中文版 | English
题名

高性能反式钙钛矿太阳能电池的制备及界面优化研究

其他题名
STUDY ON PREPARATION AND INTERFACE CONTROL OF HIGH PERFORMANCE INVERTED PEROVSKITE SOLAR CELLS
姓名
姓名拼音
ZHOU Xianyong
学号
11930939
学位类型
博士
学位专业
0702 物理学
学科门类/专业学位类别
07 理学
导师
徐保民
导师单位
材料科学与工程系
论文答辩日期
2023-05-17
论文提交日期
2023-06-27
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

有机-无机杂化钙钛矿材料因其具有较长的载流子扩散距离、较高的电荷迁移率、以及可溶液加工的特点,使其在光电器件领域获得飞速发展。然而,钙钛矿太阳能电池目前的效率与理论极限效率相比仍存在着较大的差距,同时器件的不稳定性和昂贵的制备成本也限制了钙钛矿电池的进一步产业化。其中,钙钛矿薄膜的结晶形貌和传输层界面对载流子的产生、提取和传输具有决定性意义,会对钙钛矿器件的效率和稳定性产生重要影响。由于钙钛矿薄膜晶界处和外表面以及传输层界面都存在着各种深能级和浅能级缺陷,这些缺陷会导致电荷产生较大的非辐射复合,从而对钙钛矿电池的性能及稳定性造成很大影响。鉴于此,本论文以反式钙钛矿电池为研究对象,基于多种体系掺杂和界面钝化手段,研究了界面内部改性机制并加以应用,从而使得电池的效率和稳定性得到明显提升,并有助于降低电池的制备成本。主要研究内容及结果如下:

为了提升空穴传输层材料聚(3,4-乙烯二氧噻吩)聚苯乙烯磺酸钠(PEDOT: PSS)的光电特性,促进PEDOT: PSS/钙钛矿界面的电荷传输和提取能力,将多功能离子液体1-乙基-3-甲基咪唑氯化物(EMIC)掺杂到PEDOT: PSS前驱体溶液中。基于EMIC掺杂的PEDOT: PSS薄膜展现出了更高的电导率、更低的能级以及更光滑的表面,促进了空穴在钙钛矿/PEDOT: PSS界面的提取和传输效能。此外,使用S-乙酰硫代胆碱氯化物两性离子化合物作为钙钛矿表面钝化层以代替昂贵的 PCBM,对钙钛矿表面的正、负电荷缺陷进行了有效地钝化。经过S-乙酰硫代胆碱氯化物钝化的钙钛矿薄膜显示出更长的载流子寿命以及更低的电荷缺陷密度。最终,研制出的小面积钙钛矿电池的光电转化效率达到20.06%,而1cm2电池的光电转化效率也可达到18.77%,且无明显的迟滞效应。同时,器件的湿度和热稳定性也有较大的改善:电池器件在空气环境中(60% 湿度)放置35天后仍保持85%的初始效率,在80°C下保存24小时后仍保持87%的初始效率。

为了改善理想带隙(1.3-1.4 eV)铅锡钙钛矿薄膜的结构和光电特性,在前期获得的高质量EMIC-PEDOT:PSS空穴传输层和S-乙酰硫代胆碱氯化物钝化剂的基础上,利用溴化胍(GABr)对理想带隙铅锡钙钛矿(~1.35 eV)薄膜进行了掺杂修饰。GABr可与铅锡钙钛矿形成局部二维结构,促进了铅锡钙钛矿晶格的稳定。同时,基于GABr掺杂的铅锡钙钛矿薄膜展现出更高的结晶质量、更少的缺陷密度和更长的载流子寿命。利用GABr掺杂制备的器件,其光电转换效率为20.63%,经第三方机构认证的效率为19.8%,器件的开路电压(Voc)达到了1.02 V,这也是目前基于理想带隙铅锡钙钛矿电池实现的最小Voc损失(0.33 V)。GABr掺杂的器件还具有更好的湿度稳定性和热稳定性。

在GABr掺杂的理想带隙铅锡钙钛矿薄膜和器件的基础上,采用近红外体异质结(BHJ)对铅锡混合钙钛矿薄膜进行表面处理,得到一种集成式太阳能电池器件。近红外体异质结是由近红外聚合物DTBTI和PCBM构成,它与铅锡混合钙钛矿之间具有良好的能级排列和较强的相互作用,有利于两者之间的电荷转移。近红外体异质结不仅增加了钙钛矿薄膜对近红外光的响应,同时也降低了薄膜缺陷,提升了载流子的传输效率,进一步提升了器件的短路电流和开路电压。最终,该集成式器件实现了24.27%的光电转换效率,以及1.07 V的开路电压。经第三方机构认证效率为23.4%,这是目前集成式单结钙钛矿器件和铅锡混合钙钛矿电池的世界最高效率。该器件在耐热、耐湿和持续工作稳定性方面得到明显提升。

为了进一步简化钙钛矿器件结构并减少器件的制备成本,将氯硫脲合铜(Cu(Tu)Cl)和氨基硫脲(TSC)掺杂到钙钛矿前驱体溶液中,得到一种无空穴传输层(HTL)的高效简式钙钛矿器件。Cu(Tu)Cl和TSC的掺杂可以同时减少钙钛矿表面和内部缺陷,降低界面能级屏障。基于Cu(Tu)Cl和TSC掺杂的钙钛矿薄膜显示出更好的结晶质量,更长的载流子寿命,以及更低的电荷缺陷密度。最终,这种简式器件实现了22%的光电转换效率,这是目前报道的无空穴传输层钙钛矿电池的最高效率之一。此外,基于宽带隙钙钛矿Cs0.05MA0.15FA0.8Pb(I0.75Br0.25)3(1.65 eV)无HTL器件的效率达到19.7%,并具有 1.2 V开路电压,这是目前报道的无空穴传输层宽带隙钙钛矿电池的最高效率。经Cu(Tu)Cl和TSC掺杂的器件也具有更好的湿度稳定性、热稳定性以及长期运行稳定性。

关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2023-06
参考文献列表

[1] JHA A R. Solar cell technology and applications[M]. American: CRC Press, 2009.
[2] National Renewable Energy Laboratory. Best research-cell efficiency chart[Z]. https://www.nrel.gov/pv/cell-efficiency.html.
[3] YOSHIKAWA K, KAWASAKI H, YOSHIDA W, et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%[J]. Nature Energy, 2017, 2(5): 17032.
[4] POLMAN A, KNIGHT M, GARNETT E C, et al. Photovoltaic materials: Present efficiencies and future challenges[J]. Science, 2016, 352(6283): aad4424.
[5] NAKAMURA M, YAMAGUCHI K, KIMOTO Y, et al. Cd-Free Cu(In, Ga)(Se, S)2 thin-film solar cell with record efficiency of 23.35%[J]. IEEE Journal of Photovoltaics, 2019, 9(6): 1863-1867.
[6] CARLSON D E, WRONSKI C R. Amorphous silicon solar cell[J]. Applied Physics[J]. Nature Photonics, 2014, 8(7): 506-514.
[7] BRITT J, FEREKIDES C. Thin-film CdS/CdTe solar cell with 15.8% efficiency[J]. Applied Physics Letters, 1993, 62(22): 2851-2852.
[8] JACKSON P, HARISKOS D, LOTTER E, et al. New world record efficiency for Cu(In, Ga)Se2 thin-film solar cells beyond 20%[J]. Progress in Photovoltaics, 2011, 19(7): 894-897.
[9] GRATZEL M. Dye-sensitized solar cells[J]. Journal of Photochemistry and Photobiology C-Photochemistry Reviews, 2003, 4(2): 145-153.
