中文版 | English
题名

速度选择分子束源装置的搭建与应用

其他题名
CONSTRUCTION OF A VELOCITY-SELECTIVE MOLECULAR BEAM APPARATUS AND ITS APPLICATIONS
姓名
姓名拼音
LIU Heyang
学号
12032816
学位类型
硕士
学位专业
0703 化学
学科门类/专业学位类别
07 理学
导师
杨天罡
导师单位
化学系
论文答辩日期
2023-05-28
论文提交日期
2023-06-26
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

反应动力学是一门研究化学反应机理的学科,广泛应用于大气化学、星际化学等领域。其中,量子态分辨的微观反应动力学是前沿的研究方向,而制备态选择分子束源是研究该方向的前提。本文旨在从头搭建一套分子束源装置,详细介绍了相关实验技术与原理,以及真空、光学、信号控制与采集等基础仪器部分的搭建与测试工作。基于这些基础仪器,本文主要研究了速度连续可调超窄脉冲分子束的制备。

本文作者设计了一套结合斩波器制备速度可调超窄脉冲分子束的装置,并通过共振增强多光子电离进行速度表征。通过斩波器与脉冲阀的配合,在束源下游193 mm处得到了半高宽为6.3 μs的超窄H2脉冲分子束。通过改变脉冲阀温度,实现了束源温度从95 K~503 K连续可调,并通过受激拉曼泵浦标记分子,在纳秒尺度上精确测量了分子束速度,制备了速度分布在1.32 km/s~3.6 km/sH2分子束。另外通过混合载气将分子束速度降低至0.83 km/s,实现了速度在0.83 km/s~3.6 km/s可调的超窄H2分子束源的制备。

为了获得速度更低的分子束,本文设计搭建了一套基于低温缓冲气体冷却技术的束源装置。通过改进导热元件以及低温屏蔽装置,缓冲气体冷却腔室温度可降低至7.4 K。在冷却温度为20 K的缓冲气体冷却腔室中初步制备了低速连续H2分子束。本文的研究结果为量子态分辨的微观反应动力学研究提供了可靠的实验方法和装置,对于深入理解化学反应机理具有重要意义。

其他摘要

Reaction dynamics investigates the mechanisms of elementary chemical reactions, which is widely used in atmospheric, interstellar chemical and other fields. One advance area of the research is quantum-state-resolved reaction dynamics, which requires the preparation of a state-selected beam source. This thesis focuses on the construction of a molecular beam source and outlines the relevant experimental techniques and principles employed in the field of molecular beams, then introduces a detailed description of the construction and testing of components of the essential apparatus, such as vacuum, optical, signal control and acquisition of this device. The preparation of continuously velocity-tunable and narrowed pulsed molecular beams was mainly implemented based on these basic devices.

A device was developed to prepare velocity-tunable and narrowed pulsed molecular beams in conjunction with a chopper. In this thesis, the beam velocity was characterized by resonance-enhanced multiphoton ionization. By cooperation of the chopper and the pulsed valve, an ultra-narrow H2 pulsed molecular beam with a full width at half maxima of 6.3 μs at 193 mm downstream from the pulsed valve was obtained. The beam source temperature could be continuously adjusted from 95 K to 503 K by changing the temperature of pulse valve. The molecular beam velocity was precisely measured by excited Raman pumping tagging of molecules on the nanosecond scale. As a result, the H2 molecular beams with velocity distributions ranging from 1.32 km/s to 3.6 km/s were prepared. Furthermore, the velocity of molecular beam was reduced to 0.83 km/s by loading gas, thereby a velocity-tunable and narrowed H2 molecular beam source with velocity distributions ranging from 0.83 km/s to 3.6 km/s was obtained.

In order to prepare molecular beam with lower velocity, a beam source utilizing cryogenic buffer gas cooling technology was designed and built. By optimizing the thermal conducting components and the cryogenic shielding components, the buffer gas cooling chamber could be cooled down to 7.4 K. In the buffer gas cooling chamber at a cooling temperature of 20 K, a continuous slowed H2 molecular beam was obtained. The research results of this thesis provide a reliable experimental method and apparatus for the study of micro-reaction dynamics with quantum-state resolution, which is of great significance for a deeper understanding of chemical reaction mechanisms.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2023-06
参考文献列表

[1] JAVOY S, NAUDET V, ABID S, et al. Elementary reaction kinetics studies of interestin H2 supersonic combustion chemistry [J]. Experimental Thermal and Fluid Science,2003, 27(4): 371-377.

