[1] FENG T, SUN L, ZHANG Y. The relationship between energy consumption structure, economic structure and energy intensity in China[J]. Energy Policy, 2009, 37(12): 5475−5483.
[2] 彭佳悦, 祖晨曦, 李泓. 锂电池基础科学问题(Ⅰ)−化学储能电池理论能量密度的估算[J]. 储能科学与技术, 2013, 2: 55−62.
[3] KUMAR R, SAHOO S, JOANNI E, et al. Recent progress in the synthesis of graphene and derived materials for next generation electrodes of high performance lithium ion batteries[J]. Progress in Energy and Combustion Science, 2019, 75: 100786.
[4] DUNN B, KAMATH H, TARASCON J M. Electrical Energy Storage for the Grid: A Battery of Choices[J]. Science, 2011, 334: 928−935.
[5] TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2016, 414: 359−367.
[6] 张强, 姚霞银, 张洪周, 等. 全固态锂电池界面的研究进展[J]. 储能科学与技术, 2016, 5: 659−667.
[7] 万钢. 《新能源汽车产业发展规划(2021−2035)年)》为新能源汽车产业发展制定路线[J]. 变频器世界, 2020, 04: 27−28.
[8] BOUCHET R, MARIA S, MEZIANE R. Single−ion BAB triblock copolymers as highly efficient electrolytes for lithium−metal batteries[J]. Nature Materials, 2013, 12: 452−457.
[9] HAO X, LIU Z, GONG Z, et al. In situ XRD and solid state NMR characterization of Na3V2(PO4)2F3 as cathode material for lithium−ion batteries[J]. Scientia Sinica (Chimica), 2012, 42: 38−46.
[10] BRADLRY D. Building better batteries[J]. Education in Chemistry, 2010, 47: 124−125.
[11] DENG Y, FANG C, CHEN G. The developments of SnO2 graphene nanocomposites as anode materials for high performance lithium ion batteries: A review[J]. Journal of Power Sources, 2016, 304: 81−101.
[12] 黄彦瑜. 锂电池发展简史[J]. 物理, 2007(08): 643−651.
[13] MEGAHED S, SCROSATI B. Lithium−ion rechargeable batteries[J]. Journal of Power Sources, 1994, 51: 79−104.
[14] BITTIHN R, HERR R, HOGO D. Stability of lithiated carbon electrodes in organic electrolytes[J]. Journal of Power Sources, 1993, 44: 409−412.
[15] GAO J, ZHAO Y S, SHI S Q, et al. Lithium−ion transport in inorganic solid state electrolyte[J]. Chinese Physics B, 2016, 025: 139−173.
[16] 许晓雄, 邱志军, 官亦标, 等. 全固态锂电池技术的研究现状与展望[J]. 储能科学与技术, 2013, 4: 331−341.
[17] FAMPRIKIS T, CANEPA P, DAWSON J A, et al. Fundamentals of inorganic solid−state electrolytes for batteries[J]. Nature Materials, 2019, 18: 1278−1291.
[18] KERMAN K, LUNTZ A, VISWANATHAN V, et al. Practical Challenges Hindering the Development of Solid State Li Ion Batteries[J]. Journal of the Electrochemical Society, 2017, 164: A1731−A1744.
[19] LOVRIĆ M. Solid state electrochemistry (1995) Peter G. Bruce (ed)[J]. Journal of Solid State Electrochemistry, 1997, 1(1): 116−116.
[20] ZHAO Q, STALIN S, ZHAO C Z, et al. Designing solid−state electrolytes for safe, energy−dense batteries[J]. Nature Reviews Materials, 2020, 5(3): 229−252.
[21] BACHMAN J C, MUY S, GRIMAUD A, et al. Inorganic solid−state electrolytes for lithium batteries: mechanisms and properties governing ion conduction[J]. Chemical Reviews, 2016, 116(1): 140−162.
[22] HAVEN Y. RECUEIL TRAV. The ionic conductivity of Li−halide crystals[J]. Pays−Bas, 1951, 69(1259): 1476−1489.
[23] JACKSON B J H, YOUNG D A. Ionic conduction in pure and doped single−crystalline lithium iodide[J]. Journal of Physics and Chemistry of Solids, 1969, 30(8): 1973−1976.
