[1] HWANG W Y. Quantum Key Distribution with High Loss: Toward Global Secure Communication[J]. Phys. Rev. Lett., 2003, 91(5): 057901.
[2] LO H K, CURTY M, QI B. Measurement-Device-Independent Quantum Key Distribution[J].Phys. Rev. Lett., 2012, 108(13): 130503.
[3] LIAO S K, CAI W Q, LIU W Y, et al. Satellite-to-ground quantum key distribution[J]. Nature,2017, 549(7670): 43-47.
[4] BENNETT C H, BRASSARD G, CRéPEAU C, et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels[J]. Phys. Rev. Lett., 1993, 70(13):1895-1899.
[5] ZHAO Z, CHEN Y A, ZHANG A N, et al. Experimental demonstration of five-photon entanglement and open-destination teleportation[J]. Nature, 2004, 430(6995): 54-58.
[6] SCHIERMEIER Q. The philosopher of photons[J]. Nature, 2005, 434(7037): 1066-1066.
[7] ZHONG H S, DENG Y H, QIN J, et al. Phase-Programmable Gaussian Boson Sampling Using Stimulated Squeezed Light[J]. Phys. Rev. Lett., 2021, 127: 180502.
[8] LU C Y, BROWNE D E, YANG T, et al. Demonstration of a Compiled Version of Shor’s Quantum Factoring Algorithm Using Photonic Qubits[J]. Phys. Rev. Lett., 2007, 99(25): 250504.
[9] ARUTE F, ARYA K, BABBUSH R, et al. Quantum supremacy using a programmable superconducting processor.[J]. Nature, 2019, 574(7779): 505-510.
[10] ZHONG H S, WANG H, DENG Y H, et al. Quantum computational advantage using photons[J]. Science, 2020, 370(6523): 1460-1463.
[11] POLITI A, MATTHEWS J C F, O’BRIEN J L. Shor’s Quantum Factoring Algorithm on a Photonic Chip[J]. Science, 2009, 325(5945): 1221-1221.
[12] PORRAS D, CIRAC J I. Effective Quantum Spin Systems with Trapped Ions[J]. Phys. Rev.Lett., 2004, 92(20): 207901.
[13] BLATT R, ROOS C F. Quantum simulations with trapped ions[J]. Nat. Phys., 2012, 8(4):277-284.
[14] ZHANG J, PAGANO G, HESS P W, et al. Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator.[J]. Nature, 2017, 551(7682): 601-604.
[15] KASEVICH M, CHU S. Atomic interferometry using stimulated Raman transitions[J]. Phys.Rev. Lett., 1991, 67(2): 181-184.
[16] WEISS Y, CHU. Precision measurement of the photon recoil of an atom using atomic interferometry.[J]. Phys. Rev. Lett., 1993, 70(18): 2706-2709.
[17] GALINDO A, MARTíN-DELGADO M A. Information and computation: Classical and quantum aspects[J]. Rev. Mod. Phys., 2002, 74(2): 347-423.
[18] NIELSEN M A, CHUANG I L. Quantum Computation and Quantum Information: 10th Anniversary Edition[M]. Cambridge University Press, 2010.
[19] GONG M, WANG S, ZHA C, et al. Quantum walks on a programmable two-dimensional 62-qubit superconducting processor[J]. Science, 2021, 372(6545): 948-952.
[20] WU Y, BAO W S, CAO S, et al. Strong Quantum Computational Advantage Using a Superconducting Quantum Processor[J]. Phys. Rev. Lett., 2021, 127(18): 180501.
[21] ZHU Q, CAO S, CHEN F, et al. Quantum computational advantage via 60-qubit 24-cycle random circuit sampling[J]. Science Bulletin, 2022, 67(3): 240-245.
[22] MADSEN L S, LAUDENBACH F, ASKARANI M F, et al. Quantum computational advantage with a programmable photonic processor[J]. Nature, 2022, 606(7912): 75-81.
[23] KIMBLE H J. The quantum internet[J]. Nature, 2008, 453(7198): 1023-1030.