[10] LAW M, GREENE L E, Johnson J C, et al. Nanowire dye-sensitized solar cells[J]. Nature Materials, 2005, 4(6): 455-459.
[11] HAGFELDT A, BOSCHLOO G, SUN L, et al. Dye-sensitized solar cells[J]. Chemical Reviews, 2010, 110(11): 6595-6663.
[12] ZHANG Q, DANDENEAU C S, ZHOU X, et al. ZnO nanostructures for dye-sensitized solar cells[J]. Advanced Materials, 2009, 21(41): 4087-4108.
[13] MISHRA A, FISCHER M K R, BAEUERLE P. Metal-free organic dyes for dye-sensitized solar cells: From structure: property relationships to design rules[J]. Angewandte Chemie-International Edition, 2009, 48(14): 2474-2499.
[14] O'REGAN B, GRATZEL M A. low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films[J]. Nature, 1991, 353(6346): 737-740.
[15] BRABEC C J, GOWRISANKER S, HALLS J J M, et al. Polymer-fullerene bulk-heterojunction solar cells[J]. Advanced Materials, 2010, 22(34): 3839-3856.
[16] HOLLIDAY S, ASHRAF R S, WADSWORTH A, et al. High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor[J]. Nature Communications, 2016, 7: 11585.
[17] FACCHETTI A. pi-conjugated polymers for organic electronics and photovoltaic cell applications[J]. Chemistry of Materials, 2011, 23(3): 733-758.
[18] CUI Y, YAO H, ZHANG J, et al. Single-junction organic photovoltaic cells with approaching 18% efficiency[J]. Advanced materials (Deerfield Beach, Fla), 2020, 32(19): e1908205-e1908205.
[19] MENG L, ZHANG Y, WAN X, et al. Organic and solution-processed tandem solar cells with 17.3% efficiency[J]. Science, 2018, 361(6407): 1094-1098.
[20] YAO H, YE L, ZHANG H, et al. Molecular design of benzodithiophene-based organic photovoltaic materials[J]. Chemical Reviews, 2016, 116(12): 7397-7457.
[21] BURSCHKA J, PELLET N, MOON S-J, et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells[J]. Nature, 2013, 499(7458): 316-319.
[22] LEE M M, TEUSCHER J, MIYASAKA T, et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites[J]. Science, 2012, 338(6107): 643-647.
[23] STRANKS S D, SNAITH H J. Metal-halide perovskites for photovoltaic and light-emitting devices[J]. Nature Nanotechnology, 2015, 10(5): 391-402.
[24] KOVALENKO M V, PROTESESCU L, BODNARCHUK M I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals[J]. Science, 2017, 358(6364): 745-750.
[25] LIANG P-W, LIAO C-Y, CHUEH C-C, et al. Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells[J]. Advanced Materials, 2014, 26(22): 3748-3754.
[26] LIN Q, ARMIN A, NAGIRI R C R, et al. Electro-optics of perovskite solar cells[J]. Nature Photonics, 2015, 9(2): 106-112.
[27] NIU G, GUO X, WANG L. Review of recent progress in chemical stability of perovskite solar cells[J]. Journal of Materials Chemistry A, 2015, 3(17): 8970-8980.
[28] NOEL N K, STRANKS S D, ABATE A, et al. Lead-free organic-inorganic tin halide perovskites for photovoltaic applications[J]. Energy & Environmental Science, 2014, 7(9): 3061-3068.
[29] KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 2009, 131(17): 6050-6051.
[30] GREEN M A, HO-BAILLIE A, SNAITH H J. The emergence of perovskite solar cells[J]. Nature Photonics, 2014, 8(7): 506-514.
[31] LUO G, CHEN Y, WANG X, et al. Synergetic effects of DMA cation doping and Cl anion additives induced re-growth of MA1-xDMAxPbI3 perovskites[J]. Sustainable Energy & Fuels, 2021, 5(11): 2860-2864.
[32] JARIWALA S, KUMAR R E, EPERON G E, et al. Dimethylammonium addition to halide perovskite precursor increases vertical and lateral heterogeneity[J]. ACS Energy Letters, 2021, 7(1): 204-210.
[33] STOUMPOS C C, MALLIAKAS C D, KANATZIDIS M G. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties[J]. Inorganic Chemistry, 2013, 52(15): 9019-9038.
[34] JEON N J, NOH J H, YANG W S, et al. Compositional engineering of perovskite materials for high-performance solar cells[J]. Nature, 2015, 517(7535): 476-480.
[35] AKKERMAN Q A, D'INNOCENZO V, ACCORNERO S, et al. Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions[J]. Journal of the American Chemical Society, 2015, 137(32): 10276-10281.
[36] FILIP M R, EPERON G E, SNAITH H J, et al. Steric engineering of metal-halide perovskites with tunable optical band gaps[J]. Nature Communications, 2014, 5: 5757.
[37] LI W, WANG Z, DESCHLER F, et al. Chemically diverse and multifunctional hybrid organic-inorganic perovskites[J]. Nature Reviews Materials, 2017, 2(3): 16099.
[38] PRASANNA R, GOLD-PARKER A, LEIJTENS T, et al. Band gap tuning via lattice contraction and octahedral tilting in perovskite materials for photovoltaics[J]. Journal of the American Chemical Society, 2017, 139(32): 11117-11124.
[39] EPERON G E, STRANKS S D, MENELAOU C, et al. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells[J]. Energy & Environmental Science, 2014, 7(3): 982-988.
[40] SALIBA M, CORREA BAENA J P, GRÄTZEL M, et al. Perovskite solar cells: from the atomic level to film quality and device performance[J]. Angew. Chem. Int. Ed., 2018, 57(10):2554-2569.
[41] KE W, STOUMPOS C C, SPANOPOULOS I, et al. Efficient lead-free solar cells based on hollow MASnI3 perovskites[J]. Journal of the American Chemical Society, 2017, 139(41): 14800-14806.
[42] SONG T-B, YOKOYAMA T, STOUMPOS C C, et al. Importance of reducing vapor atmosphere in the fabrication of tin-based perovskite solar cells[J]. Journal of the American Chemical Society, 2017, 139(2): 836-842.
[43] DUNLAP-SHOHL W A, ZHOU Y, PADTURE N P, et al. Synthetic approaches for halide perovskite thin films[J]. Chemical Reviews, 2019, 119(5): 3193-3295.
[44] HOEFLER S F, TRIMMEL G, RATH T. Progress on lead-free metal halide perovskites for photovoltaic applications: a review[J]. Monatshefte Fur Chemie, 2017, 148(5): 795-826.
[45] KONSTANTAKOU M, STERGIOPOULOS T. A critical review on tin halide perovskite solar cells[J]. Journal of Materials Chemistry A, 2017, 5(23): 11518-11549.
[46] LEE J-W, TAN S, SEOK S I, et al. Rethinking the A cation in halide perovskites[J]. Science, 2022, 375(6583): eabj1186.
[47] DE WOLF S, HOLOVSKY J, MOON S-J, et al. Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance[J]. Journal of Physical Chemistry Letters, 2014, 5(6): 1035-1039.
[48] GREEN M A, HO BAILLIE A, SNAITH H J. The emergence of perovskite solar cells[J]. Nat. Photonics, 2014, 8(7):506-514.
[49] D’INNOCENZO V, GRANCINI G, ALCOCER M J, et al. Excitons versus free charges in organo-lead tri-halide perovskites[J]. Nat. Commun., 2014, 5(1):1-6.
[50] HIRASAWA M, ISHIHARA T, GOTO T, et al. Magnetoabsorption of the lowest exciton in perovskite-type compound(CH3NH3)PbI3[J]. Physica B, 1994, 201:427-430.
