry Chemical Physics, 2002, 4(3): 401-415.
[12] MANOLOPOULOS D E. THE MARLOW MEDAL LECTURE The dynamics of theF+H2 reaction [J]. Journal of the Chemical Society, Faraday Transactions, 1997, 93(5):673-683.
[13] PARKER J H, PIMENTEL G C. Vibrational Energy Distribution through ChemicalLaser Studies. I. Fluorine Atoms plus Hydrogen or Methane [J]. The Journal of Chemical Physics, 1969, 51(1): 91-96.
[14] 张东辉, 杨学明. 化学反应共振态研究进展 [J]. 中国科学基金, 2010, 24(05): 300-302.
[15] NEUMARK D M, WODTKE A M, ROBINSON G N, et al. Dynamic Resonances in the Reaction of Fluorine Atoms with Hydrogen Molecules [M]. Resonances. American Chemical Society. 1984: 479-491.
[16] SKODJE R T, SKOUTERIS D, MANOLOPOULOS D E, et al. Resonance-Mediated Chemical Reaction: F+HD=HF+D [J]. Physical Review Letter, 2000, 85(6): 1206-1209.
[17] YANG T, CHEN J, HUANG L, et al. Extremely short-lived reaction resonances in Cl+HD(v=1)→DCl+H due to chemical bond softening [J]. Science, 2015, 347(6217): 60-63.
[18] DOYLE J. Bose–Einstein condensation [J]. Proceedings of the National Academy of Sciences, 1997, 94(7): 2774-2775.
[19] COURNOL A, MANCEAU M, PIERENS M, et al. A new experiment to test parity symmetry in cold chiral molecules using vibrational spectroscopy [J]. Quantum Electronics, 2019, 49(3): 288-292.
[20] 宁长春, 曹振鑫, 汪亚平, et al. 奥托·斯特恩实验历史概述 [J]. 大学物理, 2015, 34(09): 39-43.
[21] GERLACH W, STERN O. The magnetic moment of silver atoms [J]. Zeitschrift Fur Physik, 1922, 9: 353-355.
[22] RAMSEY N F. Molecular beam: our legacy from Otto Stern [J]. Zeitschrift Fur Phsik,1988, 10(2): 121-125.
[23] KANTROWITZ A, GREY J. A High Intensity Source for the Molecular Beam. Part I.Theoretical [J]. Review of Scientific Instruments, 1951, 22(5): 328-332.
[24] EVEN U, JORTNER J, NOY D, et al. Cooling of large molecules below 1 K and He clusters formation [J]. The Journal of Chemical Physics, 2000, 112(18): 8068-8071.
[25] BEYER A, MAISENBACHER L, MATVEEV A, et al. The Rydberg constant and proton size from atomic hydrogen [J]. Science, 2017, 358(6359): 79-85.
[26] FENG G P, ZHENG X, SUN Y R, et al. Laser-spectroscopy measurement of the finestructure splitting 23P1–23P2 of 4He [J]. Physical Review A, 2015, 91(3): 030502-1-5.
[27] ZHENG X, SUN Y R, CHEN J J, et al. Measurement of the Frequency of the 23S-23P Transition of He4 [J]. Physical Review Letters, 2017, 119(26): 263002-1-6.
[28] HUDSON E R, LEWANDOWSKI H J, SAWYER B C, et al. Cold Molecule Spectroscopy for Constraining the Evolution of the Fine Structure Constant [J]. Physical Review Letters, 2006, 96(14): 143004-1-4.
[29] GILIJAMSE J J, HOEKSTRA S, VAN DE MEERAKKER S Y, et al. Near-threshold inelastic collisions using molecular beams with a tunable velocity [J]. Science, 2006, 313(5793): 1617-1620.
[30] VON ZASTROW A, ONVLEE J, VOGELS S N, et al. State-resolved diffraction oscillations imaged for inelastic collisions of NO radicals with He, Ne and Ar [J]. Nature Chemistry, 2014, 6(3): 216-221.
[31] VOGELS S N, ONVLEE J, CHEFDEVILLE S, et al. Imaging resonances in low-energyNO-He inelastic collisions [J]. Science, 2015, 350(6262): 787-790.
[32] YANG T, HUANG L, XIAO C, et al. Enhanced reactivity of fluorine with parahydrogen in cold interstellar clouds by resonance-induced quantum tunnelling [J]. Nature Chemistry, 2019, 11(8): 744-749.