[24] MONROE C, RAUSSENDORF R, RUTHVEN A, et al. Large-scale modular quantumcomputer architecture with atomic memory and photonic interconnects[J]. Phys. Rev. A, 2014,89(2): 022317.
[25] BOUWMEESTER D, PAN J W, MATTLE K, et al. Experimental quantum teleportation[J].Nature, 1997, 390(6660): 575-579.
[26] ZHANG Q, GOEBEL A, WAGENKNECHT C, et al. Experimental quantum teleportation of a two-qubit composite system[J]. Nat. Phys., 2006, 2(10): 678-682.
[27] WANG X L, CAI X D, SU Z E, et al. Quantum teleportation of multiple degrees of freedom of a single photon[J]. Nature, 2015, 518(7540): 516-519.
[28] LUO Y H, ZHONG H S, ERHARD M, et al. Quantum Teleportation in High Dimensions[J].Phys. Rev. Lett., 2019, 123(7): 070505.
[29] URSIN R, JENNEWEIN T, ASPELMEYER M, et al. Quantum teleportation across the Danube[J]. Nature, 2004, 430(7002): 849-849.
[30] REN J G, XU P, YONG H L, et al. Ground-to-satellite quantum teleportation[J]. Nature, 2017,549(7670): 70-73.
[31] KNILL E, LAFLAMME R, MILBURN G J. A scheme for efficient quantum computation with linear optics[J]. Nature, 2001, 409(6816): 46-52.
[32] O’BRIEN J L, PRYDE G J, WHITE A G, et al. Demonstration of an all-optical quantum controlled-NOT gate[J]. Nature, 2003, 426(6964): 264-267.
[33] HUANG Y F, REN X F, ZHANG Y S, et al. Experimental Teleportation of a Quantum Controlled-NOT Gate[J]. Phys. Rev. Lett., 2004, 93(24): 240501.
[34] GAO W B, GOEBEL A M, LU C Y, et al. Teleportation-based realization of an optical quantum two-qubit entangling gate[J]. Proceedings of the National Academy of Sciences, 2010, 107(49):20869-20874.
[35] CHOU K S, BLUMOFF J Z, WANG C S, et al. Deterministic teleportation of a quant um gate between two logical qubits[J]. Nature, 2018, 561(7723): 368-373.
[36] WAN Y, KIENZLER D, ERICKSON S D, et al. Quantum gate teleportation between separated qubits in a trapped-ion processor[J]. Science, 2019, 364(6443): 875-878.
[37] DAISS S, LANGENFELD S, WELTE S, et al. A quantum-logic gate between distant quantum network modules[J]. Science, 2021, 371(6529): 614-617.
[38] MONZ T, KIM K, HäNSEL W, et al. Realization of the Quantum Toffoli Gate with Trapped Ions[J]. Phys. Rev. Lett., 2009, 102(4): 040501.
[39] REED M D, DICARLO L, NIGG S E, et al. Realization of three-qubit quantum error correction with superconducting circuits[J]. Nature, 2012, 482(7385): 382-385.
[40] KIM Y, MORVAN A, NGUYEN L B, et al. High-fidelity three-qubit iToffoli gate for fixed frequency superconducting qubits[J]. Nat. Phys., 2022, 18(7): 783-788.
[41] LEVINE H, KEESLING A, SEMEGHINI G, et al. Parallel Implementation of High-Fidelity Multiqubit Gates with Neutral Atoms[J]. Phys. Rev. Lett., 2019, 123(17): 170503.
[42] KHAZALI M, MøLMER K. Fast Multiqubit Gates by Adiabatic Evolution in Interacting Excited-State Manifolds of Rydberg Atoms and Superconducting Circuits[J]. Phys. Rev. X, 2020,10(2): 021054.
[43] TAKEDA K, NOIRI A, NAKAJIMA T, et al. Quantum error correction with silicon spin qubits[J]. Nature, 2022, 608(7924): 682-686.
[44] EINSTEIN A, PODOLSKY B, ROSEN N. Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?[J]. Phys. Rev., 1935, 47(10): 777-780.