[51] ISHIHARA T. Optical properties of Pb I-based perovskite structures[J]. J. Lumin., 1994, 60:269-274.
[52] XING G, MATHEWS N, SUN S, et al. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3[J]. Science, 2013, 342(6156):344.
[53] WEHRENFENNIG C, EPERON G E, JOHNSTON M B, et al. High charge carrier mobilities and lifetimes in organolead trihalide perovskites[J]. Adv. Mater., 2014, 26(10):1584-1589.
[54] STRANKS S D, EPERON G E, GRANCINI G, et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber[J]. Science, 2013, 342(6156): 341.
[55] IM J H, JANG I H, PELLET N, et al. Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells[J]. Nat. Nanotechnol., 2014, 9(11): 927-932.
[56] MIN H, LEE D Y, KIM J, et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes[J]. Nature, 2021, 598(7881):444-450.
[57] SUN K, LI P, XIA Y, et al. Transparent conductive oxide-free perovskite solar cells with PEDOT:PSS as transparent electrode[J]. ACS Appl. Mater. Interfaces, 2015, 7(28):15314-15320.
[58] ZHOU Z, LI X, CAI M, et al. Stable inverted planar perovskite solar cells with low-temperature-processed hole-transport bilayer[J]. Adv. Energy Mater., 2017, 7(22):1700763.
[59] LI Z, JO B H, HWANG S J, et al. Bifacial passivation of organic hole transport interlayer for Ni Ox-based p-i-n perovskite solar cells[J]. Adv. Sci., 2019, 6(6):1802163.
[60] YIN X, SONG Z, LI Z, et al. Toward ideal hole transport materials: a review on recent progress in dopant-free hole transport materials for fabricating efficient and stable perovskite solar cells[J]. Energy Environ. Sci., 2020, 13(11):4057-4086.
[61] LIAO J, WU W, JIANG Y, et al. Understanding of carrier dynamics, heterojunction merits and device physics: towards designing efficient carrier transport layer-free perovskite solar cells[J]. Chem. Soc. Rev., 2020, 49(2):354-381.
[62] WU W, WANG Q, FANG Y, et al. Molecular doping enabled scalable blading of efficient hole-transport-layer-free perovskite solar cells[J]. Nat. Commun., 2018, 9(1):1625.
[63] WU W, LIAO J, ZHONG J, et al. Suppressing interfacial charge recombination in electron-transport-layer-free perovskite solar cells to give an efficiency exceeding 21%[J]. Angew. Chem. Int. Ed., 2020, 132(47): 21166-21173.
[64] SUN H, DENG K, XIONG J, et al. Graded bandgap perovskite with intrinsic n-p homojunction expands photon harvesting range and enables all transport layer-free perovskite solar cells[J]. Adv. Energy Mater., 2020, 10(8):1903347.
[65] DUAN J, ZHAO Y, HE B, et al. Simplified perovskite solar cell with 4.1% efficiency employing inorganic CsPbBr3 as light absorber[J]. Small, 2018, 14(20):1704443.
[66] LIN R, XU J, WEI M, et al. All-perovskite tandem solar cells with improved grain surface passivation[J]. Nature, 2022, 603(7899): 73-78.
[67] SALIM T, SUN S, ABE Y, et al. Perovskite-based solar cells: impact of morphology and device architecture on device performance[J]. J. Mater. Chem. A, 2015, 3(17):8943-8969.
[68] GELMETTI I, MONTCADA N F, PÉREZ RODRÍGUEZ A, et al. Energy alignment and recombination in perovskite solar cells: weighted influence on the open circuit voltage[J]. Energy Environ. Sci., 2019, 12(4):1309-1316.
[69] STOLTERFOHT M, CAPRIOGLIO P, WOLFF C M, et al. The impact of energy alignment and interfacial recombination on the internal and external open-circuit voltage of perovskite solar cells[J]. Energy Environ. Sci., 2019, 12(9):2778-2788.
[70] SCHULZ P. Interface design for metal halide perovskite solar cells[J]. ACS Energy Lett., 2018, 3(6):1287-1293.
[71] JIN H, DEBROYE E, KESHAVARZ M, et al. It's a trap! On the nature of localised states and charge trapping in lead halide perovskites[J]. Mater. Horiz., 2020, 7(2):397-410.
[72] LI Z, XIAO C, YANG Y, et al. Extrinsic ion migration in perovskite solar cells[J]. Energy Environ. Sci., 2017, 10(5):1234-1242.
[73] CANIL L, CRAMER T, FRABONI B, et al. Tuning halide perovskite energy levels[J]. Energy & Environmental Science, 2021, 14(3): 1429-1438.
[74] TRAORE B, BASERA P, RAMADAN A J, et al. A theoretical framework for microscopic surface and interface dipoles, work functions, and valence band alignments in 2D and 3D halide perovskite heterostructures[J]. ACS Energy Letters, 2021: 349-357.
[75] LI C, WEI J, SATO M, et al. Halide-substituted electronic properties of organometal halide perovskite films: direct and inverse photoemission studies[J]. ACS Appl. Mater. Interfaces, 2016, 8(18):11526-11531.
[76] OGOMI Y, MORITA A, TSUKAMOTO S, et al. CH3NH3SnxPb(1–x)I3 perovskite solar cells covering up to 1060 nm[J]. J. Phys. Chem. Lett., 2014, 5(6):1004-1011.
[77] JUAREZ PEREZ E J, ONO L K, MAEDA M, et al. Photodecomposition and thermal decomposition in methylammonium halide lead perovskites and inferred design principles to increase photovoltaic device stability[J]. J. Mater. Chem. A, 2018, 6(20):9604-9612.
[78] ENDRES J, EGGER D A, KULBAK M, et al. Valence and conduction band densities of states of metal halide perovskites: a combined experimental-theoretical study[J]. J. Phys. Chem. Lett., 2016, 7(14):2722-2729.
[79] EUVRARD J, YAN Y, MITZI D B. Electrical doping in halide perovskites[J]. Nat. Rev. Mater., 2021, 6(6):531-549.
[80] HAN W, REN G, LIU J, et al. Recent progress of inverted perovskite solar cells with a modified PEDOT: PSS hole transport layer[J]. ACS Appl. Mater. Interfaces, 2020, 12(44):49297-49322.
[81] JIANG K, WU F, ZHANG G, et al. Inverted planar perovskite solar cells based on Cs I-doped PEDOT: PSS with efficiency beyond 20% and small energy loss[J]. J. Mater. Chem. A, 2019, 7(38):21662-21667.
[82] CHUEH C C, LI C Z, JEN A K Y. Recent progress and perspective in solution-processed Interfacial materials for efficient and stable polymer and organometal perovskite solar cells[J]. Energy Environ. Sci., 2015, 8(4):1160-1189.
[83] DENG W, LIANG X, KUBIAK P S, et al. Molecular interlayers in hybrid perovskite solar cells[J]. Adv. Energy Mater., 2018, 8(1):1701544.
[84] KIM S Y, CHO S J, BYEON S E, et al. Self-assembled monolayers as interface engineering nanomaterials in perovskite solar cells[J]. Adv. Energy Mater., 2020, 10(44):2002606.
[85] AZMI R, HADMOJO W T, SINAGA S, et al. High-efficiency low-temperature ZnO based perovskite solar Cells based on highly polar, nonwetting self-assembled molecular layers[J]. Adv. Energy Mater., 2018, 8(5):1701683.
[86] LIU Z, SUN B, LIU X, et al. 15% efficient carbon based planar-heterojunction perovskite solar cells using a TiO2/SnO2 bilayer as the electron transport layer[J]. J. Mater. Chem. A, 2018, 6(17):7409-7419.