[2] MILLER J A, PILLING M J, TROE J. Unravelling combustion mechanisms through aquantitative understanding of elementary reactions [J]. Proceedings of the Combustion Institute, 2005, 30(1): 43-88.

[3] PETERSEN E L, DAVIDSON D F, HANSON R K. Kinetics modeling of shockinducedignition in low-dilution CH4/O2 mixtures at high pressures and intermediate temperatures [J]. Combustion and Flame, 1999, 117(1): 272-290.

[4] SEISER R, PITSCH H, SESHADRI K, et al. Extinction and autoignition of n-heptane in counterflow configuration [J]. Proceedings of the Combustion Institute, 2000, 28(2): 2029-2037.

[5] KUMAR M, SHEE J, RUDSHTEYN B, et al. Multiple Stable Isoprene-Ozone Complexes Reveal Complex Entrance Channel Dynamics in the Isoprene + Ozone Reaction [J]. J Am Chem Soc, 2020, 142(24): 10806-10813.

[6] GU X, KAISER R I. Reaction Dynamics of Phenyl Radicals in Extreme Environments:A Crossed Molecular Beam Study [J]. Accounts of Chemical Research, 2009, 42(2):290-302.

[7] FERRIèRE K M. The interstellar environment of our galaxy [J]. Reviews of ModernPhysics, 2001, 73(4): 1031-1066.

[8] VAN DISHOECK E F. Astrochemistry: overview and challenges [J]. Proceedings ofthe International Astronomical Union, 2018, 13(S332): 3-22.

[9] WALKER G A H, BOHLENDER D A, MAIER J P, et al. IDENTIFICATION OF MORE INTERSTELLAR C60+ BANDS [J]. The Astrophysical Journal, 2015, 812(L8): 1-5.

[10] METZ R B, THOEMKE J D, PFEIFFER J M, et al. Selectively breaking either bond in the bimolecular reaction of HOD with hydrogen atoms [J]. The Journal of Chemical Physics, 1993, 99(3): 1744-1751.

[11] AQUILANTI V, CAVALLI S, DE FAZIO D, et al. Exact reaction dynamics by the hyperquantization algorithm: integral and differential cross sections for F + H2, including long-range and spin–orbit effects [J]. Physical Chemistry Chemical Physics, 2002, 4(3): 401-415.

[12] MANOLOPOULOS D E. THE MARLOW MEDAL LECTURE The dynamics of theF+H2 reaction [J]. Journal of the Chemical Society, Faraday Transactions, 1997, 93(5):673-683.

[13] PARKER J H, PIMENTEL G C. Vibrational Energy Distribution through ChemicalLaser Studies. I. Fluorine Atoms plus Hydrogen or Methane [J]. The Journal of Chemical Physics, 1969, 51(1): 91-96.

[14] 张东辉, 杨学明. 化学反应共振态研究进展 [J]. 中国科学基金, 2010, 24(05): 300-302.

[15] NEUMARK D M, WODTKE A M, ROBINSON G N, et al. Dynamic Resonances in the Reaction of Fluorine Atoms with Hydrogen Molecules [M]. Resonances. American Chemical Society. 1984: 479-491.

[16] SKODJE R T, SKOUTERIS D, MANOLOPOULOS D E, et al. Resonance-Mediated Chemical Reaction: F+HD=HF+D [J]. Physical Review Letter, 2000, 85(6): 1206-1209.

[17] YANG T, CHEN J, HUANG L, et al. Extremely short-lived reaction resonances in Cl+HD(v=1)→DCl+H due to chemical bond softening [J]. Science, 2015, 347(6217): 60-63.

[18] DOYLE J. Bose–Einstein condensation [J]. Proceedings of the National Academy of Sciences, 1997, 94(7): 2774-2775.