[24] SCHLAIKJER C R, LIANG C C. Ionic conduction in calcium doped polycrystalline lithium iodide[J]. Journal of The Electrochemical Society, 1971, 118(9): 1447−1450.
[25] LI X, LIANG J, CHEN N, et al. Water‐mediated synthesis of a superionic halide solid electrolyte[J]. Angewandte Chemie, 2019, 131(46): 16579−16584.
[26] CHEN S, XIE D, LIU G, et al. Sulfide solid electrolytes for all−solid−state lithium batteries: Structure, conductivity, stability and application[J]. Energy Storage Materials, 2018, 14: 58−74.
[27] RIBES M, BARRAU B, SOUQUET J L. Sulfide glasses: Glass forming region, structure and ionic conduction of glasses in Na2S XS2(X Si; Ge), Na2S P2S5 and Li2S GeS2 systems[J]. Journal of Non−Crystalline Solids, 1980, 38: 271−276.
[28] KANNO R, MURAYAMA M. Lithium ionic conductor thio−LISICON: the Li2S GeS2 P2S5 system[J]. Journal of The Electrochemical Society, 2001, 148(7): A742−A746.
[29] KAMAYA N, HOMMA K, Yamakawa Y, et al. A lithium superionic conductor[J]. Nature Materials, 2011, 10(9): 682−686.
[30] BOHNKE O. The fast lithium−ion conducting oxides Li3xLa2/3−xTiO3 from fundamentals to application[J]. Solid State Ionics, 2008, 179(1−6): 9−15.
[31] BOHNKE O, EMERY J, Fourquet J L. Anomalies in Li+ ion dynamics observed by impedance spectroscopy and 7Li NMR in the perovskite fast ion conductor (Li3xLa2/3−x□1/3−2x)TiO3[J]. Solid State Ionics, 2003, 158(1−2): 119−132.
[32] KAWAI H, KUWANO J. Lithium Ion Conductivity of A−Site Deficient Perovskite Solid Solution La0.67−xLi3xTiO3[J]. Journal of The Electrochemical Society, 1994, 141(7): L78−L79.
[33] ALONSO J A, SANZ J, SANTAMARÍA J, et al. On the location of Li+ cations in the fast Li−cation conductor La0.5Li0.5TiO3 perovskite[J]. Angewandte Chemie, 2000, 112(3): 633−635.
[34] EMERY J, BUZARE J Y, BOHNKE O, et al. Lithium−7 NMR and ionic conductivity studies of lanthanum lithium titanate electrolytes[J]. Solid State Ionics, 1997, 99(1−2): 41−51.
[35] STRAMARE S, THANGADURAI V, WEPPNER W. Lithium lanthanum titanates: a review[J]. Chemistry of Materials, 2003, 15(21): 3974−3990.
[36] WHITTINGHAM M S, HUGGINS R A. Measurement of sodium ion transport in beta alumina using reversible solid electrodes[J]. The Journal of Chemical Physics, 1971, 54(1): 414−416.
[37] HONG H Y P. Crystal structures and crystal chemistry in the system Na1+xZr2SixP3−xO12[J]. Materials Research Bulletin, 1976, 11(2): 173−182.
[38] GOODENOUGH D R, OLTMAN P K, COX P W. The nature of individual differences in field dependence[J]. Journal of Research in Personality, 1987, 21(1): 81−99.
[39] ANANTHARAMULU N, KOTESWARA RAO K, RAMBABU G, et al. A wide−ranging review on Nasicon type materials[J]. Journal of Materials Science, 2011, 46: 2821−2837.
[40] ADACHI G, IMANAKA N, AONO H. Fast Li+ conducting ceramic electrolytes[J]. Advanced Materials, 1996, 8(2): 127−135.
[41] THANGADURAI V, KAACK H, WEPPNER W J F. Novel fast lithium ion conduction in garnet−type Li5La3M2O12 (M=Nb, Ta)[J]. Journal of the American Ceramic Society, 2003, 86(3): 437−440.
[42] MURUGAN R, THANGADURAI V, WEPPNER W. Fast lithium ion conduction in garnet‐type Li7La3Zr2O12[J]. Angewandte Chemie International Edition, 2007, 46(41): 7778−7781.