[87] HADDAD J, KROGMEIER B, KLINGEBIEL B, et al. Analyzing interface recombination in lead-halide perovskite solar cells with organic and inorganic hole-transport layers[J]. Adv. Mater. Interfaces, 2020, 7(16):2000366.
[88] BAI Y, MENG X, YANG S. Interface engineering for highly efficient and stable planar p-i-n perovskite solar cells[J]. Adv. Energy Mater., 2018, 8(5):1701883.
[89] ZHANG H, CHENG J, LI D, et al. Toward all room-temperature, solution-processed, high-performance planar perovskite solar cells: a new scheme of pyridine-promoted perovskite formation[J]. Adv. Mater., 2017, 29(13):1604695.
[90] WU W, YANG Z, RUDD P N, et al. Bilateral alkylamine for suppressing charge recombination and improving stability in blade-coated perovskite solar cells[J]. Sci. Adv., 2019, 5(3): eaav8925.
[91] DE QUILETTES D W, KOCH S, BURKE S, et al. Photoluminescence lifetimes exceeding 8 μs and quantum yields exceeding 30% in hybrid perovskite thin films by ligand passivation[J]. ACS Energy Lett., 2016,1(2):438-444.
[92] NOEL N K, ABATE A, STRANKS S D, et al. Enhanced photoluminescence and solar cell performance via lewis base passivation of organic-inorganic lead halide perovskites[J]. ACS Nano, 2014, 8(10):9815-9821.
[93] FEI C, LI B, ZHANG R, et al. Highly efficient and sable perovskite solar cells based on monolithically grained CH3NH3PbI3 film[J]. Adv. Energy Mater., 2017, 7(9):1602017.
[94] NIU T, LU J, MUNIR R, et al. Stable high-performance perovskite solar cells via grain boundary passivation[J]. Adv. Mater., 2018, 30(16):1706576.
[95] YANG J, XIONG S, QU T, et al. Extremely low-cost and green cellulose passivating perovskites for stable and high-performance solar cells[J]. ACS Appl. Mater. Interfaces, 2019, 11(14):13491-13498.
[96] WANG R, XUE J, MENG L, et al. Caffeine improves the performance and thermal stability of perovskite solar cells[J]. Joule, 2019, 3(6):1464-1477.
[97] LIU C, LI W, LI H, et al. C60 additive-assisted crystallization in CH3NH3Pb0.75Sn0.25I3 perovskite solar cells with high stability and efficiency[J]. Nanoscale, 2017, 9(37):13967-13975.
[98] SHAO Y, XIAO Z, BI C, et al. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells[J]. Nat. Commun., 2014, 5(1):5784.
[99] ZHANG F, SHI W, LUO J, et al. Isomer-pure bis-PCBM-assisted crystal engineering of perovskite solar cells showing excellent efficiency and stability[J]. Adv. Mater., 2017, 29(17):1606806.
[100] XU J, BUIN A, IP A H, et al. Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes[J]. Nat. Commun., 2015, 6(1):7081.
[101] ABDI JALEBI M, ANDAJI GARMAROUDI Z, CACOVICH S, et al. Maximizing and stabilizing luminescence from halide perovskites with potassium passivation[J]. Nature, 2018, 555(7697):497-501.
[102] LI N, TAO S, CHEN Y, et al. Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells[J]. Nat. Energy, 2019, 4(5):408-415.
[103] ZHENG X, CHEN B, DAI J, et al. Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations[J]. Nat. Energy, 2017, 2(7):17102.
[104] XIAO Z G, DONG Q F, BI C, et al. Solvent Annealing of Perovskite-Induced Crystal Growth for Photovoltaic-Device Efficiency Enhancement[J]. Adv. Mater., 2014, 26, 6503-6509.
[105] ZHOU X Y, ZHANG Y, KONG W G, et al. Crystallization manipulation and morphology evolution for highly efficient perovskite solar cell fabrication via hydration water induced intermediate phase formation under heat assisted spin-coating[J]. J. Mater. Chem. A, 2018, 6, 3012-3021.
[106] YANG W S, PARK B W, JUNG E H, et al. Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells[J]. Science, 2017, 356, 1376-1379.
[107] WANG Q, SHAO Y, DONG Q, et al. Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process[J]. Energy Environ. Sci., 2014, 7, 2359-2365
[108] WANG K, LIU C, DU P, et al. Bulk heterojunction perovskite hybrid solar cells with large fill factor[J]. Energy Environ. Sci., 2015, 8, 1245-1255.
[109] LEE J W, KIM H S, PARK N G. Lewis acid-base adduct approach for high efficiency perovskite solar cells[J]. Acc. Chem. Res., 2016, 49, 311-319.
[110] LIU C, WANG K, DU P, et al. Efficient solution-processed bulk heterojunction perovskite hybrid solar cells[J]. Adv. Energy Mater., 2015, 5, 1402024.
[111] CHIANG C H, TSENG Z L, WU C G. Planar heterojunction perovskite/PC71BM solar cells with enhanced open-circuit voltage via a(2/1)-step spin-coating process[J]. J. Mater. Chem. A, 2014, 2, 15897-15903.
[112] WANG K, LIU C, DU P, et al. Efficient perovskite hybrid solar cells through a homogeneous high-quality organolead iodide layer[J]. Small, 2015, 11, 3369.
[113] ZHOU H, CHEN Q, LI G, et al. Interface engineering of highly efficient perovskite solar cells[J]. Science, 2014, 345, 542.
[114] ZHU Z, MA J, WANG Z, et al. Efficiency enhancement of perovskite solar cells through fast electron extraction: the role of graphene quantum dots[J]. J. Am. Chem. Soc., 2014, 136, 3760.
[115] JENG J Y, CHEN K C, CHIANG T Y, et al. Nickel oxide electrode interlayer in CH3NH3PbI3 perovskite/PCBM planar-heterojunction hybrid solar cells[J]. Adv. Mater., 2014, 26, 4107.
[116] SUN K, LI P, XIA Y, et al. Transparent conductive oxide-Free perovskite solar cells with PEDOT: PSS as transparent electrode[J]. ACS Appl. Mater. Interfaces, 2015, 7, 15314.
[117] OUYANG J, CHU C W, CHEN F C, et al. High-conductivity poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) film and its application in polymer optoelectronic devices[J]. Adv. Funct. Mater., 2005, 15, 203.
[118] LIM F J, ANANTHANARAYANAN K, LUTHER J, et al. Influence of a novel fluorosurfactant modified PEDOT: PSS hole transport layer on the performance of inverted organic solar cells[J]. J. Mater. Chem., 2012, 22, 25057.
[119] MIHAILETCHI V D, DUREN J K V, BLOM P W, et al. Electron transport in a methanofullerene[J]. Adv. Funct. Mater., 2003, 13, 43.
[120] LEE D-Y, NA S-I, KIM S-S. Graphene oxide/PEDOT:PSS composite hole transport layer for efficient and stable planar heterojunction perovskite solar cells[J]. Nanoscale, 2016, 8, 1513.
[121] GIURI A, MASI S, COLELLA S, et al. Cooperative effect of GO and glucose on PEDOT: PSS for high Voc and hysteresis-free solution-processed perovskite solar cells[J]. Adv. Funct. Mater., 2016, 26, 6985.
[122] HUANG D, GOH T, KONG J, et al. Perovskite solar cells with a DMSO-treated PEDOT: PSS hole transport layer exhibit higher photovoltaic performance and enhanced durability[J]. Nanoscale, 2017, 9, 4236.
[123] HU L J, SUN K, WANG M, et al. Inverted planar perovskite solar cells with a high fill factor and negligible hysteresis by the dual effect of NaCl-doped PEDOT: PSS[J]. ACS Appl. Mater. Interfaces, 2017, 9, 43902.