[19] COURNOL A, MANCEAU M, PIERENS M, et al. A new experiment to test parity symmetry in cold chiral molecules using vibrational spectroscopy [J]. Quantum Electronics, 2019, 49(3): 288-292.

[20] 宁长春, 曹振鑫, 汪亚平, et al. 奥托·斯特恩实验历史概述 [J]. 大学物理, 2015, 34(09): 39-43.

[21] GERLACH W, STERN O. The magnetic moment of silver atoms [J]. Zeitschrift Fur Physik, 1922, 9: 353-355.

[22] RAMSEY N F. Molecular beam: our legacy from Otto Stern [J]. Zeitschrift Fur Phsik,1988, 10(2): 121-125.

[23] KANTROWITZ A, GREY J. A High Intensity Source for the Molecular Beam. Part I.Theoretical [J]. Review of Scientific Instruments, 1951, 22(5): 328-332.

[24] EVEN U, JORTNER J, NOY D, et al. Cooling of large molecules below 1 K and He clusters formation [J]. The Journal of Chemical Physics, 2000, 112(18): 8068-8071.

[25] BEYER A, MAISENBACHER L, MATVEEV A, et al. The Rydberg constant and proton size from atomic hydrogen [J]. Science, 2017, 358(6359): 79-85.

[26] FENG G P, ZHENG X, SUN Y R, et al. Laser-spectroscopy measurement of the finestructure splitting 23P1–23P2 of 4He [J]. Physical Review A, 2015, 91(3): 030502-1-5.

[27] ZHENG X, SUN Y R, CHEN J J, et al. Measurement of the Frequency of the 23S-23P Transition of He4 [J]. Physical Review Letters, 2017, 119(26): 263002-1-6.

[28] HUDSON E R, LEWANDOWSKI H J, SAWYER B C, et al. Cold Molecule Spectroscopy for Constraining the Evolution of the Fine Structure Constant [J]. Physical Review Letters, 2006, 96(14): 143004-1-4.

[29] GILIJAMSE J J, HOEKSTRA S, VAN DE MEERAKKER S Y, et al. Near-threshold inelastic collisions using molecular beams with a tunable velocity [J]. Science, 2006, 313(5793): 1617-1620.

[30] VON ZASTROW A, ONVLEE J, VOGELS S N, et al. State-resolved diffraction oscillations imaged for inelastic collisions of NO radicals with He, Ne and Ar [J]. Nature Chemistry, 2014, 6(3): 216-221.

[31] VOGELS S N, ONVLEE J, CHEFDEVILLE S, et al. Imaging resonances in low-energyNO-He inelastic collisions [J]. Science, 2015, 350(6262): 787-790.

[32] YANG T, HUANG L, XIAO C, et al. Enhanced reactivity of fluorine with parahydrogen in cold interstellar clouds by resonance-induced quantum tunnelling [J]. Nature Chemistry, 2019, 11(8): 744-749.

[33] 刘筱丽, 仲扣庄. 物理学史 [M]. 南京: 南京师范大学出版社, 2001.

[34] 郭奕玲, 沈慧君. 物理学史(第2 版) [M]. 北京: 清华大学出版社, 2005.

[35] DUNOYER L. Sur la théorie cinétique des gaz et la réalisation d’un rayonnement matériel d’origine thermique [J]. Comptes rendus hebdomadaires des séances de Académie des sciences (France), 1911, 152: 592.

[36] 郭奕玲, 沈慧君. 诺贝尔物理学奖1901-2010 [M]. 北京: 清华大学出版社, 2012.

[37] BUCKMAN S J, GULLEY R, MOGHBELALHOSSEIN M, et al. Spatial profiles of effusive molecular beams and their dependence on gas species [J]. Measurement Science and Technology, 1993, 4(10): 1143-1152.

[38] VAN DE MEERAKKER S Y, BETHLEM H L, MEIJER G. Taming molecular beams [J]. Nature Physics, 2008, 4(8): 595-602.

[39] KISTIAKOWSKY G B, SLICHTER W P. A High Intensity Source for the Molecular Beam. Part II. Experimental [J]. Review of Scientific Instruments, 1951, 22(5): 333-337.