[33] 刘筱丽, 仲扣庄. 物理学史 [M]. 南京: 南京师范大学出版社, 2001.
[34] 郭奕玲, 沈慧君. 物理学史(第2 版) [M]. 北京: 清华大学出版社, 2005.
[35] DUNOYER L. Sur la théorie cinétique des gaz et la réalisation d’un rayonnement matériel d’origine thermique [J]. Comptes rendus hebdomadaires des séances de Académie des sciences (France), 1911, 152: 592.
[36] 郭奕玲, 沈慧君. 诺贝尔物理学奖1901-2010 [M]. 北京: 清华大学出版社, 2012.
[37] BUCKMAN S J, GULLEY R, MOGHBELALHOSSEIN M, et al. Spatial profiles of effusive molecular beams and their dependence on gas species [J]. Measurement Science and Technology, 1993, 4(10): 1143-1152.
[38] VAN DE MEERAKKER S Y, BETHLEM H L, MEIJER G. Taming molecular beams [J]. Nature Physics, 2008, 4(8): 595-602.
[39] KISTIAKOWSKY G B, SLICHTER W P. A High Intensity Source for the Molecular Beam. Part II. Experimental [J]. Review of Scientific Instruments, 1951, 22(5): 333-337.
[40] ZARE R N. My life with LIF: a personal account of developing laser-induced fluorescence [J]. Annu Rev Anal Chem (Palo Alto Calif), 2012, 5: 1-14.
[41] ZHANG G, JIN Y. Theoretical analysis on the efficiency of optical-optical double color double resonance multiphoton ionization [J]. Chinese Optics Letters, 2009, 7(11): 971-974.
[42] 傅院霞, 吕思斌, 崔执凤. 共振增强多光子电离技术及应用研究 [J]. 蚌埠学院学报, 2012, 1(01): 37-42.
[43] BOESL U. Laser mass spectrometry for environmental and industrial chemical trace analysis [J]. Journal of Mass Spectrometry, 2000, 35(3): 289-304.
[44] ASHFOLD M N R, HOWE J D. Multiphoton Spectroscopy of Molecular Species [J]. Annual Review of Physical Chemistry, 1994, 45(1): 57-82.
[45] SINGH D P, THOMPSON J O F, REID K L, et al. Influence of Vibrational Excitation and Nuclear Dynamics in Multiphoton Photoelectron Circular Dichroism of Fenchone[J]. The Journal of Physical Chemistry Letters, 2021, 12(46): 11438-11443.
[46] HRóðMARSSON H R, KVARAN Á. Revealing photofragmentation dynamics through interactions between Rydberg states: REMPI of HI as a case study [J]. Physical Chemistry Chemical Physics, 2015, 17(48): 32517-32527.
[47] ADAMS S, WILLIAMSON J. Gas temperature measurement in atmospheric nitrogen discharge by laser REMPI-LIF technique [J]. Bulletin of the American PhysicalSociety, 2010, 55.
[48] ANDEREGG L, AUGENBRAUN B L, BAO Y, et al. Laser cooling of optically trapped molecules [J]. Nature Physics, 2018, 14(9): 890-893.
[49] WCISŁO P, WU H, REENS D, et al. Detection and manipulation of the transverse motion of neutral molecules in a Stark decelerator [J]. Measurement, 2021, 183: 109888-1-7.
[50] EGOROV D, LAHAYE T, SCHöLLKOPF W, et al. Buffer-gas cooling of atomic and molecular beams [J]. Physical Review A, 2002, 66(4).
[51] 侯顺永, 尹亚玲, 印建平. 第二讲 分子束的静电Stark 减速、静磁Zeeman 减速和光学Stark 减速技术 [J]. 物理, 2017, 46(07): 446-456.
[52] TOSCANO J, TAUSCHINSKY A, DULITZ K, et al. Zeeman deceleration beyond periodic phase space stability [J]. New Journal of Physics, 2017, 19(8): 083016-1-13.
[53] KERMS R, FRIEDRICH B, STWALLEY W C. Cold Molecules: Theory, Experiment, Applications [M]. Boca Raton: CRC Press, 2009.
[54] HUTZLER N R, PARSONS M F, GUREVICH Y V, et al. A cryogenic beam of refractory, chemically reactive molecules with expansion cooling [J]. Phys Chem Chem Phys, 2011, 13(42): 18976-18985.
