[1] BACHMAN J C, MUY S, GRIMAUD A, et al. Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction[J]. Chemical Reviews, 2016, 116(1): 140-162.
[2] XU K. Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries[J]. Chemical Reviews, 2004, 104(10): 4303-4418.
[3] XU C, DAI Q, GAINES L, et al. Future Material Demand for Automotive Lithium-Based Batteries[J]. Communications Materials, 2020, 1(1): 99.
[4] SUN C, LIU J, GONG Y, et al. Recent Advances in All-Solid-State Rechargeable Lithium Batteries[J]. Nano Energy, 2017, 33: 363-386.
[5] JANEK J, KRAUSKOPF T, DIPPEL R, et al. Lithium-Metal Growth Kinetics on LLZO Garnet-Type Solid Electrolytes[J]. Joule, 2019, 3(8): 2030-2049.
[6] XU L, LI J, DENG W, et al. Garnet Solid Electrolyte for Advanced All-Solid-State Li Batteries[J]. Advanced Energy Materials, 2021, 11(2): 2000648.
[7] CUI Y, LIU Y, CUI Y. Reviving The Lithium Metal Anode for High-Energy Batteries[J]. Nature Nanotechnology, 2017, 12(3): 194-206.
[8] LI H, CHEN R, LI Q, et al. Approaching Practically Accessible Solid-State Batteries: Stability Issues Related to Solid Electrolytes and Interfaces[J]. Chemical Reviews, 2020, 120(14): 6820-6877.
[9] JANEK J, KRAUSKOPF T, RICHTER F H, et al. Physicochemical Concepts of the Lithium Metal Anode in Solid-State Batteries[J]. Chemical Reviews, 2020, 120(15): 7745-7794.
[10] MO Y, ONG S P, CEDER G. First Principles Study of the Li10GeP2S12 Lithium Super Ionic Conductor Material[J]. Chemistry of Materials, 2012, 24(1): 15-17.
[11] DEWEES R, WANG H. Synthesis and Properties of NaSICON-type LATP and LAGP Solid Electrolytes[J]. ChemSusChem, 2019, 12(16): 3713-3725.
[12] HU L, WANG C, FU K, et al. Garnet-Type Solid-State Electrolytes: Materials, Interfaces, and Batteries[J]. Chemical Reviews, 2020, 120(10): 4257-4300.
[13] KATO Y, HORI S, SAITO T, et al. High-Power All-Solid-State Batteries Using Sulfide Superionic Conductors[J]. Nature Energy, 2016, 1(4): 16030.
[14] THANGADURAI V, NARAYANAN S, PINZARU D. Garnet-Type Solid-State Fast Li Ion Conductors for Li Batteries: Critical Review[J]. Chemical Society Reviews, 2014, 43(13): 4714-4727.
[15] O'CALLAGHAN M P, LYNHAM D R, CUSSEN E J, et al. Structure and Ionic-Transport Properties of Lithium-Containing Garnets Li3Ln3Te2O12 (Ln = Y, Pr, Nd, Sm−Lu)[J]. Chemistry of Materials, 2006, 18(19): 4681-4689.
[16] THANGADURAI V, KAACK H, WEPPNER W J F. Novel Fast Lithium Ion Conduction in Garnet-Type Li5La3M2O12 (M = Nb, Ta)[J]. Journal of the American Ceramic Society, 2003, 86(3): 437-440.
[17] THANGADURAI V, WEPPNER W. Li6ALa2Ta2O12 (A = Sr, Ba): Novel Garnet-Like Oxides for Fast Lithium Ion Conduction[J]. Advanced Functional Materials, 2005, 15(1): 107-112.
[18] MURUGAN R, THANGADURAI V, WEPPNER W. Fast Lithium Ion Conduction in Garnet-Type Li7La3Zr2O12[J]. Angewandte Chemie International Edition, 2007, 46(41): 7778-7781.
[19] AWAKA J, KIJIMA N, HAYAKAWA H, et al. Synthesis and Structure Analysis of Tetragonal Li7La3Zr2O12with The Garnet-Related Type Structure[J]. Journal of Solid State Chemistry, 2009, 182(8): 2046-2052.