[124] WOLF M, RAUSCHENBACH H. Series resistance effects on solar cell measurements[J]. Adv. Energy Convers., 1963, 3, 455.
[125] YI C, WILHIT A, ZHANG L, et al. Enhanced thermoelectric properties of poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) by binary secondary dopants[J]. ACS Appl. Mater. Interfaces, 2015, 7, 8984.
[126] PYSCH D, METTE A, GLUNZ S W. A review and comparison of different methods to determine the series resistance of solar cells[J]. Sol. Energy Mater. Sol. Cells, 2007, 91, 1698.
[127] HUANG X, WANG K, MENG C T, et al. Efficient perovskite hybrid solar cells by highly electrical conductive PEDOT: PSS hole transport layer[J]. Adv. Energy Mater., 2016, 6, 1501773.
[128] LIU D Y, LI Y, YUAN J Y, et al. Improved performance of inverted planar perovskite solar cells with F4-TCNQ doped PEDOT: PSS hole transport layers[J]. Journal of Materials Chemistry A, 2017, 5, 5701.
[129] SUN W H, LI Y L, XIAO Y, et al. An ammonia modified PEDOT: PSS for interfacial engineering in inverted planar perovskite solar cells[J]. Organic Electronics. 2017, 46, 22.
[130] CHANG S H, LIN K F, CHIU K Y, et al. Improving the efficiency of CH3NH3PbI3 based photovoltaics by tuning the work function of the PEDOT: PSS hole transport layer[J]. Solar Energy, 2015, 122, 892.
[131] YANG D, ZHOU X, YANG R. X, et al. Surface optimization to eliminate hysteresis for record efficiency planar perovskite solar cells[J]. Energy Environ. Sci., 2016, 9, 3071.
[132] YANG D, YANG R X, REN X, et al. Hysteresis-suppressed high-efficiency flexible perovskite solar cells using solid-state ionic-liquids for effective electron transport[J]. Adv. Mater., 2016, 28, 5206.
[133] NOEL N K, ABATE A, STRANKS S D, et al. Enhanced photoluminescence and solar cell performance via lewis base passivation of organic-inorganic lead halide perovskites[J]. ACS Nano, 2014, 8, 9815.
[134] AHN N, SON D Y, JANG I H, et al. Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via lewis base adduct of lead(II) iodide[J]. J. Am. Chem. Soc., 2015, 137, 8696.
[135] LONG M Z, ZHANG T K, CHAI Y, et al. Nonstoichiometric acid-base reaction as reliable synthetic route to highly stable CH3NH3PbI3 perovskite film[J]. Nat. Commun., 2016, 7, 13503.
[136] YANG M J, ZHANG T Y, SCHULZ P, et al. Facile fabrication of large-grain CH3NH3PbI3-xBrx films for high-efficiency solar cells via CH3NH3Br-selective Ostwald ripening[J]. Nat. Commun., 2016, 7, 12305.
[137] SON D Y, LEE J W, CHOI Y J, et al. Self-formed grain boundary healing layer for highly efficient CH3NH3PbI3 perovskite solar cells[J]. Nature Energy, 2016, 1, 16081.
[138] QUILETTES D W, VORPAHL S M, STRANKS S D, et al. Impact of microstructure on local carrier lifetime in perovskite solar cells[J]. Science, 2015, 348, 683.
[139] LEIJTENS T, EPERON G E, BARKER A J, et al. Carrier trapping and recombination: the role of defect physics in enhancing the open circuit voltage of metal halide perovskite solar cells[J]. Energy Environ. Sci., 2016, 9, 3472.
[140] MOSCONI E, MEGGIOLARO D, SNAITH H J, et al. Light-induced annihilation of Frenkel defects in organo-lead halide perovskites[J]. Energy Environ. Sci., 2016, 9, 3180.
[141] AZPIROZ J M, MOSCONI E, BISQUERT J, et al. Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation[J]. Energy Environ. Sci., 2015, 8, 2118.
[142] SHAO Y, YUAN Y, HUANG J. Correlation of energy disorder and open-circuit voltage in hybrid perovskite solar cells[J]. Nat. Energy, 2016, 1, 15001.
[143] MARCO N D, ZHOU H P, CHEN Q, et al. Guanidinium: a route to enhanced carrier lifetime and open-circuit voltage in hybrid perovskite solar cells[J]. Nano Lett., 2016, 16, 1009.
[144] LI X, DAR M, YI C Y, et al. Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid ω-ammonium chlorides[J]. Nat. Chem., 2015, 7, 703.
[145] ZHENG X P, CHEN B, DA J, et al. Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations[J]. Nature Energy, 2017, 2, 17102.
[146] ABATE A, SALIBA M, HOLLMAN D J, et al. Supramolecular halogen bond passivation of organic-inorganic halide perovskite solar cells[J]. Nano Lett., 2014, 14, 3247.
[147] WANG K, YI C, HU X, et al. Enhanced performance of polymer solar cells using PEDOT: PSS doped with Fe3O4 magnetic nanoparticles aligned by an external magnetostatic field as an anode buffer layer[J]. ACS Appl. Mater. Interfaces, 2014, 6, 13201.
[148] CHANG J, KUGA Y, MORASERÓ I, et al. High reduction of interfacial charge recombination in colloidal quantum dot solar cells by metal oxide surface passivation[J]. Nanoscale, 2015, 7, 5446.
[149] LIU C, WANG K, HU X, et al. Molecular weight effect on the efficiency of polymer solar cells[J]. ACS Appl. Mater. Interfaces, 2013, 5, 12163.
[150] XIA J, MASAKI N, LIRACANTU M, et al. Influence of doped anions on poly(3,4-ethylenedioxythiophene) as hole conductors for iodine-free solid-state dye-sensitized solar cells[J]. J. Am. Chem. Soc. 2008, 130, 1258.
[151] SONG D, WEI D, CUI P, et al. Dual function interfacial layer for highly efficient and stable lead halide perovskite solar cells[J]. J. Mater. Chem. A, 2016, 4, 6091.
[152] KIM H S, LEE J W, YANTARA N, et al. High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer[J]. Nano Lett., 2013, 13, 2412.
[153] KIM J S, CHUNG W S, KIM K, et al. Performance optimization of polymer solar cells using electrostatically sprayed photoactive layers[J]. Adv. Funct. Mater., 2010, 20, 3538.
[154] LIN Y Z, SHEN L, DAI J, et al. π-Conjugated lewis base: efficient trap-passivation and charge-extraction for hybrid perovskite solar cells[J]. Adv. Mater., 2017, 29, 1604545.
[155] MELONI S, MOEHL T, TRESS W, et al. Ionic polarization-induced current-voltage hysteresis in CH3NH3PbI3 perovskite solar cells[J]. Nat. Commun., 2016, 7, 10334.
[156] CHEN K, HU Q, LIU T, et al. Charge-carrier balance for highly efficient inverted planar heterojunction perovskite solar cells[J]. Adv. Mater., 2016, 28, 10718.
[157] ZUO C, DING L. Modified PEDOT layer makes a 1.52 V Voc for perovskite/PCBM solar cells[J]. Adv. Energy Mater., 2017, 7, 1601193.
[158] HEO J H, HAN H J, KIM D, et al. Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency[J]. Energy Environ. Sci., 2015, 8, 1602.
[159] NIE W, TSAI H, ASADPOUR R, et al. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains[J]. Science, 2015, 347, 522.
[160] YOU J, YANG Y, HONG Z, et al. Moisture assisted perovskite film growth for high performance solar cells[J]. Appl. Phys. Lett., 2014, 105, 183902.