[40] ZARE R N. My life with LIF: a personal account of developing laser-induced fluorescence [J]. Annu Rev Anal Chem (Palo Alto Calif), 2012, 5: 1-14.

[41] ZHANG G, JIN Y. Theoretical analysis on the efficiency of optical-optical double color double resonance multiphoton ionization [J]. Chinese Optics Letters, 2009, 7(11): 971-974.

[42] 傅院霞, 吕思斌, 崔执凤. 共振增强多光子电离技术及应用研究 [J]. 蚌埠学院学报, 2012, 1(01): 37-42.

[43] BOESL U. Laser mass spectrometry for environmental and industrial chemical trace analysis [J]. Journal of Mass Spectrometry, 2000, 35(3): 289-304.

[44] ASHFOLD M N R, HOWE J D. Multiphoton Spectroscopy of Molecular Species [J]. Annual Review of Physical Chemistry, 1994, 45(1): 57-82.

[45] SINGH D P, THOMPSON J O F, REID K L, et al. Influence of Vibrational Excitation and Nuclear Dynamics in Multiphoton Photoelectron Circular Dichroism of Fenchone[J]. The Journal of Physical Chemistry Letters, 2021, 12(46): 11438-11443.

[46] HRóðMARSSON H R, KVARAN Á. Revealing photofragmentation dynamics through interactions between Rydberg states: REMPI of HI as a case study [J]. Physical Chemistry Chemical Physics, 2015, 17(48): 32517-32527.

[47] ADAMS S, WILLIAMSON J. Gas temperature measurement in atmospheric nitrogen discharge by laser REMPI-LIF technique [J]. Bulletin of the American PhysicalSociety, 2010, 55.

[48] ANDEREGG L, AUGENBRAUN B L, BAO Y, et al. Laser cooling of optically trapped molecules [J]. Nature Physics, 2018, 14(9): 890-893.

[49] WCISŁO P, WU H, REENS D, et al. Detection and manipulation of the transverse motion of neutral molecules in a Stark decelerator [J]. Measurement, 2021, 183: 109888-1-7.

[50] EGOROV D, LAHAYE T, SCHöLLKOPF W, et al. Buffer-gas cooling of atomic and molecular beams [J]. Physical Review A, 2002, 66(4).

[51] 侯顺永, 尹亚玲, 印建平. 第二讲 分子束的静电Stark 减速、静磁Zeeman 减速和光学Stark 减速技术 [J]. 物理, 2017, 46(07): 446-456.

[52] TOSCANO J, TAUSCHINSKY A, DULITZ K, et al. Zeeman deceleration beyond periodic phase space stability [J]. New Journal of Physics, 2017, 19(8): 083016-1-13.

[53] KERMS R, FRIEDRICH B, STWALLEY W C. Cold Molecules: Theory, Experiment, Applications [M]. Boca Raton: CRC Press, 2009.

[54] HUTZLER N R, PARSONS M F, GUREVICH Y V, et al. A cryogenic beam of refractory, chemically reactive molecules with expansion cooling [J]. Phys Chem Chem Phys, 2011, 13(42): 18976-18985.

[55] BARRY J F, SHUMAN E S, DEMILLE D. A bright, slow cryogenic molecular beam source for free radicals [J]. Phys Chem Chem Phys, 2011, 13(42): 18936-18947.

[56] PHILLIPS W D, METCALF H. Laser deceleration of an atomic beam [J]. Physical Review Letters, 1982, 48(9): 596-599.

[57] ZELENER B, SAAKYAN S, SAUTENKOV V, et al. Laser cooling of 7Li atoms in a magneto-optical trap [J]. JETP letters, 2014, 98: 670-674.

[58] COZIJN F, BIESHEUVEL J, FLORES A, et al. Laser cooling of beryllium ions using a frequency-doubled 626 nm diode laser [J]. Optics letters, 2013, 38(13): 2370-2372.

[59] KUROSU T, SHIMIZU F. Laser cooling and trapping of calcium and strontium [J]. Japanese Journal of Applied Physics, 1990, 29(11A): L2127-2129.