[45] ASPECT A, GRANGIER P, ROGER G. Experimental Realization of Einstein-Podolsky-Rosen Bohm Gedankenexperiment: A New Violation of Bell’s Inequalities[J]. Phys. Rev. Lett., 1982,49(2): 91-94.
[46] GILCHRIST A, LANGFORD N K, NIELSEN M A. Distance measures to compare real and ideal quantum processes[J]. Phys. Rev. A, 2005, 71(6): 062310.
[47] GüHNE O, TóTH G. Entanglement detection[J]. Phys. Rep., 2009, 474(1): 1-75.
[48] MIıFMMODE \CHECKC\ELSE č\FIUDA M, SEDLáK M, STRAKA I, et al. Efficient Experimental Estimation of Fidelity of Linear Optical Quantum Toffoli Gate[J]. Phys. Rev. Lett.,2013, 111(16): 160407.
[49] RU S, WANG Y, AN M, et al. Realization of a deterministic quantum Toffoli gate with a single photon[J]. Phys. Rev. A, 2021, 103: 022606.
[50] HUANG H L, BAO W S, LI T, et al. Deterministic linear optical quantum Toffoli gate[J]. Phys.Lett. A, 2017, 381(33): 2673-2676.
[51] WEI H R, DENG F G, LONG G L. Hyper-parallel Toffoli gate on three-photon system with two degrees of freedom assisted by single-sided optical microcavities[J]. Opt. Express, 2016,24(16): 18619-18630.
[52] WANG G Y, LIU Q, WEI H R, et al. Universal quantum gates for photon-atom hybrid systems assisted by bad cavities[J]. Sci. Rep., 2016, 6(1): 24183.
[53] KWIAT P G, MATTLE K, WEINFURTER H, et al. New High-Intensity Source of PolarizationEntangled Photon Pairs[J]. Phys. Rev. Lett., 1995, 75(24): 4337-4341.
[54] BOUWMEESTER D, PAN J W, DANIELL M, et al. Observation of Three-Photon Greenberger Horne-Zeilinger Entanglement[J]. Phys. Rev. Lett., 1999, 82(7): 1345-1349.
[55] PAN J W, SIMON C, BRUKNER ff, et al. Entanglement purification for quantum communication[J]. Nature, 2001, 410(6832): 1067-1070.
[56] LU C Y, ZHOU X Q, GüHNE O, et al. Experimental entanglement of six photons in graph states[J]. Nat. Phys., 2007, 3(2): 91-95.
[57] YAO X C, WANG T X, XU P, et al. Observation of eight-photon entanglement[J]. Nat. Photonics, 2012, 6(4): 225-228.
[58] WANG X L, CHEN L K, LI W, et al. Experimental Ten-Photon Entanglement[J]. Phys. Rev.Lett., 2016, 117(21): 210502.
[59] ZHONG H S, LI Y, LI W, et al. 12-Photon Entanglement and Scalable Scattershot Boson Sampling with Optimal Entangled-Photon Pairs from Parametric Down-Conversion[J]. Phys.Rev. Lett., 2018, 121(25): 250505.
[60] BROADBENT A, FITZSIMONS J, KASHEFI E. Universal Blind Quantum Computation[C]//2009 50th Annual IEEE Symposium on Foundations of Computer Science. 2009: 517-526.
[61] HUANG H L, ZHAO Q, MA X, et al. Experimental Blind Quantum Computing for a Classical Client[J]. Phys. Rev. Lett., 2017, 119(5): 050503.
[62] RAUSSENDORF R, BRIEGEL H J. A One-Way Quantum Computer[J]. Phys. Rev. Lett., 2001,86(22): 5188-5191.
[63] WALTHER P, RESCH K J, RUDOLPH T, et al. Experimental one-way quantum computing[J].Nature, 2005, 434(7030): 169-176.
[64] CHEN Y A, ZHANG A N, ZHAO Z, et al. Experimental Quantum Secret Sharing and ThirdMan Quantum Cryptography[J]. Phys. Rev. Lett., 2005, 95(20): 200502.