[161] ZHANG L Q, ZHANG X W, YIN Z G, et al. Highly efficient and stable planar heterojunction perovskite solar cells via a low temperature solution process[J]. J. Mater. Chem. A, 2015, 3,12133.
[162] YANG W S, PARK B W, JUNG E H, et al. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells[J]. Science, 2017, 356(6345): 1376-1379.
[163] TAN H, JAIN A, VOZNYY O, et al. Efficient and stable solution-processed planar perovskite solar cells via contact passivation[J]. Science, 2017, 355(6326): 722-726.
[164] ZHOU X, HU M, LIU C, et al. Synergistic effects of multiple functional ionic liquid-treated PEDOT: PSS and less-ion-defects S-acetylthiocholine chloride-passivated perovskite surface enabling stable and hysteresis-free inverted perovskite solar cells with conversion efficiency over 20%[J]. Nano Energy, 2019, 63: 103866.
[165] WETZELAER G J A H, SCHEEPERS M, SEMPERE A M, et al. Trap-assisted non-radiative recombination in organic-inorganic perovskite solar cells[J]. Advanced Materials, 2015, 27(11): 1837-1841.
[166] JIANG Q, ZHANG L, WANG H, et al. Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells[J]. Nature Energy, 2016, 2(1): 1-7.
[167] YANG W S, NOH J H, JEON N J, et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange[J]. Science, 2015, 348(6240): 1234-1237.
[168] SALIBA M, MATSUI T, DOMANSKI K, et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance[J]. Science, 2016, 354(6309): 206-209.
[169] BI C, WANG Q, SHAO Y, et al. Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells[J]. Nature communications, 2015, 6(1): 7747.
[170] SUTHERLAND B R, SARGENT E H. Perovskite photonic sources[J]. Nature Photonics, 2016, 10(5): 295-302.
[171] YANG D, YANG R, REN X, et al. Hysteresis-suppressed high-efficiency flexible perovskite solar cells using solid-state ionic-liquids for effective electron transport[J]. Advanced Materials, 2016, 28(26): 5206-5213.
[172] EPERON G E, HÖRANTNER M T, SNAITH H J. Metal halide perovskite tandem and multiple-junction photovoltaics[J]. Nature Reviews Chemistry, 2017, 1(12): 0095.
[173] LEIJTENS T, BUSH K A, PRASANNA R, et al. Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors[J]. Nature Energy, 2018, 3(10): 828-838.
[174] ZHAO D, CHEN C, WANG C, et al. Efficient two-terminal all-perovskite tandem solar cells enabled by high-quality low-bandgap absorber layers[J]. Nature Energy, 2018, 3(12): 1093-1100.
[175] HÖRANTNER M T, LEIJTENS T, ZIFFER M E, et al. The potential of multijunction perovskite solar cells[J]. ACS Energy Letters, 2017, 2(10): 2506-2513.
[176] TONG J, SONG Z, KIM D H, et al. Carrier lifetimes of > 1 μs in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells[J]. Science, 2019, 364(6439): 475-479.
[177] SHOCKLEY W, QUEISSER H J. Detailed balance limit of efficiency of p-n junction solar cells[J]. Journal of applied physics, 1961, 32(3): 510-519.
[178] ZHU Z, LI N, ZHAO D, et al. Improved efficiency and stability of Pb/Sn binary perovskite solar cells fabricated by galvanic displacement reaction[J]. Advanced Energy Materials, 2019, 9(7): 1802774.
[179] YANG Z, RAJAGOPAL A, JEN A K Y. Ideal bandgap organic-inorganic hybrid perovskite solar cells[J]. Advanced Materials, 2017, 29(47): 1704418.
[180] KAPIL G, RIPOLLES T S, HAMADA K, et al. Highly efficient 17.6% tin-lead mixed perovskite solar cells realized through spike structure[J]. Nano letters, 2018, 18(6): 3600-3607.
[181] HAO F, STOUMPOS C C, CAO D H, et al. Lead-free solid-state organic-inorganic halide perovskite solar cells[J]. Nature photonics, 2014, 8(6): 489-494.
[182] ZUO F, WILLIAMS S T, LIANG P W, et al. Binary-metal perovskites toward high-performance planar-heterojunction hybrid solar cells[J]. Advanced Materials, 2014, 26(37): 6454-6460.
[183] KUMAR M H, DHARANI S, LEONG W L, et al. Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation[J]. Advanced Materials, 2014, 26(41): 7122-7127.
[184] CAO D H, STOUMPOS C C, YOKOYAMA T, et al. Thin films and solar cells based on semiconducting two-dimensional ruddlesden-popper(CH3(CH2)3NH3)2(CH3NH3)n−1SnnI3n+1 perovskites[J]. ACS Energy Letters, 2017, 2(5): 982-990.
[185] YOKOYAMA T, SONG T B, CAO D H, et al. The origin of lower hole carrier concentration in methylammonium tin halide films grown by a vapor-assisted solution process[J]. ACS Energy Letters, 2017, 2(1): 22-28.
[186] HAO F, STOUMPOS C C, GUO P, et al. Solvent-mediated crystallization of CH3NH3SnI3 films for heterojunction depleted perovskite solar cells[J]. Journal of the American Chemical Society, 2015, 137(35): 11445-11452.
[187] LEE S J, SHIN S S, KIM Y C, et al. Fabrication of efficient formamidinium tin iodide perovskite solar cells through SnF2-pyrazine complex[J]. Journal of the American Chemical Society, 2016, 138(12): 3974-3977.
[188] CHUNG I, LEE B, HE J, et al. All-solid-state dye-sensitized solar cells with high efficiency[J]. Nature, 2012, 485(7399): 486-489.
[189] RAJAGOPAL A, LIANG P W, CHUEH C C, et al. Defect passivation via a graded fullerene heterojunction in low-bandgap Pb–Sn binary perovskite photovoltaics[J]. ACS Energy Letters, 2017, 2(11): 2531-2539.
[190] TSAI C M, WU H P, CHANG S T, et al. Role of tin chloride in tin-rich mixed-halide perovskites applied as mesoscopic solar cells with a carbon counter electrode[J]. ACS Energy Letters, 2016, 1(6): 1086-1093.
[191] TAVAKOLI M M, ZAKEERUDDIN S M, GRÄTZEL M, et al. Large-grain tin-rich perovskite films for efficient solar cells via metal alloying technique[J]. Advanced Materials, 2018, 30(11): 1705998.
[192] YANG Z, RAJAGOPAL A, CHUEH C C, et al. Stable low-bandgap Pb-Sn binary perovskites for tandem solar cells[J]. Advanced Materials, 2016, 28(40): 8990-8997.
[193] JOKAR E, CHIEN C H, TSAI C M, et al. Robust tin-based perovskite solar cells with hybrid organic cations to attain efficiency approaching 10%[J]. Advanced materials, 2019, 31(2): 1804835.
[194] LIU C, FAN J, LI H, et al. Highly efficient perovskite solar cells with substantial reduction of lead content[J]. Scientific reports, 2016, 6(1): 35705.
[195] LIAO W, ZHAO D, YU Y, et al. Fabrication of efficient low-bandgap perovskite solar cells by combining formamidinium tin iodide with methylammonium lead iodide[J]. Journal of the American Chemical Society, 2016, 138(38): 12360-12363.
[196] LIU X, YANG Z, CHUEH C C, et al. Improved efficiency and stability of Pb-Sn binary perovskite solar cells by Cs substitution[J]. Journal of Materials Chemistry A, 2016, 4(46): 17939-17945.
[197] ZHAO D, YU Y, WANG C, et al. Low-bandgap mixed tin-lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells[J]. Nature Energy, 2017, 2(4): 1-7.