[20] AWAKA J, TAKASHIMA A, KATAOKA K, et al. Crystal Structure of Fast Lithium-ion-conducting Cubic Li7La3Zr2O12 [J]. Chemistry Letters, 2010, 40(1): 60-62.
[21] RAMAKUMAR S, DEVIANNAPOORANI C, DHIVYA L, et al. Lithium Garnets: Synthesis, Structure, Li+ Conductivity, Li+ Dynamics and Applications[J]. Progress in Materials Science, 2017, 88: 325-411.
[22] WANG C, FU K, KAMMAMPATA S P, et al. Garnet-Type Solid-State Electrolytes: Materials, Interfaces, and Batteries[J]. Chemical Reviews, 2020, 120(10): 4257-4300.
[23] GEIGER C A, ALEKSEEV E, LAZIC B, et al. Crystal Chemistry and Stability of “Li7La3Zr2O12” Garnet: A Fast Lithium-Ion Conductor[J]. Inorganic Chemistry, 2011, 50(3): 1089-1097.
[24] DUAN H, OLUWATEMITOPE F, WU S, et al. Li/Garnet Interface Optimization: An Overview[J]. ACS Applied Materials & Interfaces, 2020, 12(47): 52271-52284.
[25] REN Y, SHEN Y, LIN Y, et al. Direct Observation of Lithium Dendrites Inside Garnet-Type Lithium-Ion Solid Electrolyte[J]. Electrochemistry Communications, 2015, 57: 27-30.
[26] HAN F, ZHU Y, HE X, et al. Electrochemical Stability of Li10GeP2S12 and Li7La3Zr2O12 Solid Electrolytes[J]. Advanced Energy Materials, 2016, 6(8): 1501590.
[27] SAKAMOTO J, WOLFENSTINE J, ALLEN J L, et al. Mechanical Behavior of Li-Ion-Conducting Crystalline Oxide-Based Solid Electrolytes: A Brief Review[J]. Ionics, 2018, 24(5): 1271-1276.
[28] LIM H-D, PARK J-H, SHIN H-J, et al. A Review of Challenges and Issues Concerning Interfaces for All-Solid-State Batteries[J]. Energy Storage Materials, 2020, 25: 224-250.
[29] SAKAMOTO J, KAZYAK E, DAVIS A L, et al. Surface Chemistry Mechanism of Ultra-Low Interfacial Resistance in the Solid-State Electrolyte Li7La3Zr2O12 [J]. Chemistry of Materials, 2017, 29(18): 7961-7968.
[30] GOODENOUGH J B, LI Y, CHEN X, et al. Garnet Electrolyte with an Ultralow Interfacial Resistance for Li-Metal Batteries[J]. Journal of the American Chemical Society, 2018, 140(20): 6448-6455.
[31] SAKAMOTO J, YU S, NAGUIB M, et al. Impact of Air Exposure and Surface Chemistry On Li–Li7La3Zr2O12 Interfacial Resistance[J]. Journal of Materials Chemistry A, 2017, 5(26): 13475-13487.
[32] SONG S, CHEN B, RUAN Y, et al. Gd-Doped Li7La3Zr2O12 Garnet-Type Solid Electrolytes for All-Solid-State Li-Ion Batteries[J]. Electrochimica Acta, 2018, 270: 501-508.
[33] MIARA L J, RICHARDS W D, WANG Y E, et al. First-Principles Studies on Cation Dopants and Electrolyte|Cathode Interphases for Lithium Garnets[J]. Chemistry of Materials, 2015, 27(11): 4040-4047.
[34] XIANG X, LIU Y, CHEN F, et al. Crystal Structure and Lithium Ionic Transport Behavior of Li Site Doped Li7La3Zr2O12 [J]. Journal of the European Ceramic Society, 2020, 40(8): 3065-3071.
[35] XIA W, XU B, DUAN H, et al. Ionic Conductivity and Air Stability of Al-Doped Li7La3Zr2O12 Sintered in Alumina and Pt Crucibles[J]. ACS Applied Materials & Interfaces, 2016, 8(8): 5335-5342.