[43] MURUGAN R, RAMAKUMAR S, JANANI N. High conductive yttrium doped Li7La3Zr2O12 cubic lithium garnet[J]. Electrochemistry Communications, 2011, 13(12): 1373−1375.
[44] OHTA S, KOBAYASHI T, ASAOKA T. High lithium ionic conductivity in the garnet−type oxide Li7−XLa3(Zr2−X, NbX)O12(X=0~2)[J]. Journal of Power Sources, 2011, 196(6): 3342−3345.
[45] KOMANDURI R, CHANDRASEKARAN N, RAFF L M. Molecular dynamics (MD) simulation of uniaxial tension of some single−crystal cubic metals at nanolevel[J]. International Journal of Mechanical Sciences, 2001, 43(10): 2237−2260.
[46] LI Y, HAN J T, WANG C A, et al. Optimizing Li+ conductivity in a garnet framework[J]. Journal of Materials Chemistry, 2012, 22(30): 15357−15361.
[47] HARTWIG P, RABENAU A, WEPPNER W. Lithium hydroxide halides: phase equilibria and ionic conductivities[J]. Journal of the Less Common Metals, 1981, 78(2): 227−233.
[48] HARTWIG P, WEPPNER W. Ionic conductivities of lithium−halide−based quaternary compounds[J]. Solid State Ionics, 1981, 3: 249−254.
[49] ZHAO Y, DAEMEN L L. Superionic conductivity in lithium−rich anti−perovskites[J]. Journal of the American Chemical Society, 2012, 134(36): 15042−15047.
[50] LÜ X, HOWARD J W, CHEN A, et al. Antiperovskite Li3OCl superionic conductor films for solid−state Li−ion batteries[J]. Advanced Science, 2016, 3(3): 1500359.
[51] HOOD Z D, WANG H, SAMUTHIRA PANDIAN A, et al. Li2OHCl crystalline electrolyte for stable metallic lithium anodes[J]. Journal of the American Chemical Society, 2016, 138(6): 1768−1771.
[52] WANG F, EVANS H A, KIM K, et al. Dynamics of hydroxyl anions promotes lithium ion conduction in antiperovskite Li2OHCl[J]. Chemistry of Materials, 2020, 32(19): 8481−8491.
[53] BHALLA A S, GUO R, ROY R. The perovskite structure—a review of its role in ceramic science and technology[J]. Materials Research Innovations, 2000, 4(1): 3−26.
[54] ZHU J, LI S, ZHANG Y, et al. Enhanced ionic conductivity with Li7O2Br3 phase in Li3OBr anti−perovskite solid electrolyte[J]. Applied Physics Letters, 2016, 109(10): 101904.
[55] FANG H, JENA P. Li−rich antiperovskite superionic conductors based on cluster ions[J]. Proceedings of the National Academy of Sciences, 2017, 114(42): 11046−11051.
[56] LAI K T, ANTONYSHYN I, PROTS Y, ET AL. Anti−perovskite Li−battery cathode materials[J]. Journal of the American Chemical Society, 2017, 139(28): 9645−9649.
[57] TANG S, GUO W, FU Y. Advances in composite polymer electrolytes for lithium batteries and beyond[J]. Advanced Energy Materials, 2021, 11(2): 2000802.
[58] FENTON D E. Complexes of Alkali Metal Ions with Poly (etylene oxide)[J]. Polymer, 1973, 14: 589.
[59] LIN D, LIU W, LIU Y, et al. High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly (ethylene oxide)[J]. Nano Letters, 2016, 16(1): 459−465.
[60] ZHANG J, ZHAO N, ZHANG M, et al. Flexible and ion−conducting membrane electrolytes for solid−state lithium batteries: Dispersion of garnet nanoparticles in insulating polyethylene oxide[J]. Nano Energy, 2016, 28: 447−454.
[61] XU R, YAO J, ZHANG Z, et al. Room Temperature Halide−Eutectic Solid Electrolytes with Viscous Feature and Ultrahigh Ionic Conductivity[J]. Advanced Science, 2022, 9(35): 2204633.
