中文版 | English
题名

富锂反钙钛矿固态电解质缺陷调控及其全固态电池应用研究

其他题名
DEFECT REGULATION IN LITHIUM−RICH ANTI−PEROVSKITE SOLID STATE ELECTROLYTES AND THEIR APPLICATION IN ALL−SOLID−STATE BATTERY
姓名
姓名拼音
LING Sifan
学号
12032025
学位类型
硕士
学位专业
070205 凝聚态物理
学科门类/专业学位类别
07 理学
导师
赵予生
导师单位
前沿与交叉科学研究院
论文答辩日期
2023-05-24
论文提交日期
2023-06-26
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

近年来随着新能源汽车市场的快速发展,人们对储能设备的性能要求越来越高。传统的锂离子电池基于液态有机电解液,在受到撞击或针刺时容易漏液,发生燃烧甚至爆炸事故,存在着较大的安全隐患。全固态锂电池(All-Solid-State Lithium Metal Batteries,ASSLMBs)因其能量密度高、安全性好等优势,有望成为新一代储能电池。固态电解质(Solid Electrolyte,SE)是全固态锂电池的关键组分之一,近年来,以Li2OHX(X=Cl或Br)为代表的富锂反钙钛矿型(Li-Rich Anti-perovskite,LiRAP)SE因优异的性能和低廉的价格引起人们的密切关注。然而,目前的研究对Li2OHX中H组分和肖特基缺陷对锂离子传输和全固态电池性能的影响等基础科学问题尚未搞清。本文围绕着LiRAP SE材料,通过精准调控H含量和引入肖特基缺陷,研究缺陷对LiRAP SE中的锂离子传输动力学以及综合电化学性能的影响。研究成果可为后期设计和开发新型SE材料提供思路。概括内容如下:

(1)采用高温煅烧熔融盐法制备了LiRAP SE材料Li2+aOH1aX(a=0、0.05、0.1和0.15)。本工作结合实验和理论计算结果发现了H会影响Li2OHX的锂离子输运、晶体稳定性、电化学稳定性和电子电导率。调控H含量后的Li2OHCl与完全不含H的Li3OCl相比,发现虽然H有助于产生类似空位的缺陷,但是H与锂离子之间的库伦排斥力会导致活化能和扩散距离(空间补偿效应)的增加,这导致锂离子沿Li−O面的特殊输运轨迹。H含量的减少增加了Li2OHX的锂离子电导率,降低了电子电导率,提高了抗还原能力,从而提升了Li/Li2OHX/Li对称电池的临界电流密度(Critical Current Density,CCD)和长循环性能,进而增强了ASSLMBs的循环稳定性和倍率性能。

(2)采用高温煅烧熔融盐法制备了含Li−X肖特基缺陷的LiRAP材料Li2−aOHCl1−a(a=0、0.03、0.05、0.09和0.13),和Li2−bOHBr1−b(b=0、0.09、0.17、0.23和0.29)。本工作发现,Li−X肖特基缺陷影响了LiRAP的晶体稳定性、电化学稳定性、离子电导率和电子电导率。低浓度的肖特基缺陷有利于提升LiRAP的晶体稳定性和离子电导率,而高浓度肖特基缺陷会引起LiRAP晶格发生畸变调整,不利于锂离子传输。除此之外,低浓度的肖特基缺陷降低了Li2OHX的电子电导率,改善了Li−Li对称电池的循环稳定性和CCD,增强了ASSLMBs的循环和倍率性能。

其他摘要

In recent years, with the rapid development of new energy vehicle markets, it demands lithium−ion batteries with higher energy density and higher safety. The current commercial lithium−ion batteries are based on liquid organic electrolyte. The fire or explosion accidents easily occur under collision or penetration, which threatens people's safety. All−solid−state lithium metal batteries (ASSLMBs) are considered as one of the most ideal new−generation energy storage batteries due to their advantages such as high energy density, good safety performance. Solid electrolyte (SE) is one of the key components of ASSLMBs. In recent years, Li−rich antiperovskite (LiRAP) SEs, represented by Li2OHX (X=Cl, Br), have attracted wide attention due to their excellent performance and low cost. However, fundamental scientific issues such as the influence of H component and Schottky defects in Li2OHX on lithium ion transport and battery performance are still not clear. In this thesis, by regulating the H content and schottky defects, influence of these defects on the Li ions dynamics and electrochemical performance of the LiRAP SEs are systematically investigated. The research results can serve as theoretical guidelines for the design and development of new SE materials. The findings are summarized as follows:

(1)  The LiRAP SE, Li2+aOH1−aX (X=Cl and Br, a=0, 0.05, 0.1, 0.15), are prepared by high temperature calcination molten salt method. Combining the experimental and theoretical results, it is found that H would affect the Li−ion transport, crystal stability, electrochemical stability and electronic conductivity of Li2OHX. Comparing Li2OHCl with Li3OCl, it is found that although H contributes to the generation of vacancy−like defects, the coulombic repulsion force between H and Li ions leads to an increase in activation energy and diffusion distance (termed as “space compensation effect”), resulting in a special transport trajectory of Li ions along the Li−O plane. Decreasing H content increases the conductivity of lithium ions, reduces the electronic conductivity and enhances the reduction−resistant ability of Li2OHX, promoting the cycling stability and CCD of Li/Li2OHX/Li symmetric cells, thereby improving the cycle and rate performance of ASSLMBs.

(2)  The LiRAP SE materials, Li2−aOHCl1−a (a=0, 0.03, 0.05, 0.09, 0.13) and Li2−bOHBr1−b (b=0, 0.09, 0.17, 0.23, 0.29) containing Li−X (X=Cl,Br) schottky defect, are prepared by high temperature calcination molten salt method. It is found that Li−X schottky defects affect the crystal stability, electrochemical stability, ionic conductivity and electronic conductivity of LiRAP. Low concentration of schottky defects improves the crystal stability and enhances the ionic conductivity of LiRAP, while high concentration of schottky defects cause "distortion adjustment" of LiRAP lattice and counts against Li−ion transport. In addition, low concentration of schottky defects reduces the electronic conductivity of Li2OHX, improves the cycle stability and critical current density of Li−Li symmetric batteries, and enhances the cycle and rate performance of ASSLMBs.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2023-06
参考文献列表

[1] FENG T, SUN L, ZHANG Y. The relationship between energy consumption structure, economic structure and energy intensity in China[J]. Energy Policy, 2009, 37(12): 5475−5483.
[2] 彭佳悦, 祖晨曦, 李泓. 锂电池基础科学问题(Ⅰ)−化学储能电池理论能量密度的估算[J]. 储能科学与技术, 2013, 2: 55−62.
[3] KUMAR R, SAHOO S, JOANNI E, et al. Recent progress in the synthesis of graphene and derived materials for next generation electrodes of high performance lithium ion batteries[J]. Progress in Energy and Combustion Science, 2019, 75: 100786.
[4] DUNN B, KAMATH H, TARASCON J M. Electrical Energy Storage for the Grid: A Battery of Choices[J]. Science, 2011, 334: 928−935.
[5] TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2016, 414: 359−367.
[6] 张强, 姚霞银, 张洪周, 等. 全固态锂电池界面的研究进展[J]. 储能科学与技术, 2016, 5: 659−667.
[7] 万钢. 《新能源汽车产业发展规划(2021−2035)年)》为新能源汽车产业发展制定路线[J]. 变频器世界, 2020, 04: 27−28.
[8] BOUCHET R, MARIA S, MEZIANE R. Single−ion BAB triblock copolymers as highly efficient electrolytes for lithium−metal batteries[J]. Nature Materials, 2013, 12: 452−457.
[9] HAO X, LIU Z, GONG Z, et al. In situ XRD and solid state NMR characterization of Na3V2(PO4)2F3 as cathode material for lithium−ion batteries[J]. Scientia Sinica (Chimica), 2012, 42: 38−46.