[36] ZHENG C, SU J, SONG Z, et al. Improvement of Density and Electrochemical Performance of Garnet-Type Li7La3Zr2O12 for Solid-State Lithium Metal Batteries Enabled by W and Ta Co-Doping Strategy[J]. Materials Today Energy, 2022, 27: 101034.
[37] SAITO N, SUGATA S, WATANABE K, et al. Sintering Behaviors of Highly Sinterable Al-Doped Li7La3Zr2O12 Powder Prepared by Polymerized-Complex Method[J]. Ceramics International, 2022, 48(15): 22221-22227.
[38] KOŠIR J, MOUSAVIHASHEMI S, WILSON B P, et al. Comparative Analysis On The Thermal, Structural, and Electrochemical Properties of Al-Doped Li7La3Zr2O12 Solid Electrolytes Through Solid State and Sol-Gel Routes[J]. Solid State Ionics, 2022, 380: 115943.
[39] ZAGORSKI J, SILVAN B, SAUREL D, et al. Importance of Composite Electrolyte Processing to Improve the Kinetics and Energy Density of Li Metal Solid-State Batteries[J]. ACS Applied Energy Materials, 2020, 3(9): 8344-8355.
[40] LEE K, HAN S, LEE J, et al. Multifunctional Interface for High-Rate and Long-Durable Garnet-Type Solid Electrolyte in Lithium Metal Batteries[J]. ACS Energy Letters, 2022, 7(1): 381-389.
[41] WANG T, SONG Z, ZHANG Y, et al. Direct Recycling of Shorted Solid-State Electrolytes Enabled by Targeted Recovery[J]. Energy Storage Materials, 2022, 52: 365-370.
[42] ZHAO Z, WEN Z, LIU X, et al. Tuning A Compatible Interface with LLZTO Integrated On Cathode Material for Improving NCM811/LLZTO Solid-State Battery[J]. Chemical Engineering Journal, 2021, 405: 127031.
[43] ZHENG C, LU Y, SU J, et al. Grain Boundary Engineering Enabled High-Performance Garnet-Type Electrolyte for Lithium Dendrite Free Lithium Metal Batteries[J]. Small Methods, 2022, 6(9): 2200667.
[44] LI Y, CHEN X, DOLOCAN A, et al. Garnet Electrolyte with an Ultralow Interfacial Resistance for Li-Metal Batteries[J]. Journal of the American Chemical Society, 2018, 140(20): 6448-6455.
[45] HUO H, CHEN Y, ZHAO N, et al. In-Situ Formed Li2CO3-Free Garnet/Li Interface by Rapid Acid Treatment for Dendrite-Free Solid-State Batteries[J]. Nano Energy, 2019, 61: 119-125.
[46] XU B, LI W, DUAN H, et al. Li3PO4-Added Garnet-Type Li6.5La3Zr1.5Ta0.5O12 for Li-Dendrite Suppression[J]. Journal of Power Sources, 2017, 354: 68-73.
[47] HU L, GONG Y, FU K, et al. Negating Interfacial Impedance in Garnet-Based Solid-State Li Metal Batteries[J]. Nature Materials, 2017, 16(5): 572-579.
[48] HU L, WANG C, XIE H, et al. Universal Soldering of Lithium and Sodium Alloys on Various Substrates for Batteries[J]. Advanced Energy Materials, 2018, 8(6): 1701963.
[49] HUANG Y, CHEN B, DUAN J, et al. Graphitic Carbon Nitride (g-C3N4): An Interface Enabler for Solid-State Lithium Metal Batteries[J]. Angewandte Chemie International Edition, 2020, 59(9): 3699-3704.
[50] PAN F, SONG Y, YANG L, et al. Revealing the Short-Circuiting Mechanism of Garnet-Based Solid-State Electrolyte[J]. Advanced Energy Materials, 2019, 9(21): 1900671.