[62] ZHANG H, ZHOU L, DU X, et al. Cyanoethyl cellulose−based eutectogel electrolyte enabling high−voltage−tolerant and ion−conductive solid−state lithium metal batteries[J]. Carbon Energy, 2022, 4(6): 1093−1106.
[63] PEI X, LI Y, OU T, et al. Li−N Interaction Induced Deep Eutectic Gel Polymer Electrolyte for High Performance Lithium−Metal Batteries[J]. Angewandte Chemie International Edition, 2022, 61(31): e202205075.
[64] ZHANG Y, ZHAO Y, CHEN C. Ab initio study of the stabilities of and mechanism of superionic transport in lithium−rich antiperovskites[J]. Physical Review B, 2013, 87(13): 134303.
[65] MOUTA R, MELO M A B, DINIZ E M, et al. Concentration of charge carriers, migration, and stability in Li3OCl solid electrolytes[J]. Chemistry of Materials, 2014, 26(24): 7137−7144.
[66] LIU B, HU Q, GAO T, et al. Computational insights into the ionic transport mechanism and interfacial stability of the Li2OHCl solid−state electrolyte[J]. Journal of Materiomics, 2022, 8(1): 59−67.
[67] LU Z, CHEN C, BAIYEE Z M, et al. Defect chemistry and lithium transport in Li3OCl anti−perovskite superionic conductors[J]. Physical Chemistry Chemical Physics, 2015, 17(48): 32547−32555.
[68] CLARKE M J, DAWSON J A, MAYS T J, et al. Atomistic insights into the effects of doping and vacancy clustering on Li−ion conduction in the Li3OCl antiperovskite solid electrolyte[J]. ACS Applied Energy Materials, 2021, 4(5): 5094−5100.
[69] KIM K, SIEGEL D J. Correlating lattice distortions, ion migration barriers, and stability in solid electrolytes[J]. Journal of Materials Chemistry A, 2019, 7(7): 3216−3227.
[70] DAWSON J A, FAMPRIKIS T, JOHNSTON K E. Anti−perovskites for solid−state batteries: recent developments, current challenges and future prospects[J]. Journal of Materials Chemistry A, 2021, 9(35): 18746−18772.
[71] SONG A Y, XIAO Y, TURCHENIUK K, et al. Protons enhance conductivities in lithium halide hydroxide/lithium oxyhalide solid electrolytes by forming rotating hydroxy groups[J]. Advanced Energy Materials, 2018, 8(3): 1700971.
[72] DAWSON J A, ATTARI T S, CHEN H, et al. Elucidating lithium−ion and proton dynamics in anti−perovskite solid electrolytes[J]. Energy & Environmental Science, 2018, 11(10): 2993−3002.
[73] GAO Z, SUN H, FU L, et al. All−Solid−State Batteries: Promises, Challenges, and Recent Progress of Inorganic Solid−State Electrolytes for All−Solid−State Lithium Batteries[J]. Advanced Materials, 2018, 30(17): 1870122.
[74] LI P, HUSSAIN F, CUI P, et al. Boosting ionic conductivity in antiperovskite Li3OCl via defect engineering: Interstitial versus vacancy[J]. Physical Review Materials, 2019, 3(11): 115402.
[75] GORAI P, LONG H, JONES E, et al. Defect chemistry of disordered solid−state electrolyte Li10GeP2S12[J]. Journal of Materials Chemistry A, 2020, 8(7): 3851−3858.
[76] HOWARD J, HOOD Z D, HOLZWARTH N A W. Fundamental aspects of the structural and electrolyte properties of Li2OHCl from simulations and experiment[J]. Physical Review Materials, 2017, 1(7): 075406.
[77] BIAN J, YUAN H, LI M, et al. Li−rich antiperovskite/nitrile butadiene rubber composite electrolyte for sheet−type solid−state lithium metal battery[J]. Frontiers in Chemistry, 2021, 9: 744417.
[78] LEE H J, DARMINTO B, NARAYANAN S, et al. Li−ion conductivity in Li2OHCl1−xBrx solid electrolytes: grains, grain boundaries and interfaces[J]. Journal of Materials Chemistry A, 2022, 10(21): 11574−11586.
[79] HAN F, WESTOVER A S, YUE J, et al. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes[J]. Nature Energy, 2019, 4(3): 187−196.