[10] BRADLRY D. Building better batteries[J]. Education in Chemistry, 2010, 47: 124−125.
[11] DENG Y, FANG C, CHEN G. The developments of SnO2 graphene nanocomposites as anode materials for high performance lithium ion batteries: A review[J]. Journal of Power Sources, 2016, 304: 81−101.
[12] 黄彦瑜. 锂电池发展简史[J]. 物理, 2007(08): 643−651.
[13] MEGAHED S, SCROSATI B. Lithium−ion rechargeable batteries[J]. Journal of Power Sources, 1994, 51: 79−104.
[14] BITTIHN R, HERR R, HOGO D. Stability of lithiated carbon electrodes in organic electrolytes[J]. Journal of Power Sources, 1993, 44: 409−412.
[15] GAO J, ZHAO Y S, SHI S Q, et al. Lithium−ion transport in inorganic solid state electrolyte[J]. Chinese Physics B, 2016, 025: 139−173.
[16] 许晓雄, 邱志军, 官亦标, 等. 全固态锂电池技术的研究现状与展望[J]. 储能科学与技术, 2013, 4: 331−341.
[17] FAMPRIKIS T, CANEPA P, DAWSON J A, et al. Fundamentals of inorganic solid−state electrolytes for batteries[J]. Nature Materials, 2019, 18: 1278−1291.
[18] KERMAN K, LUNTZ A, VISWANATHAN V, et al. Practical Challenges Hindering the Development of Solid State Li Ion Batteries[J]. Journal of the Electrochemical Society, 2017, 164: A1731−A1744.
[19] LOVRIĆ M. Solid state electrochemistry (1995) Peter G. Bruce (ed)[J]. Journal of Solid State Electrochemistry, 1997, 1(1): 116−116.
[20] ZHAO Q, STALIN S, ZHAO C Z, et al. Designing solid−state electrolytes for safe, energy−dense batteries[J]. Nature Reviews Materials, 2020, 5(3): 229−252.
[21] BACHMAN J C, MUY S, GRIMAUD A, et al. Inorganic solid−state electrolytes for lithium batteries: mechanisms and properties governing ion conduction[J]. Chemical Reviews, 2016, 116(1): 140−162.
[22] HAVEN Y. RECUEIL TRAV. The ionic conductivity of Li−halide crystals[J]. Pays−Bas, 1951, 69(1259): 1476−1489.
[23] JACKSON B J H, YOUNG D A. Ionic conduction in pure and doped single−crystalline lithium iodide[J]. Journal of Physics and Chemistry of Solids, 1969, 30(8): 1973−1976.
[24] SCHLAIKJER C R, LIANG C C. Ionic conduction in calcium doped polycrystalline lithium iodide[J]. Journal of The Electrochemical Society, 1971, 118(9): 1447−1450.
[25] LI X, LIANG J, CHEN N, et al. Water‐mediated synthesis of a superionic halide solid electrolyte[J]. Angewandte Chemie, 2019, 131(46): 16579−16584.
[26] CHEN S, XIE D, LIU G, et al. Sulfide solid electrolytes for all−solid−state lithium batteries: Structure, conductivity, stability and application[J]. Energy Storage Materials, 2018, 14: 58−74.
[27] RIBES M, BARRAU B, SOUQUET J L. Sulfide glasses: Glass forming region, structure and ionic conduction of glasses in Na2S XS2(X Si; Ge), Na2S P2S5 and Li2S GeS2 systems[J]. Journal of Non−Crystalline Solids, 1980, 38: 271−276.
[28] KANNO R, MURAYAMA M. Lithium ionic conductor thio−LISICON: the Li2S GeS2 P2S5 system[J]. Journal of The Electrochemical Society, 2001, 148(7): A742−A746.
[29] KAMAYA N, HOMMA K, Yamakawa Y, et al. A lithium superionic conductor[J]. Nature Materials, 2011, 10(9): 682−686.