[60] SELETSKIY D V, MELGAARD S D, EPSTEIN R I, et al. Local laser cooling of Yb: YLF to 110 K [J]. Optics express, 2011, 19(19): 18229-18236.

[61] CHENG H-D, ZHANG W-Z, MA H-Y, et al. Laser cooling of rubidium atoms from background vapor in diffuse light [J]. Physical Review A, 2009, 79(2): 023407-1-5.

[62] HAO Y, PAŠTEKA L F, VISSCHER L, et al. High accuracy theoretical investigations of CaF, SrF, and BaF and implications for laser-cooling [J]. The Journal of chemical physics, 2019, 151(3): 034302-1-17.

[63] ADAMS C S, RIIS E. Laser cooling and trapping of neutral atoms [J]. Progress in Quantum Electronics, 1997, 21(1): 1-79.

[64] CRIM F F. Vibrational state control of bimolecular reactions: Discovering and directing the chemistry [J]. Accounts of chemical research, 1999, 32(10): 877-884.

[65] KREHER C, RINNENTHAL J L, GERICKE K-H. Vibrational state control of bimolecular reactions [J]. The Journal of chemical physics, 1998, 108(8): 3154-3167.

[66] BRONIKOWSKI M J, SIMPSON W R, GIRARD B, et al. Bond-specific chemistry: OD:OH product ratios for the reactions H+HOD(100) and H+HOD(001) [J]. The Journal of chemical physics, 1991, 95(11): 8647-8648.

[67] RAHINOV I, COOPER R, YUAN C, et al. Efficient vibrational and translational excitations of a solid metal surface: State-to-state time-of-flight measurements of HCl (v= 2, j= 1) scattering from Au (111) [J]. The Journal of chemical physics, 2008, 129(21): 214708-1-16.

[68] ZHANG W, KAWAMATA H, LIU K. CH stretching excitation in the early barrier F+CHD3 reaction inhibits CH bond cleavage [J]. Science, 2009, 325(5938): 303-306.

[69] GREGOR E, KAHAN O, MORDAUNT D. Efficient rotational Raman conversion in hydrogen, deuterium, and hydrogen/deuterium mixes using a phase conjugate pump laser; proceedings of the Conference on Lasers and Electro-Optics, F, 1989 [C]. Optical Society of America.

[70] HANSON F, POIRIER P. Stimulated rotational Raman conversion in H2, D2, and HD[J]. IEEE Journal of Quantum Electronics, 1993, 29(8): 2342-2345.

[71] MIKULECKY K, GERICKE K-H. Reaction dynamics of vibrationally excited H2 [J]. Chemical Physics, 1993, 175(1): 13-21.

[72] GEERS A, KAPPERT J, TEMPS F, et al. State-selective vibrational excitation of OH (X 2Π) radicals by stimulated emission pumping [J]. Chemical physics letters, 1989, 155(6): 614-619.

[73] CAAMAñO M, CORTINA-GIL D, MITTIG W, et al. Resonance State in 7H [J]. Physical Review Letters, 2007, 99(6): 062502-1-4.

[74] HICKSON K M, LOISON J-C, NUñEZ-REYES D, et al. Quantum TunnelingEnhancement of the C+H2O and C+D2O Reactions at Low Temperature [J]. The Journal of Physical Chemistry Letters, 2016, 7(18): 3641-3646.

[75] COSTES M, DAUGEY N, NAULIN C, et al. Crossed-beam studies on the dynamics of the C+C2H2 interstellar reaction leading to linear and cyclic C3H+H and C3+H2 [J]. Faraday Discussions, 2006, 133(0): 157-176.

[76] ABAD L, BERMEJO D, HERRERO V J, et al. Performance of a solenoid-driven pulsed molecular-beam source [J]. Review of scientific instruments, 1995, 66(7): 3826-3832.

[77] IRIMIA D, DOBRIKOV D, KORTEKAAS R, et al. A short pulse (7 μs FWHM) and high repetition rate (DC-5kHz) cantilever piezovalve for pulsed atomic and molecular beams [J]. Review of Scientific Instruments, 2009, 80(11): 113303-1-6.