[65] LU H, ZHANG Z, CHEN L K, et al. Secret Sharing of a Quantum State[J]. Phys. Rev. Lett.,2016, 117(3): 030501.
[66] URSIN R, TIEFENBACHER F, SCHMITT-MANDERBACH T, et al. Entanglement-based quantum communication over 144 km[J]. Nat. Phys., 2007, 3(7): 481-486.
[67] KWIAT P G, WAKS E, WHITE A G, et al. Ultrabright source of polarization-entangled photons[J]. Phys. Rev. A, 1999, 60(2): R773-R776.
[68] TAKEUCHI S. Beamlike twin-photon generation by use of type II parametric downconversion[J]. Opt. Lett., 2001, 26(11): 843-845.
[69] KIM Y H. Quantum interference with beamlike type-II spontaneous parametric downconversion[J]. Phys. Rev. A, 2003, 68(1): 013804.
[70] SIMON C, BOUWMEESTER D. Theory of an Entanglement Laser[J]. Phys. Rev. Lett., 2003,91(5): 053601.
[71] HONG C K, OU Z Y, MANDEL L. Measurement of subpicosecond time intervals between two photons by interference[J]. Phys. Rev. Lett., 1987, 59(18): 2044-2046.
[72] ZHAO Z, YANG T, CHEN Y A, et al. Experimental Violation of Local Realism by Four-Photon Greenberger-Horne-Zeilinger Entanglement[J]. Phys. Rev. Lett., 2003, 91(18): 180401.
[73] ŻUKOWSKI M. Bell theorem involving all settings of measuring apparatus[J]. Phys. Lett. A,1993, 177(4): 290-296.
[74] KWIAT P G, WEINFURTER H. Embedded Bell-state analysis[J]. Phys. Rev. A, 1998, 58(4):R2623-R2626.
[75] BLINOV B B, MOEHRING D L, DUAN L M, et al. Observation of entanglement between asingle trapped atom and a single photon[J]. Nature, 2004, 428(6979): 153-157.
[76] WOOTTERS W K, ZUREK W H. A single quantum cannot be cloned[J]. Nature, 1982, 299(5886): 802-803.
[77] MAO Y L, MA Z H, JIN R B, et al. Error-Disturbance Trade-off in Sequential Quantum Measurements[J]. Phys. Rev. Lett., 2019, 122(9): 090404.
[78] LI Z D, YUAN X, YIN X F, et al. Experimental random-party entanglement distillation via weak measurement[J]. Phys. Rev. Res., 2020, 2(2): 023047.
[79] MAO Y L, LI Z D, STEFFINLONGO A, et al. Recycling nonlocality in quantum star networks[J]. Phys. Rev. Res., 2023, 5(1): 013104.
[80] JAMES D F V, KWIAT P G, MUNRO W J, et al. Measurement of qubits[J]. Phys. Rev. A,2001, 64(5): 052312.
[81] ALTEPETER J B, JEFFREY E R, KWIAT P G. Photonic State Tomography[J]. Adv. At. Mol.Opt. Phys., 2005, 52: 105-159.
[82] HOFMANN H F. Complementary Classical Fidelities as an Efficient Criterion for the Evaluation of Experimentally Realized Quantum Operations[J]. Phys. Rev. Lett., 2005, 94(16):160504.
[83] HOFMANN H F, OKAMOTO R, TAKEUCHI S. Analysis of an experimental quantum logic gate by complementary classical operations[J]. Mod. Phys. Lett. A, 2006, 21(24): 1837-1850.
[84] CHUANG I L, NIELSEN M A. Prescription for experimental determination of the dynamics of a quantum black box[J]. J. Mod. Opt., 1997, 44(11-12): 2455-2467.
[85] ALTEPETER J B, BRANNING D, JEFFREY E, et al. Ancilla-Assisted Quantum Process Tomography[J]. Phys. Rev. Lett., 2003, 90(19): 193601.