[30] BOHNKE O. The fast lithium−ion conducting oxides Li3xLa2/3−xTiO3 from fundamentals to application[J]. Solid State Ionics, 2008, 179(1−6): 9−15.
[31] BOHNKE O, EMERY J, Fourquet J L. Anomalies in Li+ ion dynamics observed by impedance spectroscopy and 7Li NMR in the perovskite fast ion conductor (Li3xLa2/3−x□1/3−2x)TiO3[J]. Solid State Ionics, 2003, 158(1−2): 119−132.
[32] KAWAI H, KUWANO J. Lithium Ion Conductivity of A−Site Deficient Perovskite Solid Solution La0.67−xLi3xTiO3[J]. Journal of The Electrochemical Society, 1994, 141(7): L78−L79.
[33] ALONSO J A, SANZ J, SANTAMARÍA J, et al. On the location of Li+ cations in the fast Li−cation conductor La0.5Li0.5TiO3 perovskite[J]. Angewandte Chemie, 2000, 112(3): 633−635.
[34] EMERY J, BUZARE J Y, BOHNKE O, et al. Lithium−7 NMR and ionic conductivity studies of lanthanum lithium titanate electrolytes[J]. Solid State Ionics, 1997, 99(1−2): 41−51.
[35] STRAMARE S, THANGADURAI V, WEPPNER W. Lithium lanthanum titanates: a review[J]. Chemistry of Materials, 2003, 15(21): 3974−3990.
[36] WHITTINGHAM M S, HUGGINS R A. Measurement of sodium ion transport in beta alumina using reversible solid electrodes[J]. The Journal of Chemical Physics, 1971, 54(1): 414−416.
[37] HONG H Y P. Crystal structures and crystal chemistry in the system Na1+xZr2SixP3−xO12[J]. Materials Research Bulletin, 1976, 11(2): 173−182.
[38] GOODENOUGH D R, OLTMAN P K, COX P W. The nature of individual differences in field dependence[J]. Journal of Research in Personality, 1987, 21(1): 81−99.
[39] ANANTHARAMULU N, KOTESWARA RAO K, RAMBABU G, et al. A wide−ranging review on Nasicon type materials[J]. Journal of Materials Science, 2011, 46: 2821−2837.
[40] ADACHI G, IMANAKA N, AONO H. Fast Li+ conducting ceramic electrolytes[J]. Advanced Materials, 1996, 8(2): 127−135.
[41] THANGADURAI V, KAACK H, WEPPNER W J F. Novel fast lithium ion conduction in garnet−type Li5La3M2O12 (M=Nb, Ta)[J]. Journal of the American Ceramic Society, 2003, 86(3): 437−440.
[42] MURUGAN R, THANGADURAI V, WEPPNER W. Fast lithium ion conduction in garnet‐type Li7La3Zr2O12[J]. Angewandte Chemie International Edition, 2007, 46(41): 7778−7781.
[43] MURUGAN R, RAMAKUMAR S, JANANI N. High conductive yttrium doped Li7La3Zr2O12 cubic lithium garnet[J]. Electrochemistry Communications, 2011, 13(12): 1373−1375.
[44] OHTA S, KOBAYASHI T, ASAOKA T. High lithium ionic conductivity in the garnet−type oxide Li7−XLa3(Zr2−X, NbX)O12(X=0~2)[J]. Journal of Power Sources, 2011, 196(6): 3342−3345.
[45] KOMANDURI R, CHANDRASEKARAN N, RAFF L M. Molecular dynamics (MD) simulation of uniaxial tension of some single−crystal cubic metals at nanolevel[J]. International Journal of Mechanical Sciences, 2001, 43(10): 2237−2260.
[46] LI Y, HAN J T, WANG C A, et al. Optimizing Li+ conductivity in a garnet framework[J]. Journal of Materials Chemistry, 2012, 22(30): 15357−15361.
[47] HARTWIG P, RABENAU A, WEPPNER W. Lithium hydroxide halides: phase equilibria and ionic conductivities[J]. Journal of the Less Common Metals, 1981, 78(2): 227−233.