[51] ZHANG J-G, DENG T, JI X, et al. Tuning the Anode–Electrolyte Interface Chemistry for Garnet-Based Solid-State Li Metal Batteries[J]. Advanced Materials, 2020, 32(23): 2000030.
[52] MUKHOPADHYAY S, THOMPSON T, SAKAMOTO J, et al. Structure and Stoichiometry in Supervalent Doped Li7La3Zr2O12 [J]. Chemistry of Materials, 2015, 27(10): 3658-3665.
[53] CHENG L, PARK J S, HOU H, et al. Effect of Microstructure and Surface Impurity Segregation On The Electrical and Electrochemical Properties of Dense Al-Substituted Li7La3Zr2O12 [J]. Journal of Materials Chemistry A, 2014, 2(1): 172-181.
[54] ZHAO P, CAO G, JIN Z, et al. Self-Consolidation Mechanism and Its Application in The Preparation of Al-Doped Cubic Li7La3Zr2O12 [J]. Materials & Design, 2018, 139: 65-71.
[55] NONEMACHER J F, HUTER C, ZHENG H, et al. Microstructure and Properties Investigation of Garnet Structured Li7La3Zr2O12 As Electrolyte for All-Solid-State Batteries[J]. Solid State Ionics, 2018, 321: 126-134.
[56] EL-SHINAWI H, PATERSON G W, MACLAREN D A, et al. Low-Temperature Densification of Al-Doped Li7La3Zr2O12: A Reliable and Controllable Synthesis of Fast-Ion Conducting Garnets[J]. Journal of Materials Chemistry A, 2017, 5(1): 319-329.
[57] ZHANG Y, CHEN F, TU R, et al. Field Assisted Sintering of Dense Al-Substituted Cubic Phase Li7La3Zr2O12 Solid Electrolytes[J]. Journal of Power Sources, 2014, 268: 960-964.
[58] SMETACZEK S, WACHTER-WELZL A, WAGNER R, et al. Local Li-Ion Conductivity Changes within Al Stabilized Li7La3Zr2O12 and Their Relationship to Three-Dimensional Variations of The Bulk Composition[J]. Journal of Materials Chemistry A, 2019, 7(12): 6818-6831.
[59] TIAN Y, ZHOU Y, LIU Y, et al. Formation Mechanism of Sol-Gel Synthesized Li7−3xAlxLa3Zr2O12 and The Influence of Abnormal Grain Growth on Ionic Conductivity[J]. Solid State Ionics, 2020, 354: 115407.
[60] DONG B, DRISCOLL L L, STOCKHAM M P, et Al. Low Temperature Synthesis of Garnet Solid State Electrolytes: Implications on Aluminium Incorporation in Li7La3Zr2O12 [J]. Solid State Ionics, 2020, 350: 115317.
[61] SAITO N, SUGATA S, WATANABE K, et al. Sintering Behaviors of Highly Sinterable Al-Doped Li7La3Zr2O12 Powder Prepared by Polymerized-Complex Method[J]. Ceramics International, 2022, 48(15): 22262-22268.
[62] NEMORI H, MATSUDA Y, MITSUOKA S, et al. Stability of Garnet-Type Solid Electrolyte LixLa3A2-yByO12 (A = Nb Or Ta, B = Sc Or Zr)[J]. Solid State Ionics, 2015, 282: 7-12.
[63] TONG X, THANGADURAI V, WACHSMAN E D. Highly Conductive Li Garnets by a Multielement Doping Strategy[J]. Inorganic Chemistry, 2015, 54(7): 3600-3607.
[64] JANANI N, RAMAKUMAR S, KANNAN S, et al. Optimization of Lithium Content and Sintering Aid for Maximized Li+ Conductivity and Density in Ta-Doped Li7La3Zr2O12 [J]. Journal of The American Ceramic Society, 2015, 98(7): 2039-2046.
[65] ZHANG H, ZHANG J. An Overview of Modification Strategies to Improve LiNi0.8Co0.1Mn0.1O2 (NCM811) Cathode Performance for Automotive Lithium-Ion Batteries[J]. eTransportation, 2021, 7: 100105.