[55] BARRY J F, SHUMAN E S, DEMILLE D. A bright, slow cryogenic molecular beam source for free radicals [J]. Phys Chem Chem Phys, 2011, 13(42): 18936-18947.
[56] PHILLIPS W D, METCALF H. Laser deceleration of an atomic beam [J]. Physical Review Letters, 1982, 48(9): 596-599.
[57] ZELENER B, SAAKYAN S, SAUTENKOV V, et al. Laser cooling of 7Li atoms in a magneto-optical trap [J]. JETP letters, 2014, 98: 670-674.
[58] COZIJN F, BIESHEUVEL J, FLORES A, et al. Laser cooling of beryllium ions using a frequency-doubled 626 nm diode laser [J]. Optics letters, 2013, 38(13): 2370-2372.
[59] KUROSU T, SHIMIZU F. Laser cooling and trapping of calcium and strontium [J]. Japanese Journal of Applied Physics, 1990, 29(11A): L2127-2129.
[60] SELETSKIY D V, MELGAARD S D, EPSTEIN R I, et al. Local laser cooling of Yb: YLF to 110 K [J]. Optics express, 2011, 19(19): 18229-18236.
[61] CHENG H-D, ZHANG W-Z, MA H-Y, et al. Laser cooling of rubidium atoms from background vapor in diffuse light [J]. Physical Review A, 2009, 79(2): 023407-1-5.
[62] HAO Y, PAŠTEKA L F, VISSCHER L, et al. High accuracy theoretical investigations of CaF, SrF, and BaF and implications for laser-cooling [J]. The Journal of chemical physics, 2019, 151(3): 034302-1-17.
[63] ADAMS C S, RIIS E. Laser cooling and trapping of neutral atoms [J]. Progress in Quantum Electronics, 1997, 21(1): 1-79.
[64] CRIM F F. Vibrational state control of bimolecular reactions: Discovering and directing the chemistry [J]. Accounts of chemical research, 1999, 32(10): 877-884.
[65] KREHER C, RINNENTHAL J L, GERICKE K-H. Vibrational state control of bimolecular reactions [J]. The Journal of chemical physics, 1998, 108(8): 3154-3167.
[66] BRONIKOWSKI M J, SIMPSON W R, GIRARD B, et al. Bond-specific chemistry: OD:OH product ratios for the reactions H+HOD(100) and H+HOD(001) [J]. The Journal of chemical physics, 1991, 95(11): 8647-8648.
[67] RAHINOV I, COOPER R, YUAN C, et al. Efficient vibrational and translational excitations of a solid metal surface: State-to-state time-of-flight measurements of HCl (v= 2, j= 1) scattering from Au (111) [J]. The Journal of chemical physics, 2008, 129(21): 214708-1-16.
[68] ZHANG W, KAWAMATA H, LIU K. CH stretching excitation in the early barrier F+CHD3 reaction inhibits CH bond cleavage [J]. Science, 2009, 325(5938): 303-306.
[69] GREGOR E, KAHAN O, MORDAUNT D. Efficient rotational Raman conversion in hydrogen, deuterium, and hydrogen/deuterium mixes using a phase conjugate pump laser; proceedings of the Conference on Lasers and Electro-Optics, F, 1989 [C]. Optical Society of America.
[70] HANSON F, POIRIER P. Stimulated rotational Raman conversion in H2, D2, and HD[J]. IEEE Journal of Quantum Electronics, 1993, 29(8): 2342-2345.
[71] MIKULECKY K, GERICKE K-H. Reaction dynamics of vibrationally excited H2 [J]. Chemical Physics, 1993, 175(1): 13-21.
[72] GEERS A, KAPPERT J, TEMPS F, et al. State-selective vibrational excitation of OH (X 2Π) radicals by stimulated emission pumping [J]. Chemical physics letters, 1989, 155(6): 614-619.
[73] CAAMAñO M, CORTINA-GIL D, MITTIG W, et al. Resonance State in 7H [J]. Physical Review Letters, 2007, 99(6): 062502-1-4.
[74] HICKSON K M, LOISON J-C, NUñEZ-REYES D, et al. Quantum TunnelingEnhancement of the C+H2O and C+D2O Reactions at Low Temperature [J]. The Journal of Physical Chemistry Letters, 2016, 7(18): 3641-3646.