[48] HARTWIG P, WEPPNER W. Ionic conductivities of lithium−halide−based quaternary compounds[J]. Solid State Ionics, 1981, 3: 249−254.
[49] ZHAO Y, DAEMEN L L. Superionic conductivity in lithium−rich anti−perovskites[J]. Journal of the American Chemical Society, 2012, 134(36): 15042−15047.
[50] LÜ X, HOWARD J W, CHEN A, et al. Antiperovskite Li3OCl superionic conductor films for solid−state Li−ion batteries[J]. Advanced Science, 2016, 3(3): 1500359.
[51] HOOD Z D, WANG H, SAMUTHIRA PANDIAN A, et al. Li2OHCl crystalline electrolyte for stable metallic lithium anodes[J]. Journal of the American Chemical Society, 2016, 138(6): 1768−1771.
[52] WANG F, EVANS H A, KIM K, et al. Dynamics of hydroxyl anions promotes lithium ion conduction in antiperovskite Li2OHCl[J]. Chemistry of Materials, 2020, 32(19): 8481−8491.
[53] BHALLA A S, GUO R, ROY R. The perovskite structure—a review of its role in ceramic science and technology[J]. Materials Research Innovations, 2000, 4(1): 3−26.
[54] ZHU J, LI S, ZHANG Y, et al. Enhanced ionic conductivity with Li7O2Br3 phase in Li3OBr anti−perovskite solid electrolyte[J]. Applied Physics Letters, 2016, 109(10): 101904.
[55] FANG H, JENA P. Li−rich antiperovskite superionic conductors based on cluster ions[J]. Proceedings of the National Academy of Sciences, 2017, 114(42): 11046−11051.
[56] LAI K T, ANTONYSHYN I, PROTS Y, ET AL. Anti−perovskite Li−battery cathode materials[J]. Journal of the American Chemical Society, 2017, 139(28): 9645−9649.
[57] TANG S, GUO W, FU Y. Advances in composite polymer electrolytes for lithium batteries and beyond[J]. Advanced Energy Materials, 2021, 11(2): 2000802.
[58] FENTON D E. Complexes of Alkali Metal Ions with Poly (etylene oxide)[J]. Polymer, 1973, 14: 589.
[59] LIN D, LIU W, LIU Y, et al. High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly (ethylene oxide)[J]. Nano Letters, 2016, 16(1): 459−465.
[60] ZHANG J, ZHAO N, ZHANG M, et al. Flexible and ion−conducting membrane electrolytes for solid−state lithium batteries: Dispersion of garnet nanoparticles in insulating polyethylene oxide[J]. Nano Energy, 2016, 28: 447−454.
[61] XU R, YAO J, ZHANG Z, et al. Room Temperature Halide−Eutectic Solid Electrolytes with Viscous Feature and Ultrahigh Ionic Conductivity[J]. Advanced Science, 2022, 9(35): 2204633.
[62] ZHANG H, ZHOU L, DU X, et al. Cyanoethyl cellulose−based eutectogel electrolyte enabling high−voltage−tolerant and ion−conductive solid−state lithium metal batteries[J]. Carbon Energy, 2022, 4(6): 1093−1106.
[63] PEI X, LI Y, OU T, et al. Li−N Interaction Induced Deep Eutectic Gel Polymer Electrolyte for High Performance Lithium−Metal Batteries[J]. Angewandte Chemie International Edition, 2022, 61(31): e202205075.
[64] ZHANG Y, ZHAO Y, CHEN C. Ab initio study of the stabilities of and mechanism of superionic transport in lithium−rich antiperovskites[J]. Physical Review B, 2013, 87(13): 134303.
[65] MOUTA R, MELO M A B, DINIZ E M, et al. Concentration of charge carriers, migration, and stability in Li3OCl solid electrolytes[J]. Chemistry of Materials, 2014, 26(24): 7137−7144.
