中文版 | English
题名

纳米酶增强光声成像引导光热治疗乳腺癌的研究

其他题名
RELIEF OF TUMOR HYPOXIAUSINGANANOENZYME AMPLIFIES NIR-II PHOTOACOUSTIC-GUIDED PHOTOTHERMALTHERAPY
姓名
姓名拼音
XUE Qiang
学号
12032600
学位类型
硕士
学位专业
0710 生物学
学科门类/专业学位类别
07 理学
导师
张海
导师单位
南方科技大学第一附属医院
论文答辩日期
2023-05-18
论文提交日期
2023-06-26
学位授予单位
南方科技大学
学位授予地点
深圳
摘要
乏氧肿瘤微环境 (Tumor microenvironmentTME)是肿瘤的重要特征,对影响肿瘤的生长和转移至关重要,是治疗过程中的主要障碍。光声成像 (Photoacoustics imagingPAI)是一种多模新成像技术,它结合了光学和超声学的优势,正广泛应用于肿瘤的诊断和治疗研究中。采用光学成像,整合调节肿 瘤微环境乏氧的方法,将改善乳腺肿瘤的诊断和治疗效果。设计与合成了纳米金 属框架复合物,它由普鲁士蓝纳米酶和近红外二区(Near infrared regionNIR-II)小分子染料 IR1061 构成,为进一步改善纳米复合物的稳定性和生物相容性,用二氧化硅对普鲁士蓝纳米酶和 IR1061 进行包裹,制备了集诊疗一体的多功能纳 米金属框架复合物(SiO2@PB@IR1061SPI)。
  通过体外和体内乳腺癌模型研究发现:该纳米复合物颗粒一方面催化肿瘤内的过氧化氢产生氧气,有效缓解肿瘤微环境的乏氧状态,抑制肿瘤细胞迁移并下调热休克蛋白 (Heat shock protein 70HSP70) 表达;另一方面,通过 PAI 监测 SPI 光敏剂在体内的生物分布,光声成像靶向引导光热治疗(Photothermal theraypPTT)肿瘤,协同疗效,降低肿瘤复发的风险。采用独特的无标记多光谱 PAI 实时定量检测,评价了肿瘤内光热治疗血氧微环境状况的改变。病理组织学分析证实:光声成像引导靶向光热治疗下,新型纳米酶 SPI 金属框架复合物治疗乳腺癌安全有效。借助于 PAI PTT 技术,全新制备的多模影像、多功能的纳米造影剂(SPI),能够改善乳腺癌乏氧微环境,为肿瘤研究提供一种新的监测、诊断和治疗策略。
关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2023-06
参考文献列表

[1] SUNG H, FERLAY J, SIEGEL R L, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries [J]. CA Cancer J Clin, 2021, 71(3): 209-49.
[2] HORTON J K, JAGSI R, WOODWARD W A, et al. Breast Cancer Biology: Clinical Implications for Breast Radiation Therapy [J]. Int J Radiat Oncol Biol Phys, 2018, 100(1): 23-37.
[3] MCDONALD E S, CLARK A S, TCHOU J, et al. Clinical Diagnosis and Management of Breast Cancer [J]. J Nucl Med, 2016, 57 Suppl 1(9s-16s.
[4] LI X, CHEN L, LUAN S, et al. The development and progress of nanomedicine for esophageal cancer diagnosis and treatment [J]. Semin Cancer Biol, 2022, 86(Pt 2): 873-85.
[5] WU Y, ZHANG R, ZHU L, et al. BGM-Net: Boundary-Guided Multiscale Network for Breast Lesion Segmentation in Ultrasound [J]. Frontiers in Molecular Biosciences, 2021, 8:698334.
[6] CHEN J, ZHU Y, WU C, et al. Nanoplatform-based cascade engineering for cancer therapy [J]. Chem Soc Rev, 2020, 49(24): 9057-94.
[7] HUANG H C, BARUA S, SHARMA G, et al. Inorganic nanoparticles for cancer imaging and therapy [J]. J Control Release, 2011, 155(3): 344-57.
[8] MITCHELL M J, BILLINGSLEY M M, HALEY R M, et al. Engineering precision nanoparticles for drug delivery [J]. Nat Rev Drug Discov, 2021, 20(2): 101-24.
[9] KHURSHEED R, DUA K, VISHWAS S, et al. Biomedical applications of metallic nanoparticles in cancer: Current status and future perspectives [J]. Biomed Pharmacother, 2022, 150:112951.