[86] POYATOS J F, CIRAC J I, ZOLLER P. Complete Characterization of a Quantum Process: The Two-Bit Quantum Gate[J]. Phys. Rev. Lett., 1997, 78(2): 390-393.
[87] CHILDS A M, CHUANG I L, LEUNG D W. Realization of quantum process tomography in NMR[J]. Phys. Rev. A, 2001, 64(1): 012314.
[88] DE MARTINI F, MAZZEI A, RICCI M, et al. Exploiting quantum parallelism of entanglement for a complete experimental quantum characterization of a single-qubit device[J]. Phys. Rev. A,2003, 67(6): 062307.
[89] O’BRIEN J L, PRYDE G J, GILCHRIST A, et al. Quantum Process Tomography of a Controlled-NOT Gate[J]. Phys. Rev. Lett., 2004, 93(8): 080502.
[90] MITCHELL M W, ELLENOR C W, SCHNEIDER S, et al. Diagnosis, Prescription, and Prognosis of a Bell-State Filter by Quantum Process Tomography[J]. Phys. Rev. Lett., 2003, 91(12):120402.
[91] NEELEY M, ANSMANN M, BIALCZAK R C, et al. Process tomography of quantum memory in a Josephson-phase qubit coupled to a two-level state[J]. Nat. Phys., 2008, 4(7): 523-526.
[92] CHOW J M, GAMBETTA J M, TORNBERG L, et al. Randomized Benchmarking and Process Tomography for Gate Errors in a Solid-State Qubit[J]. Phys. Rev. Lett., 2009, 102(9): 090502.
[93] BIALCZAK R C, ANSMANN M, HOFHEINZ M, et al. Quantum process tomography of a universal entangling gate implemented with Josephson phase qubits[J]. Nat. Phys., 2010, 6(6):409-413.
[94] YAMAMOTO T, NEELEY M, LUCERO E, et al. Quantum process tomography of two-qubit controlled-Z and controlled-NOT gates using superconducting phase qubits[J]. Phys. Rev. B,2010, 82(18): 184515.
[95] CHOW J M, CóRCOLES A D, GAMBETTA J M, et al. Simple All-Microwave Entangling Gate for Fixed-Frequency Superconducting Qubits[J]. Phys. Rev. Lett., 2011, 107(8): 080502.
[96] RIEBE M, KIM K, SCHINDLER P, et al. Process Tomography of Ion Trap Quantum Gates[J].Phys. Rev. Lett., 2006, 97(22): 220407.
[97] HANNEKE D, HOME J P, JOST J D, et al. Realization of a programmable two-qubit quantum processor[J]. Nat. Phys., 2010, 6(1): 13-16.
[98] HOWARD M, TWAMLEY J, WITTMANN C, et al. Quantum process tomography and Linblad estimation of a solid-state qubit[J]. New J. Phys., 2006, 8(3): 33.
[99] SHOR P W. Scheme for reducing decoherence in quantum computer memory[J]. Phys. Rev. A,1995, 52(4): R2493-R2496.
[100] CALDERBANK A R, SHOR P W. Good quantum error-correcting codes exist[J]. Phys. Rev.A, 1996, 54(2): 1098-1105.
[101] Multiple-particle interference and quantum error correction[J]. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 1996, 452(1954):2551-2577.
[102] GOTTESMAN D. Class of quantum error-correcting codes saturating the quantum Hamming bound[J]. Phys. Rev. A, 1996, 54(3): 1862-1868.
[103] CORY D G, PRICE M D, MAAS W, et al. Experimental Quantum Error Correction[J]. Phys.Rev. Lett., 1998, 81(10): 2152-2155.
[104] KNILL E, LAFLAMME R, MARTINEZ R, et al. Benchmarking Quantum Computers: The Five-Qubit Error Correcting Code[J]. Phys. Rev. Lett., 2001, 86(25): 5811-5814.
[105] LU C Y, GAO W B, ZHANG J, et al. Experimental quantum coding against qubit loss error[J].Proceedings of the National Academy of Sciences, 2008, 105(32): 11050-11054
修改评论