[66] THOMPSON T, WOLFENSTINE J, ALLEN J L, et al. Tetragonal Vs. Cubic Phase Stability in Al-Free Ta Doped Li7La3Zr2O12 (LLZO)[J]. Journal of Materials Chemistry A, 2014, 2(33): 13431-13436.
[67] ZHANG X, OH T-S, FERGUS J W. Densification of Ta-Doped Garnet-Type Li6.75La3Zr1.75Ta0.25O12 Solid Electrolyte Materials by Sintering in a Lithium-Rich Air Atmosphere[J]. Journal of The Electrochemical Society, 2019, 166(15): A3753.
[68] YUBUCHI S, ITO Y, MATSUYAMA T, et al. 5V Class LiNi0.5Mn1.5O4 Positive Electrode Coated with Li3PO4 Thin Film for All-Solid-State Batteries Using Sulfide Solid Electrolyte[J]. Solid State Ionics, 2016, 285: 79-82.
[69] GUO C, SHEN Y, MAO P, et al. Grafting of Lithiophilic and Electron-Blocking Interlayer for Garnet-Based Solid-State Li Metal Batteries via One-Step Anhydrous Poly-Phosphoric Acid Post-Treatment[J]. Advanced Functional Materials, 2023, 33(10): 2213443.
[70] NIE K, WU S, WANG J, et al. Reaction Mechanisms of Ta-Substituted Cubic Li7La3Zr2O12 with Solvents During Storage[J]. ACS Applied Materials & Interfaces, 2021, 13(32): 38384-38393.
[71] CHEN W-P, DUAN H, SHI J-L, et al. Bridging Interparticle Li+ Conduction in a Soft Ceramic Oxide Electrolyte[J]. Journal of the American Chemical Society, 2021, 143(15): 5717-5726.
[72] SHARAFI A, KAZYAK E, DAVIS A L, et al. Surface Chemistry Mechanism of Ultra-Low Interfacial Resistance in the Solid-State Electrolyte Li7La3Zr2O12 [J]. Chemistry of Materials, 2017, 29(18): 7961-7968.
[73] SHARAFI A, YU S, NAGUIB M, et al. Impact of Air Exposure and Surface Chemistry On Li–Li7La3Zr2O12 Interfacial Resistance[J]. Journal of Materials Chemistry A, 2017, 5(26): 13475-13487.
[74] MINDEMARK J, SUN B, TORMA E, et al. High-Performance Solid Polymer Electrolytes for Lithium Batteries Operational at Ambient Temperature[J]. Journal of Power Sources, 2015, 298: 166-170.
[75] NKOSI F P, VALVO M, MINDEMARK J, et al. Garnet-Poly(ε-caprolactone-co-trimethylene carbonate) Polymer-in-Ceramic Composite Electrolyte for All-Solid-State Lithium-Ion Batteries[J]. ACS Applied Energy Materials, 2021, 4(3): 2531-2542.
[76] ZHAO C-Z, CHEN P-Y, ZHANG R, et al. An Ion Redistributor for Dendrite-Free Lithium Metal Anodes[J]. Science Advances, 4(11): eaat3446.
[77] HE T, ZENG G, FENG C, et al. A Solid-Electrolyte-Reinforced Separator Through Single-Step Electrophoretic Assembly for Safe High-Capacity Lithium Ion Batteries[J]. Journal of Power Sources, 2020, 448: 227469.
[78] MAO Y, SUN W, QIAO Y, et al. A High Strength Hybrid Separator with Fast Ionic Conductor for Dendrite-Free Lithium Metal Batteries[J]. Chemical Engineering Journal, 2021, 416: 129119.
[79] WU Y, LI Y, WANG Y, et al. Advances and Prospects of PVDF Based Polymer Electrolytes[J]. Journal of Energy Chemistry, 2022, 64: 62-84.
[80] SHEN Z, CHENG Y, SUN S, et al. The Critical Role of Inorganic Nanofillers in Solid Polymer Composite Electrolyte for Li+ Transportation[J]. Carbon Energy, 2021, 3(3): 482-508.
修改评论