[10] WANG Y, MENG H M, LI Z. Near-infrared inorganic nanomaterial-based nanosystems for photothermal therapy [J]. Nanoscale, 2021, 13(19): 8751-72.
[11] RAJANA N, MOUNIKA A, CHARY P S, et al. Multifunctional hybrid nanoparticles in diagnosis and therapy of breast cancer [J]. J Control Release, 2022, 352:1024-47.
[12] HIGBEE-DEMPSEY E, AMIRSHAGHAGHI A, CASE M J, et al. Indocyanine Green–Coated Gold Nanoclusters for Photoacoustic Imaging and Photothermal Therapy [J]. Advanced Therapeutics, 2019, 2(9): 1900088.
[13] MENDES R, PEDROSA P, LIMA J C, et al. Photothermal enhancement of chemotherapy in breast cancer by visible irradiation of Gold Nanoparticles [J]. Scientific Reports, 2017, 7.
[14] BOSE P, PRIYAM A, KAR R, et al. Quercetin loaded folate targeted plasmonic silver nanoparticles for light activated chemo-photothermal therapy of DMBA induced breast cancer in Sprague Dawley rats [J]. RSC Advances, 2020, 10(53): 31961-78.
[15] SEARS J, SWANNER J, FAHRENHOLTZ C D, et al. Combined Photothermal and Ionizing Radiation Sensitization of Triple-Negative Breast Cancer Using Triangular Silver Nanoparticles [J]. International Journal of Nanomedicine, 2021, 16:851-65.
[16] WU P, GAO Y, ZHANG H, et al. Aptamer-Guided Silver-Gold Bimetallic Nanostructures with Highly Active Surface-Enhanced Raman Scattering for Specific Detection and Near-Infrared Photothermal Therapy of Human Breast Cancer Cells [J]. Analytical Chemistry, 2012, 84(18): 7692-9.
[17] SVECHKAREV D, MOHS A M. Organic Fluorescent Dye-based Nanomaterials: Advances in the Rational Design for Imaging and Sensing Applications [J]. Current Medicinal Chemistry, 2019, 26(21): 4042-64.
[18] WU F S, CHEN L, YUE L L, et al. Small-Molecule Porphyrin-Based Organic Nanoparticles with Remarkable Photothermal Conversion Efficiency for in Vivo Photoacoustic Imaging and Photothermal Therapy [J]. Acs Applied Materials & Interfaces, 2019, 11(24): 21408-16.
[19] WANG T Y, XIONG Y P, LI R X, et al. Dependence of infrared absorption properties on the Mo doping contents in MxWO3 with various alkali metals [J]. New Journal of Chemistry, 2016, 40(9): 7476-81.
[20] JUNG H S, VERWILST P, SHARMA A, et al. Organic molecule-based photothermal agents: an expanding photothermal therapy universe [J]. Chemical Society Reviews, 2018, 47(7): 2280-97.
[21] FENG L, CHEN W J, MA X X, et al. Near-infrared heptamethine cyanines (Cy7): from structure, property to application [J]. Organic & Biomolecular Chemistry, 2020, 18(46): 9385-97.
[22] YUE C X, LIU P, ZHENG M B, et al. IR-780 dye loaded tumor targeting theranostic nanoparticles for NIR imaging and photothermal therapy [J]. Biomaterials, 2013, 34(28): 6853-61.
[23] JING C, WANG R L, OU H L, et al. Axial modification inhibited H-aggregation of phthalocyanines in polymeric micelles for enhanced PDT efficacy [J]. Chemical Communications, 2018, 54(32): 3985-8.
[24] CHEN J J, ZHU Y F, KASKEL S. Porphyrin-Based Metal-Organic Frameworks for Biomedical Applications [J]. Angewandte Chemie-International Edition, 2021, 60(10): 5010-35.
[25] ZUO T, FANG T, ZHANG J, et al. pH-Sensitive Molecular-Switch-Containing Polymer Nanoparticle for Breast Cancer Therapy with Ferritinophagy-Cascade Ferroptosis and Tumor Immune Activation [J]. Adv Healthc Mater, 2021, 10(21): e2100683.
[26] ZHOU W, HE X, WANG J, et al. Semiconducting Polymer Nanoparticles for Photoactivatable Cancer Immunotherapy and Imaging of Immunoactivation [J]. Biomacromolecules, 2022, 23(4): 1490-504.
[27] YU N, ZHAO L, CHENG D, et al. Radioactive organic semiconducting polymer nanoparticles for multimodal cancer theranostics [J]. J Colloid Interface Sci, 2022, 619:219-28.