[78] YAN B, CLAUS P F H, OORSCHOT B G M V, et al. A new high intensity and short pulse molecular beam valve [J]. Review of Scientific Instruments, 2013, 84(2): 023102-1-8.

[79] HILLENKAMP M, KEINAN S, EVEN U. Condensation limited cooling in supersonic expansions [J]. The Journal of chemical physics, 2003, 118(19): 8699-8705.

[80] DULITZ K, SOFTLEY T P. Velocity-selected magnetic guiding of Zeemandecelerated hydrogen atoms [J]. The European Physical Journal D, 2016, 70: 1-9.

[81] VAN DE MEERAKKER S Y, BETHLEM H L, VANHAECKE N, et al. Manipulation and control of molecular beams [J]. Chemical reviews, 2012, 112(9): 4828-4878.

[82] NAREVICIUS E, RAIZEN M G. Toward cold chemistry with magnetically decelerated supersonic beams [J]. Chemical reviews, 2012, 112(9): 4879-4889.

[83] LAM J, RENNICK C J, SOFTLEY T P. A chopper system for shortening the duration of pulsed supersonic beams seeded with NO or Br2 down to 13 μs [J]. Rev Sci Instrum, 2015, 86(5): 053108-1-7.

[84] MESSER J K, DE LUCIA F C. Measurement of Pressure-Broadening Parameters forthe CO-He System at 4 K [J]. Physical Review Letters, 1984, 53(27): 2555-2558.

[85] MOORE R, GULICK S. The transfer of continuous beams and storage ring beams into electromagnetic traps [J]. Physica Scripta, 1988, 1988(T22): 28-35.

[86] YANG T, LI A, CHEN G K, et al. Isomer-specific kinetics of the C++H2O reaction at the temperature of interstellar clouds [J]. Science Advances, 2021, 7(2): eabe4080-1-5.

[87] GERLICH D. Experimental investigations of ion–molecule reactions relevant tointerstellar chemistry [J]. Journal of the Chemical Society, Faraday Transactions,1993, 89(13): 2199-2208.

[88] EGOROV D, CAMPBELL W C, FRIEDRICH B, et al. Buffer-gas cooling of NH viathe beam loaded buffer-gas method [J]. The European Physical Journal D - Atomic,Molecular, Optical and Plasma Physics, 2004, 31(2): 307-311.

[89] KURZ C, GILBERT S J, GREAVES R G, et al. New source of ultra-cold positron andelectron beams [J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 1998, 143(1): 188-194.

[90] USKOLA A, BASTERRETXEA F J, CASTAñO F. Diode Laser Spectroscopy of theν13 Band of Benzene Cooled in a Supersonic Jet [J]. Journal of Molecular Spectroscopy, 1999, 198(2): 429-434.

[91] SPROUSE G D, DAS J, LAURITSEN T, et al. Laser spectroscopy of light Yb isotopeson-line in a cooled gas cell [J]. Physical Review Letters, 1989, 63(14): 1463-1466.

[92] PATTERSON D, SCHNELL M, DOYLE J M. Enantiomer-specific detection of chiral molecules via microwave spectroscopy [J]. Nature, 2013, 497(7450): 475-477.

[93] LETTOW M, GRABARICS M, GREIS K, et al. Cryogenic Infrared SpectroscopyReveals Structural Modularity in the Vibrational Fingerprints of Heparan SulfateDiastereomers [J]. Anal Chem, 2020, 92(15): 10228-10232.

[94] GIDDINGS S B. Hawking radiation, the Stefan–Boltzmann law, and unitarization [J]. Physics Letters B, 2016, 754: 39-42.

所在学位评定分委会
化学
国内图书分类号
O643.1
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544034
专题理学院_化学系
推荐引用方式
GB/T 7714
刘和洋. 速度选择分子束源装置的搭建与应用[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032816-刘和洋-化学系.pdf(6318KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[刘和洋]的文章
百度学术
百度学术中相似的文章
[刘和洋]的文章
必应学术
必应学术中相似的文章
[刘和洋]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。