[66] LIU B, HU Q, GAO T, et al. Computational insights into the ionic transport mechanism and interfacial stability of the Li2OHCl solid−state electrolyte[J]. Journal of Materiomics, 2022, 8(1): 59−67.
[67] LU Z, CHEN C, BAIYEE Z M, et al. Defect chemistry and lithium transport in Li3OCl anti−perovskite superionic conductors[J]. Physical Chemistry Chemical Physics, 2015, 17(48): 32547−32555.
[68] CLARKE M J, DAWSON J A, MAYS T J, et al. Atomistic insights into the effects of doping and vacancy clustering on Li−ion conduction in the Li3OCl antiperovskite solid electrolyte[J]. ACS Applied Energy Materials, 2021, 4(5): 5094−5100.
[69] KIM K, SIEGEL D J. Correlating lattice distortions, ion migration barriers, and stability in solid electrolytes[J]. Journal of Materials Chemistry A, 2019, 7(7): 3216−3227.
[70] DAWSON J A, FAMPRIKIS T, JOHNSTON K E. Anti−perovskites for solid−state batteries: recent developments, current challenges and future prospects[J]. Journal of Materials Chemistry A, 2021, 9(35): 18746−18772.
[71] SONG A Y, XIAO Y, TURCHENIUK K, et al. Protons enhance conductivities in lithium halide hydroxide/lithium oxyhalide solid electrolytes by forming rotating hydroxy groups[J]. Advanced Energy Materials, 2018, 8(3): 1700971.
[72] DAWSON J A, ATTARI T S, CHEN H, et al. Elucidating lithium−ion and proton dynamics in anti−perovskite solid electrolytes[J]. Energy & Environmental Science, 2018, 11(10): 2993−3002.
[73] GAO Z, SUN H, FU L, et al. All−Solid−State Batteries: Promises, Challenges, and Recent Progress of Inorganic Solid−State Electrolytes for All−Solid−State Lithium Batteries[J]. Advanced Materials, 2018, 30(17): 1870122.
[74] LI P, HUSSAIN F, CUI P, et al. Boosting ionic conductivity in antiperovskite Li3OCl via defect engineering: Interstitial versus vacancy[J]. Physical Review Materials, 2019, 3(11): 115402.
[75] GORAI P, LONG H, JONES E, et al. Defect chemistry of disordered solid−state electrolyte Li10GeP2S12[J]. Journal of Materials Chemistry A, 2020, 8(7): 3851−3858.
[76] HOWARD J, HOOD Z D, HOLZWARTH N A W. Fundamental aspects of the structural and electrolyte properties of Li2OHCl from simulations and experiment[J]. Physical Review Materials, 2017, 1(7): 075406.
[77] BIAN J, YUAN H, LI M, et al. Li−rich antiperovskite/nitrile butadiene rubber composite electrolyte for sheet−type solid−state lithium metal battery[J]. Frontiers in Chemistry, 2021, 9: 744417.
[78] LEE H J, DARMINTO B, NARAYANAN S, et al. Li−ion conductivity in Li2OHCl1−xBrx solid electrolytes: grains, grain boundaries and interfaces[J]. Journal of Materials Chemistry A, 2022, 10(21): 11574−11586.
[79] HAN F, WESTOVER A S, YUE J, et al. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes[J]. Nature Energy, 2019, 4(3): 187−196.
[80] SONG Y, YANG L, TAO L, et al. Probing into the origin of an electronic conductivity surge in a garnet solid−state electrolyte[J]. Journal of Materials Chemistry A, 2019, 7(40): 22898−22902.
[81] LU Y, ZHAO C Z, YUAN H, et al. Critical current density in solid−state lithium metal batteries: Mechanism, influences, and strategies[J]. Advanced Functional Materials, 2021, 31(18): 2009925.
[82] HAN F, YUE J, ZHU X, et al. Suppressing Li dendrite formation in Li2S−P2S5 solid electrolyte by LiI incorporation[J]. Advanced Energy Materials, 2018, 8(18): 1703644.