[198] ZHU H L, XIAO J, MAO J, et al. Controllable crystallization of CH3NH3Sn0.25Pb0.75I3 perovskites for hysteresis-free solar cells with efficiency reaching 15.2%[J]. Advanced Functional Materials, 2017, 27(11): 1605469.
[199] LIU J, WANG G, SONG Z, et al. FAPb1−xSnxI3 mixed metal halide perovskites with improved light harvesting and stability for efficient planar heterojunction solar cells[J]. Journal of Materials Chemistry A, 2017, 5(19): 9097-9106.
[200] CHI D, HUANG S, ZHANG M, et al. Composition and interface engineering for efficient and thermally stable Pb-Sn mixed low-bandgap perovskite solar cells[J]. Advanced Functional Materials, 2018, 28(51): 1804603.
[201] LIAN X, CHEN J, ZHANG Y, et al. Highly efficient Sn/Pb binary perovskite solar cell via precursor engineering: a two-step fabrication process[J]. Advanced Functional Materials, 2019, 29(5): 1807024.
[202] RIPOLLES T S, YAMASUSO D, ZHANG Y, et al. New tin(II) fluoride derivative as a precursor for enhancing the efficiency of inverted planar Tin/Lead perovskite solar cells[J]. The Journal of Physical Chemistry C, 2018, 122(48): 27284-27291.
[203] XU G, BI P, WANG S, et al. Integrating ultrathin bulk-heterojunction organic semiconductor intermediary for high-performance low-bandgap perovskite solar cells with low energy loss[J]. Advanced Functional Materials, 2018, 28(42): 1804427.
[204] LI C, SONG Z, ZHAO D, et al. Reducing saturation-current density to realize high-efficiency low-bandgap mixed tin-lead halide perovskite solar cells[J]. Advanced Energy Materials, 2019, 9(3): 1803135.
[205] JODLOWSKI A D, ROLDÁN-CARMONA C, GRANCINI G, et al. Large guanidinium cation mixed with methylammonium in lead iodide perovskites for 19% efficient solar cells[J]. Nature Energy, 2017, 2(12): 972-979.
[206] KIM H S, LEE C R, IM J H, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%[J]. Scientific reports, 2012, 2(1): 591.
[207] LI F, DENG X, QI F, et al. Regulating surface termination for efficient inverted perovskite solar cells with greater than 23% efficiency[J]. Journal of the American Chemical Society, 2020, 142(47): 20134-20142.
[208] CHEN H, YE F, TANG W, et al. A solvent-and vacuum-free route to large-area perovskite films for efficient solar modules[J]. Nature, 2017, 550(7674): 92-95.
[209] JUNG E H, JEON N J, PARK E Y, et al. Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene)[J]. Nature, 2019, 567(7749): 511-515.
[210] ZHENG X, HOU Y, BAO C, et al. Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells[J]. Nature Energy, 2020, 5(2): 131-140.
[211] DE VOS A. Detailed balance limit of the efficiency of tandem solar cells[J]. Journal of Physics D: Applied Physics, 1980, 13(5): 839.
[212] LEIJTENS T, BUSH K A, PRASANNA R, et al. Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors[J]. Nature Energy, 2018, 3(10): 828-838.
[213] BRINKMANN K O, BECKER T, ZIMMERMANN F, et al. Perovskite-organic tandem solar cells with indium oxide interconnect[J]. Nature, 2022, 604(7905): 280-286.
[214] XU J, BOYD C C, YU Z J, et al. Triple-halide wide-band gap perovskites with suppressed phase segregation for efficient tandems[J]. Science, 2020, 367(6482): 1097-1104.
[215] KIM D, JUNG H J, PARK I J, et al. Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites[J]. Science, 2020, 368(6487): 155-160.
[216] LIU Y, HONG Z, CHEN Q, et al. Integrated perovskite/bulk-heterojunction toward efficient solar cells[J]. Nano letters, 2015, 15(1): 662-668.
[217] DONG S, LIU Y, HONG Z, et al. Unraveling the high open circuit voltage and high performance of integrated perovskite/organic bulk-heterojunction solar cells[J]. Nano letters, 2017, 17(8): 5140-5147.
[218] CHENG M, CHEN C, AITOLA K, et al. Highly efficient integrated perovskite solar cells containing a small molecule-PC70BM bulk heterojunction layer with an extended photovoltaic response up to 900 nm[J]. Chemistry of Materials, 2016, 28(23): 8631-8639.
[219] KIM J, KIM G, BACK H, et al. High-Performance Integrated Perovskite and Organic Solar Cells with Enhanced Fill Factors and Near-Infrared Harvesting[J]. Advanced Materials, 2016, 28(16): 3159-3165.
[220] GAO K, ZHU Z, XU B, et al. Highly efficient porphyrin-based OPV/perovskite hybrid solar cells with extended photoresponse and high fill factor[J]. Advanced Materials, 2017, 29(47): 1703980.
[221] CHEN W, SUN H, HU Q, et al. High short-circuit current density via integrating the perovskite and ternary organic bulk heterojunction[J]. ACS Energy Letters, 2019, 4(10): 2535-2536.
[222] LIU Y, CHEN Y. Integrated perovskite/bulk-heterojunction organic solar cells[J]. Advanced Materials, 2020, 32(3): 1805843.
[223] ZHANG Y, YU W, QIN W, et al. Perovskite as an effective Voc switcher for high efficiency polymer solar cells[J]. Nano Energy, 2016, 20: 126-133.
[224] GUO Q, LIU H, SHI Z, et al. Efficient perovskite/organic integrated solar cells with extended photoresponse to 930 nm and enhanced near-infrared external quantum efficiency of over 50%[J]. Nanoscale, 2018, 10(7): 3245-3253.
[225] WU S, LI Z, ZHANG J, et al. Low-bandgap organic bulk-heterojunction enabled efficient and flexible perovskite solar cells[J]. Advanced Materials, 2021, 33(51): 2105539.
[226] WU Y, DING N, ZHANG Y, et al. Toward broad spectral response inverted perovskite solar cells: insulating quantum-cutting perovskite nanophosphors and multifunctional ternary organic bulk-heterojunction[J]. Advanced Energy Materials, 2022, 12(16): 2200005.
[227] HABISREUTINGER S N, LEIJTENS T, EPERON G E, et al. Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells[J]. Nano letters, 2014, 14(10): 5561-5568.
[228] DU X, HEUMUELLER T, GRUBER W, et al. Efficient polymer solar cells based on non-fullerene acceptors with potential device lifetime approaching 10 years[J]. Joule, 2019, 3(1): 215-226.
[229] HU S, OTSUKA K, MURDEY R, et al. Optimized carrier extraction at interfaces for 23.6% efficient tin-lead perovskite solar cells[J]. Energy & Environmental Science, 2022, 15(5): 2096-2107.
[230] KAPIL G, BESSHO T, MAEKAWA T, et al. Tin-lead perovskite fabricated via ethylenediamine interlayer guides to the solar cell efficiency of 21.74%[J]. Advanced Energy Materials, 2021, 11(25): 2101069.
[231] CAO J, LOI H L, XU Y, et al. High-performance tin-lead mixed-perovskite solar cells with vertical compositional gradient[J]. Advanced Materials, 2022, 34(6): 2107729.
[232] KAPIL G, BESSHO T, SANEHIRA Y, et al. Tin-lead perovskite solar cells fabricated on hole selective monolayers[J]. ACS Energy Letters, 2022, 7(3): 966-974.