[28] XU Y, ZHAI X, SU P, et al. Highly stable semiconducting polymer nanoparticles for multi-responsive chemo/photothermal combined cancer therapy [J]. Theranostics, 2020, 10(13): 5966-78.
[29] WANG Z, GUO B, MIDDHA E, et al. Microfluidics-Prepared Uniform Conjugated Polymer Nanoparticles for Photo-Triggered Immune Microenvironment Modulation and Cancer Therapy [J]. ACS Appl Mater Interfaces, 2019, 11(12): 11167-76.
[30] WANG J, CHEN P, DONG Y, et al. Designer exosomes enabling tumor targeted efficient chemo/gene/photothermal therapy [J]. Biomaterials, 2021, 276:121056.
[31] MUKHERJEE A, WATERS A K, KALYAN P, et al. Lipid-polymer hybrid nanoparticles as a next-generation drug delivery platform: state of the art, emerging technologies, and perspectives [J]. Int J Nanomedicine, 2019, 14:1937-52.
[32] LIU J, HE S, LUO Y, et al. Tumor-Microenvironment-Activatable Polymer Nano-Immunomodulator for Precision Cancer Photoimmunotherapy [J]. Adv Mater, 2022, 34(8): e2106654.
[33] LING X, HAN W, JIANG X, et al. Point-source burst of coordination polymer nanoparticles for tri-modality cancer therapy [J]. Biomaterials, 2021, 270:120690.
[34] AGHEBATI-MALEKI A, DOLATI S, AHMADI M, et al. Nanoparticles and cancer therapy: Perspectives for application of nanoparticles in the treatment of cancers [J]. J Cell Physiol, 2020, 235(3): 1962-72.
[35] CHEN H, CHEN H L, WANG Y W, et al. A novel self-coated polydopamine nanoparticle for synergistic photothermal-chemotherapy [J]. Colloids and Surfaces B-Biointerfaces, 2021, 200.
[36] ZHOU B, YIN C, FENG Q, et al. Polypyrrole-based nanotheranostic agent for MRI guided photothermal-chemodynamic synergistic cancer therapy [J]. Nanoscale, 2021, 13(45): 19085-97.
[37] YANG Z, ZHANG L, WEI J, et al. Tumor acidity-activatable photothermal/Fenton nanoagent for synergistic therapy [J]. J Colloid Interface Sci, 2022, 612:355-66.
[38] XU M, ZHAO D, CHEN Y, et al. Charge Reversal Polypyrrole Nanocomplex-Mediated Gene Delivery and Photothermal Therapy for Effectively Treating Papillary Thyroid Cancer and Inhibiting Lymphatic Metastasis [J]. ACS Appl Mater Interfaces, 2022, 14(12): 14072-86.
[39] SUN X, WANG J, WANG Z, et al. Gold nanorod@void@polypyrrole yolk@shell nanostructures: Synchronous regulation of photothermal and drug delivery performance for synergistic cancer therapy [J]. J Colloid Interface Sci, 2022, 610:89-97.
[40] TRAN T H, NGUYEN H T, PHUONG TRAN T T, et al. Combined photothermal and photodynamic therapy by hyaluronic acid-decorated polypyrrole nanoparticles [J]. Nanomedicine (Lond), 2017, 12(12): 1511-23.
[41] MANIVASAGAN P, QUANG BUI N, BHARATHIRAJA S, et al. Multifunctional biocompatible chitosan-polypyrrole nanocomposites as novel agents for photoacoustic imaging-guided photothermal ablation of cancer [J]. Sci Rep, 2017, 7:43593.
[42] DONG Q, YANG H, WAN C, et al. Her2-Functionalized Gold-Nanoshelled Magnetic Hybrid Nanoparticles: a Theranostic Agent for Dual-Modal Imaging and Photothermal Therapy of Breast Cancer [J]. Nanoscale Res Lett, 2019, 14(1): 235.
[43] HAFEZI GHAHESTANI Z, ALEBOOYE LANGROODI F, MOKHTARZADEH A, et al. Evaluation of anti-cancer activity of PLGA nanoparticles containing crocetin [J]. Artif Cells Nanomed Biotechnol, 2017, 45(5): 955-60.
[44] MAURO N, UTZERI M A, DRAGO S E, et al. Carbon Nanodots as Functional Excipient to Develop Highly Stable and Smart PLGA Nanoparticles Useful in Cancer Theranostics [J]. Pharmaceutics, 2020, 12(11).
[45] LEDEZMA D K, BALAKRISHNAN P B, CANO-MEJIA J, et al. Indocyanine Green-Nexturastat A-PLGA Nanoparticles Combine Photothermal and Epigenetic Therapy for Melanoma [J]. Nanomaterials (Basel), 2020, 10(1).