[83] BIAN J, XI L, LI J, et al. C=C π bond modified graphitic carbon nitride films for enhanced photoelectrochemical cell performance[J]. Chemistry–An Asian Journal, 2017, 12(9): 1005−1012.
[84] FRIESE K, HÖNNERSCHEID A, JANSEN M. Crystal structure determination of systematically intergrown compounds: Li5(OH)2Br3 and Li2(OH)Br[J]. Zeitschrift für Kristallographie−Crystalline Materials, 2003, 218(8): 536−541.
[85] EMLY A, KIOUPAKIS E, VAN DER VEN A. Phase stability and transport mechanisms in antiperovskite Li3OCl and Li3OBr superionic conductors[J]. Chemistry of Materials, 2013, 25(23): 4663−4670.
[86] MOUTA R, MELO M A B, DINIZ E M, et al. Concentration of charge carriers, migration, and stability in Li3OCl solid electrolytes[J]. Chemistry of Materials, 2014, 26(24): 7137−7144.
[87] EFFAT M B, LIU J, LU Z, et al. Stability, elastic properties, and the Li transport mechanism of the protonated and fluorinated antiperovskite lithium conductors[J]. ACS Applied Materials & Interfaces, 2020, 12(49): 55011−55022.
[88] CLARKE M J, DAWSON J A, MAYS T J, et al. Atomistic insights into the effects of doping and vacancy clustering on Li−ion conduction in the Li3OCl antiperovskite solid electrolyte[J]. ACS Applied Energy Materials, 2021, 4(5): 5094−5100.
[89] ZHANG Y, ZHAO Y, CHEN C. Ab initio study of the stabilities of and mechanism of superionic transport in lithium−rich antiperovskites[J]. Physical Review B, 2013, 87(13): 134303.
[90] YOKOKAWA H, SAKAI N, KAWADA T, et al. Thermodynamic stabilities of perovskite oxides for electrodes and other electrochemical materials[J]. Solid State Ionics, 1992, 52(1−3): 43−56.
[91] SHIMA D, HAILE S M. The influence of cation non−stoichiometry on the properties of undoped and gadolinia−doped barium cerate[J]. Solid State Ionics, 1997, 97(1−4): 443−455.
[92] KIM K, SIEGEL D J. Correlating lattice distortions, ion migration barriers, and stability in solid electrolytes[J]. Journal of Materials Chemistry A, 2019, 7(7): 3216−3227.
[93] HOWARD J, HOLZWARTH N A W. First−principles estimation of partition functions representing disordered lattices such as the cubic phases of Li2OHCl and Li2OHBr[J]. Physical Review B, 2019, 99(1): 014109.
[94] XIA W, ZHAO Y, ZHAO F, et al. Antiperovskite electrolytes for solid−state batteries[J]. Chemical Reviews, 2022, 122(3): 3763−3819.
[95] LING S, DENG B, ZHAO R, et al. Revisiting the Role of Hydrogen in Lithium−Rich Antiperovskite Solid Electrolytes: New Insight in Lithium Ion and Hydrogen Dynamics[J]. Advanced Energy Materials, 2023, 13(2): 2202847.
[96] JIA J, ZHOU Y, CHEN X, et al. Revealing the Defect−Dominated Electron Scattering in Mg3Sb2−Based Thermoelectric Materials[J]. Research, 2022, 2022: 9875329.
[97] Huo H, Gao J, Zhao N, et al. A flexible electron-blocking interfacial shield for dendrite-free solid lithium metal batteries[J]. Nature Communications, 2021, 12(1): 176.

所在学位评定分委会
物理学
国内图书分类号
O469
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544041
专题理学院_物理系
推荐引用方式
GB/T 7714
凌思帆. 富锂反钙钛矿固态电解质缺陷调控及其全固态电池应用研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032025-凌思帆-物理系.pdf(4816KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[凌思帆]的文章
百度学术
百度学术中相似的文章
[凌思帆]的文章
必应学术
必应学术中相似的文章
[凌思帆]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。