[233] ZHOU X, ZHANG L, WANG X, et al. Highly efficient and stable GABr-modified ideal-bandgap (1.35 eV) Sn/Pb perovskite solar cells achieve 20.63% efficiency with a record small Voc deficit of 0.33 V[J]. Advanced Materials, 2020, 32(14): 1908107.
[234] YU J, ORNELAS J L, TANG Y, et al. 2, 1, 3-Benzothiadiazole-5, 6-dicarboxylicimide-based polymer semiconductors for organic thin-film transistors and polymer solar cells[J]. ACS applied materials & interfaces, 2017, 9(48): 42167-42178.
[235] TIAN Y, XUE H, TANG F, et al. First-principles calculation of stability, electronic and optical properties of PCBM-adsorbed MAPbI3 surface[J]. Materials Research Express, 2019, 6(11): 116219.
[236] CHOI H, LIU X, KIM H I, et al. A facile surface passivation enables thermally stable and efficient planar perovskite solar cells using a novel IDTT-based small molecule additive[J]. Advanced Energy Materials, 2021, 11(16): 2003829.
[237] CHEN H, FU W, HUANG C, et al. Molecular engineered hole-extraction materials to enable dopant-free, efficient p-i-n perovskite solar cells[J]. Advanced Energy Materials, 2017, 7(18): 1700012.
[238] KAN B, ZHANG Q, LI M, et al. Solution-processed organic solar cells based on dialkylthiol-substituted benzodithiophene unit with efficiency near 10%[J]. Journal of the American Chemical Society, 2014, 136(44): 15529-15532.
[239] WANG Y, WU T, BARBAUD J, et al. Stabilizing heterostructures of soft perovskite semiconductors[J]. Science, 2019, 365(6454): 687-691.
[240] NI Z, BAO C, LIU Y, et al. Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells[J]. Science, 2020, 367(6484): 1352-1358.
[241] KIM D, JUNG H J, PARK I J, et al. Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites[J]. Science, 2020, 368(6487): 155-160.
[242] KIRCHARTZ T, MÁRQUEZ J A, STOLTERFOHT M, et al. Photoluminescence-based characterization of halide perovskites for photovoltaics[J]. Advanced energy materials, 2020, 10(26): 1904134.
[243] CHOI K, LEE J, CHOI H, et al. Heat dissipation effects on the stability of planar perovskite solar cells[J]. Energy & Environmental Science, 2020, 13(12): 5059-5067.
[244] XU Y, LI G, LI R, et al. PbS/CdS heterojunction thin layer affords high-performance carbon-based all-inorganic solar cells[J]. Nano Energy, 2022, 95: 106973.
[245] YAN Z, WANG D, JING Y, et al. Surface dipole affords high-performance carbon-based CsPbI2Br perovskite solar cells[J]. Chemical Engineering Journal, 2022, 433: 134611.
[246] STOLTERFOHT M, WOLFF C M, MÁRQUEZ J A, et al. Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells[J]. Nature Energy, 2018, 3(10): 847-854.
[247] LI Y, YE S, SUN W, et al. Hole-conductor-free planar perovskite solar cells with 16.0% efficiency[J]. Journal of Materials Chemistry A, 2015, 3(36): 18389-18394.
[248] HU H, ZHOU X, CHEN J, et al. Crystallization regulation and morphological evolution for HTM-free tin-lead (1.28 eV) alloyed perovskite solar cells[J]. Energy & Environmental Materials, 2022, 0: 1-7.
[249] LIAO Y, JIANG X, ZHOU W, et al. Hole-transporting layer-free inverted planar mixed lead-tin perovskite-based solar cells[J]. Frontiers of Optoelectronics, 2017, 10: 103-110.
[250] WAGNER L, CHACKO S, MATHIAZHAGAN G, et al. High photovoltage of 1 V on a steady-state certified hole transport layer-free perovskite solar cell by a molten-salt approach[J]. ACS Energy Letters, 2018, 3(5): 1122-1127.
[251] CHU Q Q, SUN Z, DING B, et al. Greatly enhanced power conversion efficiency of hole-transport-layer-free perovskite solar cell via coherent interfaces of perovskite and carbon layers[J]. Nano Energy, 2020, 77: 105110.
[252] VAN SCODELLER I, DE OLIVEIRA VIGIER K, MULLER E, et al. A combined experimental-theoretical study on diels-alder reaction with bio-based furfural: towards renewable aromatics[J]. ChemSusChem, 2021, 14(1): 313-323.
[253] LIU H, SUN J, HU H, et al. Antioxidation and energy-level alignment for improving efficiency and stability of hole transport layer-free and methylammonium-free tin-lead perovskite solar cells[J]. ACS Applied Materials & Interfaces, 2021, 13(37): 45059-45067.
[254] PRASANNA R, LEIJTENS T, DUNFIELD S P, et al. Design of low bandgap tin-lead halide perovskite solar cells to achieve thermal, atmospheric and operational stability[J]. Nature Energy, 2019, 4(11): 939-947.
[255] YE S, RAO H, YAN W, et al. A strategy to simplify the preparation process of perovskite solar cells by co-deposition of a hole-conductor and a perovskite layer[J]. Advanced Materials, 2016, 28(43): 9648-9654.
[256] TSAI K W, CHUEH C C, WILLIAMS S T, et al. High-performance hole-transporting layer-free conventional perovskite/fullerene heterojunction thin-film solar cells[J]. Journal of Materials Chemistry A, 2015, 3(17): 9128-9132.
[257] ETGAR L, GAO P, XUE Z, et al. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells[J]. Journal of the American Chemical Society, 2012, 134(42): 17396-17399.
[258] YE S, RAO H, ZHAO Z, et al. A breakthrough efficiency of 19.9% obtained in inverted perovskite solar cells by using an efficient trap state passivator Cu(thiourea) I[J]. Journal of the American Chemical Society, 2017, 139(22): 7504-7512.
[259] JAO M H, LU C F, TAI P Y, et al. Precise facet engineering of perovskite single crystals by ligand-mediated strategy[J]. Crystal Growth & Design, 2017, 17(11): 5945-5952.
[260] MUSCARELLA L A, PETROVA D, JORGE CERVASIO R, et al. Air-stable and oriented mixed lead halide perovskite(FA/MA) by the one-step deposition method using zinc iodide and an alkylammonium additive[J]. ACS applied materials & interfaces, 2019, 11(19): 17555-17562.
[261] YANG S, DAI J, YU Z, et al. Tailoring passivation molecular structures for extremely small open-circuit voltage loss in perovskite solar cells[J]. Journal of the American Chemical Society, 2019, 141(14): 5781-5787.
[262] BOISTELLE R, ASTIER J P. Crystallization mechanisms in solution[J]. Journal of crystal growth, 1988, 90(1-3): 14-30.
[263] ABRAHAM F F. Homogeneous nucleation theory[M]. New York: Academic Press, 1974.
[264] ZHOU T, XU Z, WANG R, et al. Crystal growth regulation of 2D/3D perovskite films for solar cells with both high efficiency and stability[J]. Advanced Materials, 2022, 34(17): 2200705.
[265] ZHANG H, REN Z, LIU K, et al. Controllable Heterogenous Seeding-Induced Crystallization for High-Efficiency FAPbI3-Based Perovskite Solar Cells Over 24%[J]. Advanced Materials, 2022, 34(36): 220436.

所在学位评定分委会
物理学
国内图书分类号
TB3
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544044
专题工学院_材料科学与工程系
推荐引用方式
GB/T 7714
周贤勇. 高性能反式钙钛矿太阳能电池的制备及界面优化研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930939-周贤勇-材料科学与工程(9049KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[周贤勇]的文章
百度学术
百度学术中相似的文章
[周贤勇]的文章
必应学术
必应学术中相似的文章
[周贤勇]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。