[46] VALCOURT D M, DANG M N, DAY E S. IR820-loaded PLGA nanoparticles for photothermal therapy of triple-negative breast cancer [J]. J Biomed Mater Res A, 2019, 107(8): 1702-12.
[47] ZHANG Y, WANG Y, YANG X, et al. Polyaniline Nanovesicles for Photoacoustic Imaging-Guided Photothermal-Chemo Synergistic Therapy in the Second Near-Infrared Window [J]. Small, 2020, 16(35): e2001177.
[48] WU J, ZHANG Y, JIANG K, et al. Enzyme-Engineered Conjugated Polymer Nanoplatform for Activatable Companion Diagnostics and Multistage Augmented Synergistic Therapy [J]. Adv Mater, 2022, 34(18): e2200062.
[49] TIAN Q, LI Y, JIANG S, et al. Tumor pH-Responsive Albumin/Polyaniline Assemblies for Amplified Photoacoustic Imaging and Augmented Photothermal Therapy [J]. Small, 2019, 15(42): e1902926.
[50] SU W P, CHANG L C, SONG W H, et al. Polyaniline-Based Glyco-Condensation on Au Nanoparticles Enhances Immunotherapy in Lung Cancer [J]. ACS Appl Mater Interfaces, 2022, 14(21): 24144-59.
[51] YOU C, WU H, WANG M, et al. A strategy for photothermal conversion of polymeric nanoparticles by polyaniline for smart control of targeted drug delivery [J]. Nanotechnology, 2017, 28(16): 165102.
[52] CHEN H, LIU Z, LI S, et al. Fabrication of Graphene and AuNP Core Polyaniline Shell Nanocomposites as Multifunctional Theranostic Platforms for SERS Real-time Monitoring and Chemo-photothermal Therapy [J]. Theranostics, 2016, 6(8): 1096-104.
[53] WANG L V, HU S. Photoacoustic tomography: in vivo imaging from organelles to organs [J]. Science, 2012, 335(6075): 1458-62.
[54] ZHOU Y, YAO J, WANG L V. Tutorial on photoacoustic tomography [J]. J Biomed Opt, 2016, 21(6): 61007.
[55] STEINBERG I, HULAND D M, VERMESH O, et al. Photoacoustic clinical imaging [J]. Photoacoustics, 2019, 14:77-98.
[56] LIN L, WANG L V. The emerging role of photoacoustic imaging in clinical oncology [J]. Nat Rev Clin Oncol, 2022, 19(6): 365-84.
[57] MANOHAR S, DANTUMA M. Current and future trends in photoacoustic breast imaging [J]. Photoacoustics, 2019, 16:100134.
[58] ZHANG H F, MASLOV K, WANG L V. In vivo imaging of subcutaneous structures using functional photoacoustic microscopy [J]. Nat Protoc, 2007, 2(4): 797-804.
[59] YIN H, GUAN X, LIN H, et al. Nanomedicine-Enabled Photonic Thermogaseous Cancer Therapy [J]. Adv Sci (Weinh), 2020, 7(2): 1901954.
[60] ZHANG Z, XU W, KANG M, et al. An All-Round Athlete on the Track of Phototheranostics: Subtly Regulating the Balance between Radiative and Nonradiative Decays for Multimodal Imaging-Guided Synergistic Therapy [J]. Adv Mater, 2020, 32(36): e2003210.
[61] SINGH A K, MCGUIRK J P. CAR T cells: continuation in a revolution of immunotherapy [J]. Lancet Oncol, 2020, 21(3): e168-e78.
[62] XIA Y, RAO L, YAO H, et al. Engineering Macrophages for Cancer Immunotherapy and Drug Delivery [J]. Adv Mater, 2020, 32(40): e2002054.
[63] YU X, CHEN L, LIU J, et al. Immune modulation of liver sinusoidal endothelial cells by melittin nanoparticles suppresses liver metastasis [J]. Nat Commun, 2019, 10(1): 574.
[64] DUAN X, CHAN C, LIN W. Nanoparticle-Mediated Immunogenic Cell Death Enables and Potentiates Cancer Immunotherapy [J]. Angew Chem Int Ed Engl, 2019, 58(3): 670-80.
[65] SINGH A, TRIVEDI P, JAIN N K. Advances in siRNA delivery in cancer therapy [J]. Artif Cells Nanomed Biotechnol, 2018, 46(2): 274-83.