[75] COSTES M, DAUGEY N, NAULIN C, et al. Crossed-beam studies on the dynamics of the C+C2H2 interstellar reaction leading to linear and cyclic C3H+H and C3+H2 [J]. Faraday Discussions, 2006, 133(0): 157-176.
[76] ABAD L, BERMEJO D, HERRERO V J, et al. Performance of a solenoid-driven pulsed molecular-beam source [J]. Review of scientific instruments, 1995, 66(7): 3826-3832.
[77] IRIMIA D, DOBRIKOV D, KORTEKAAS R, et al. A short pulse (7 μs FWHM) and high repetition rate (DC-5kHz) cantilever piezovalve for pulsed atomic and molecular beams [J]. Review of Scientific Instruments, 2009, 80(11): 113303-1-6.
[78] YAN B, CLAUS P F H, OORSCHOT B G M V, et al. A new high intensity and short pulse molecular beam valve [J]. Review of Scientific Instruments, 2013, 84(2): 023102-1-8.
[79] HILLENKAMP M, KEINAN S, EVEN U. Condensation limited cooling in supersonic expansions [J]. The Journal of chemical physics, 2003, 118(19): 8699-8705.
[80] DULITZ K, SOFTLEY T P. Velocity-selected magnetic guiding of Zeemandecelerated hydrogen atoms [J]. The European Physical Journal D, 2016, 70: 1-9.
[81] VAN DE MEERAKKER S Y, BETHLEM H L, VANHAECKE N, et al. Manipulation and control of molecular beams [J]. Chemical reviews, 2012, 112(9): 4828-4878.
[82] NAREVICIUS E, RAIZEN M G. Toward cold chemistry with magnetically decelerated supersonic beams [J]. Chemical reviews, 2012, 112(9): 4879-4889.
[83] LAM J, RENNICK C J, SOFTLEY T P. A chopper system for shortening the duration of pulsed supersonic beams seeded with NO or Br2 down to 13 μs [J]. Rev Sci Instrum, 2015, 86(5): 053108-1-7.
[84] MESSER J K, DE LUCIA F C. Measurement of Pressure-Broadening Parameters forthe CO-He System at 4 K [J]. Physical Review Letters, 1984, 53(27): 2555-2558.
[85] MOORE R, GULICK S. The transfer of continuous beams and storage ring beams into electromagnetic traps [J]. Physica Scripta, 1988, 1988(T22): 28-35.
[86] YANG T, LI A, CHEN G K, et al. Isomer-specific kinetics of the C++H2O reaction at the temperature of interstellar clouds [J]. Science Advances, 2021, 7(2): eabe4080-1-5.
[87] GERLICH D. Experimental investigations of ion–molecule reactions relevant tointerstellar chemistry [J]. Journal of the Chemical Society, Faraday Transactions,1993, 89(13): 2199-2208.
[88] EGOROV D, CAMPBELL W C, FRIEDRICH B, et al. Buffer-gas cooling of NH viathe beam loaded buffer-gas method [J]. The European Physical Journal D - Atomic,Molecular, Optical and Plasma Physics, 2004, 31(2): 307-311.
[89] KURZ C, GILBERT S J, GREAVES R G, et al. New source of ultra-cold positron andelectron beams [J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 1998, 143(1): 188-194.
[90] USKOLA A, BASTERRETXEA F J, CASTAñO F. Diode Laser Spectroscopy of theν13 Band of Benzene Cooled in a Supersonic Jet [J]. Journal of Molecular Spectroscopy, 1999, 198(2): 429-434.
[91] SPROUSE G D, DAS J, LAURITSEN T, et al. Laser spectroscopy of light Yb isotopeson-line in a cooled gas cell [J]. Physical Review Letters, 1989, 63(14): 1463-1466.
[92] PATTERSON D, SCHNELL M, DOYLE J M. Enantiomer-specific detection of chiral molecules via microwave spectroscopy [J]. Nature, 2013, 497(7450): 475-477.
[93] LETTOW M, GRABARICS M, GREIS K, et al. Cryogenic Infrared SpectroscopyReveals Structural Modularity in the Vibrational Fingerprints of Heparan SulfateDiastereomers [J]. Anal Chem, 2020, 92(15): 10228-10232.
[94] GIDDINGS S B. Hawking radiation, the Stefan–Boltzmann law, and unitarization [J]. Physics Letters B, 2016, 754: 39-42.
修改评论