[80] SONG Y, YANG L, TAO L, et al. Probing into the origin of an electronic conductivity surge in a garnet solid−state electrolyte[J]. Journal of Materials Chemistry A, 2019, 7(40): 22898−22902.
[81] LU Y, ZHAO C Z, YUAN H, et al. Critical current density in solid−state lithium metal batteries: Mechanism, influences, and strategies[J]. Advanced Functional Materials, 2021, 31(18): 2009925.
[82] HAN F, YUE J, ZHU X, et al. Suppressing Li dendrite formation in Li2S−P2S5 solid electrolyte by LiI incorporation[J]. Advanced Energy Materials, 2018, 8(18): 1703644.
[83] BIAN J, XI L, LI J, et al. C=C π bond modified graphitic carbon nitride films for enhanced photoelectrochemical cell performance[J]. Chemistry–An Asian Journal, 2017, 12(9): 1005−1012.
[84] FRIESE K, HÖNNERSCHEID A, JANSEN M. Crystal structure determination of systematically intergrown compounds: Li5(OH)2Br3 and Li2(OH)Br[J]. Zeitschrift für Kristallographie−Crystalline Materials, 2003, 218(8): 536−541.
[85] EMLY A, KIOUPAKIS E, VAN DER VEN A. Phase stability and transport mechanisms in antiperovskite Li3OCl and Li3OBr superionic conductors[J]. Chemistry of Materials, 2013, 25(23): 4663−4670.
[86] MOUTA R, MELO M A B, DINIZ E M, et al. Concentration of charge carriers, migration, and stability in Li3OCl solid electrolytes[J]. Chemistry of Materials, 2014, 26(24): 7137−7144.
[87] EFFAT M B, LIU J, LU Z, et al. Stability, elastic properties, and the Li transport mechanism of the protonated and fluorinated antiperovskite lithium conductors[J]. ACS Applied Materials & Interfaces, 2020, 12(49): 55011−55022.
[88] CLARKE M J, DAWSON J A, MAYS T J, et al. Atomistic insights into the effects of doping and vacancy clustering on Li−ion conduction in the Li3OCl antiperovskite solid electrolyte[J]. ACS Applied Energy Materials, 2021, 4(5): 5094−5100.
[89] ZHANG Y, ZHAO Y, CHEN C. Ab initio study of the stabilities of and mechanism of superionic transport in lithium−rich antiperovskites[J]. Physical Review B, 2013, 87(13): 134303.
[90] YOKOKAWA H, SAKAI N, KAWADA T, et al. Thermodynamic stabilities of perovskite oxides for electrodes and other electrochemical materials[J]. Solid State Ionics, 1992, 52(1−3): 43−56.
[91] SHIMA D, HAILE S M. The influence of cation non−stoichiometry on the properties of undoped and gadolinia−doped barium cerate[J]. Solid State Ionics, 1997, 97(1−4): 443−455.
[92] KIM K, SIEGEL D J. Correlating lattice distortions, ion migration barriers, and stability in solid electrolytes[J]. Journal of Materials Chemistry A, 2019, 7(7): 3216−3227.
[93] HOWARD J, HOLZWARTH N A W. First−principles estimation of partition functions representing disordered lattices such as the cubic phases of Li2OHCl and Li2OHBr[J]. Physical Review B, 2019, 99(1): 014109.
[94] XIA W, ZHAO Y, ZHAO F, et al. Antiperovskite electrolytes for solid−state batteries[J]. Chemical Reviews, 2022, 122(3): 3763−3819.
[95] LING S, DENG B, ZHAO R, et al. Revisiting the Role of Hydrogen in Lithium−Rich Antiperovskite Solid Electrolytes: New Insight in Lithium Ion and Hydrogen Dynamics[J]. Advanced Energy Materials, 2023, 13(2): 2202847.
[96] JIA J, ZHOU Y, CHEN X, et al. Revealing the Defect−Dominated Electron Scattering in Mg3Sb2−Based Thermoelectric Materials[J]. Research, 2022, 2022: 9875329.
[97] Huo H, Gao J, Zhao N, et al. A flexible electron-blocking interfacial shield for dendrite-free solid lithium metal batteries[J]. Nature Communications, 2021, 12(1): 176.
修改评论