[66] CHEN C, MA Y, DU S, et al. Controlled CRISPR-Cas9 Ribonucleoprotein Delivery for Sensitized Photothermal Therapy [J]. Small, 2021, 17(33): e2101155.
[67] QIN Z, CHEN B, MAO Y, et al. Achieving Ultrasmall Prussian Blue Nanoparticles as High-Performance Biomedical Agents with Multifunctions [J]. ACS Appl Mater Interfaces, 2020, 12(51): 57382-90.
[68] WU W, YU L, PU Y, et al. Copper-Enriched Prussian Blue Nanomedicine for In Situ Disulfiram Toxification and Photothermal Antitumor Amplification [J]. Adv Mater, 2020, 32(17): e2000542.
[69] ZHOU J, LI M, HOU Y, et al. Engineering of a Nanosized Biocatalyst for Combined Tumor Starvation and Low-Temperature Photothermal Therapy [J]. ACS Nano, 2018, 12(3): 2858-72.
[70] QIN Z, LI Y, GU N. Progress in Applications of Prussian Blue Nanoparticles in Biomedicine [J]. Adv Healthc Mater, 2018, 7(20): e1800347.
[71] FENG L, DOU C, XIA Y, et al. Neutrophil-like Cell-Membrane-Coated Nanozyme Therapy for Ischemic Brain Damage and Long-Term Neurological Functional Recovery [J]. ACS Nano, 2021, 15(2): 2263-80.
[72] ZHANG W, HU S, YIN J J, et al. Prussian Blue Nanoparticles as Multienzyme Mimetics and Reactive Oxygen Species Scavengers [J]. J Am Chem Soc, 2016, 138(18): 5860-5.
[73] XIAO Y, YU D. Tumor microenvironment as a therapeutic target in cancer [J]. Pharmacol Ther, 2021, 221:107753.
[74] HINSHAW D C, SHEVDE L A. The Tumor Microenvironment Innately Modulates Cancer Progression [J]. Cancer Res, 2019, 79(18): 4557-66.
[75] WU T, DAI Y. Tumor microenvironment and therapeutic response [J]. Cancer Lett, 2017, 387:61-8.
[76] JIN M Z, JIN W L. The updated landscape of tumor microenvironment and drug repurposing [J]. Signal Transduct Target Ther, 2020, 5(1): 166.
[77] BISTER N, PISTONO C, HUREMAGIC B, et al. Hypoxia and extracellular vesicles: A review on methods, vesicular cargo and functions [J]. J Extracell Vesicles, 2020, 10(1): e12002.
[78] WANG Y, SONG S, LU T, et al. Oxygen-supplementing mesoporous polydopamine nanosponges with WS2 QDs-embedded for CT/MSOT/MR imaging and thermoradiotherapy of hypoxic cancer [J]. Biomaterials, 2019, 220:119405.
[79] LIU C, XING J, AKAKURU O U, et al. Nanozymes-Engineered Metal-Organic Frameworks for Catalytic Cascades-Enhanced Synergistic Cancer Therapy [J]. Nano Lett, 2019, 19(8): 5674-82.
[80] PENG C, LIANG Y, CHEN Y, et al. Hollow Mesoporous Tantalum Oxide Based Nanospheres for Triple Sensitization of Radiotherapy [J]. ACS Appl Mater Interfaces, 2020, 12(5): 5520-30.
[81] LIU C, CAO Y, CHENG Y, et al. An open source and reduce expenditure ROS generation strategy for chemodynamic/photodynamic synergistic therapy [J]. Nat Commun, 2020, 11(1): 1735.
[82] HU J-J, CHEN Y, LI Z-H, et al. Augment of Oxidative Damage with Enhanced Photodynamic Process and MTH1 Inhibition for Tumor Therapy [J]. Nano Letters, 2019, 19(8): 5568-76.
[83] SHERMAN M Y, GABAI V L. Hsp70 in cancer: back to the future [J]. Oncogene, 2015, 34(32): 4153-61.
[84] HUANG W J, XIA L M, ZHU F, et al. Transcriptional upregulation of HSP70-2 by HIF-1 in cancer cells in response to hypoxia [J]. Int J Cancer, 2009, 124(2): 298-305.

所在学位评定分委会
生物学
国内图书分类号
Q819
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544049
专题南方科技大学医学院
推荐引用方式
GB/T 7714
薛强. 纳米酶增强光声成像引导光热治疗乳腺癌的研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032600-薛强-南方科技大学医学(2061KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[薛强]的文章
百度学术
百度学术中相似的文章
[薛强]的文章
必应学术
必应学术中相似的文章
[薛强]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。