中文版 | English
题名

氧化镓钛基欧姆接触 工艺实现与机理研究

其他题名
Implementation and mechanism study of gallium oxide titanium-based ohmic contact process
姓名
姓名拼音
ZHAN Jiali
学号
12132486
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
丁孙安
导师单位
深港微电子学院
外机构导师
陈俊
外机构导师单位
宜确半导体(苏州)有限公司
论文答辩日期
2023-05-18
论文提交日期
2023-06-19
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

β-Ga2O3是一种超宽禁带半导体材料,具有 4.2 eV~5.3 eV 的禁带宽度,在高功率器件领域备受青睐。 目前β-Ga2O3的研究仍处于初级阶段,还存在许多问题亟待解决,其中实现良好的欧姆接触是一个很大的挑战。 在材料制备方面,分子束外延(MBE)技术具有高纯度、高质量、高精度、高可控性等优点,广泛应用于半导体器件、光电器件、量子器件等领域。 本文对MBE外延生长的以C面蓝宝石(Al2O3)为衬底的硅掺杂β-Ga2O3薄膜进行表征分析,发现当硅浓度小于1.2×1020 cm-3时,薄膜的载流子浓度和载流子迁移率随掺杂浓度的增加而增加,载流子浓度可达8×1018 cm-3,同时具有最高迁移率2.3 cm2/V·s; 当硅浓度继续增加,所生长的β-Ga2O3薄膜晶体形态迅速由单晶向多晶转变,导致β-Ga2O3晶体的电阻率从0.4 Ω·cm迅速升高,并呈现绝缘特性。 这说明MBE外延β-Ga2O3时过高的硅掺杂浓度会改变β-Ga2O3的单晶生长模式。 在此基础上,该工作在不同硅掺杂浓度的β-Ga2O3薄膜上制备Ti/β-Ga2O3欧姆接触结构,发现比接触电阻随β-Ga2O3衬底载流子浓度的提升而下降,最佳的比接触电阻为6.48×10-5 Ω·cm2,表明β-Ga2O3层高载流子浓度是提升其欧姆接触性能的有效策略。 此外,该工作还对金属钛/氧化镓界面进行表征分析,验证了钛氧化合物在钛基欧姆接触中的关键作用,为优化氧化镓等镓基宽禁带半导体的欧姆接触工艺提供了有价值的参考。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2023-06
参考文献列表

[1] REESE S B, REMO T, GREEN J, et al. How Much Will Gallium Oxide Power Electronics Cost?[J/OL]. Joule, 2019, 3(4): 903-907. DOI:10.1016/j.joule.2019.01.011.

[2] KIM H. Control and understanding of metal contacts to β-Ga2O3 single crystals: a review[J/OL]. SN Applied Sciences, 2022, 4(1): 27. DOI:10.1007/s42452-021-04895-9.

[3] HIGASHIWAKI M, SASAKI K, MURAKAMI H, et al. Recent progress in Ga 2 O 3 power devices[J/OL]. Semiconductor Science and Technology, 2016, 31(3): 034001. DOI:10.1088/0268-1242/31/3/034001.

[4] QIN Y, WANG Z, SASAKI K, et al. Recent progress of Ga2O3 power technology: large-area devices, packaging and applications[J/OL]. Japanese Journal of Applied Physics, 2023, 62(SF): SF0801. DOI:10.35848/1347-4065/acb3d3.

[5] GALAZKA Z, IRMSCHER K, UECKER R, et al. On the bulk β-Ga2O3 single crystals grown by the Czochralski method[J/OL]. Journal of Crystal Growth, 2014, 404: 184-191. DOI:10.1016/j.jcrysgro.2014.07.021.

[6] MU W, JIA Z, YIN Y, et al. High quality crystal growth and anisotropic physical characterization of β-Ga2O3 single crystals grown by EFG method[J/OL]. Journal of Alloys and Compounds, 2017, 714: 453-458. DOI:10.1016/j.jallcom.2017.04.185.

[7] KURAMATA A, KOSHI K, WATANABE S, et al. High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth[J/OL]. Japanese Journal of Applied Physics, 2016, 55(12): 1202A2. DOI:10.7567/JJAP.55.1202A2.

[8] FENG Z, CAI Y, YAN G, et al. A 800 V β-Ga2O3 Metal–Oxide–Semiconductor Field-Effect Transistor with High-Power Figure of Merit of Over 86.3 MW cm−2[J/OL]. physica status solidi (a), 2019, 216(20): 1900421. DOI:10.1002/pssa.201900421.

[9] MASTRO M A, KURAMATA A, CALKINS J, et al. Perspective—Opportunities and Future Directions for Ga2O3[J/OL]. ECS Journal of Solid State Science and Technology, 2017, 6(5): P356. DOI:10/gmfp7h.

[10] HIGASHIWAKI M, SASAKI K, KURAMATA A, et al. Gallium oxide (Ga 2 O 3 ) metal-semiconductor field-effect transistors on single-crystal β-Ga 2 O 3 (010) substrates[J/OL]. Applied Physics Letters, 2012, 100(1): 013504. DOI:10.1063/1.3674287.

[11] ROY R, HILL V G, OSBORN E F. Polymorphism of Ga2O3 and the system Ga2O3—H2O[J/OL]. Journal of the American Chemical Society, 1952, 74(3): 719-722. DOI:10.1021/ja01123a039.

[12] BALDINI M, GALAZKA Z, WAGNER G. Recent progress in the growth of β-Ga2O3 for power electronics applications[J/OL]. Materials Science in Semiconductor Processing, 2018, 78: 132-146. DOI:10.1016/j.mssp.2017.10.040.

[13] SASAKI K, HIGASHIWAKI M, KURAMATA A, et al. Ga2O3 Schottky Barrier Diodes Fabricated by Using Single-Crystal β–Ga2O3 (010) Substrates[J/OL]. IEEE Electron Device Letters, 2013, 34(4): 493-495. DOI:10.1109/LED.2013.2244057.

[14] OH S, MASTRO M A, TADJER M J, et al. Solar-Blind Metal-Semiconductor-Metal Photodetectors Based on an Exfoliated β-Ga2O3 Micro-Flake[J/OL]. ECS Journal of Solid State Science and Technology, 2017, 6(8): Q79. DOI:10.1149/2.0231708jss.

[15] PEARTON S J, YANG J, CARY P H, et al. A review of Ga2O3 materials, processing, and devices[J/OL]. Applied Physics Reviews, 2018, 5(1): 011301. DOI:10/gf6b8k.

[16] CHENG Z, YATES L, SHI J, et al. Thermal conductance across β-Ga2O3-diamond van der Waals heterogeneous interfaces[J/OL]. APL Materials, 2019, 7(3): 031118. DOI:10.1063/1.5089559.

[17] MOCK A, KORLACKI R, BRILEY C, et al. Band-to-band transitions, selection rules, effective mass, and excitonic contributions in monoclinic β-Ga2O3[J/OL]. Physical Review B, 2017, 96(24): 245205. DOI:10.1103/PhysRevB.96.245205.

[18] ARMSTRONG A M, CRAWFORD M H, JAYAWARDENA A, et al. Role of self-trapped holes in the photoconductive gain of β -gallium oxide Schottky diodes[J/OL]. Journal of Applied Physics, 2016, 119(10): 103102. DOI:10.1063/1.4943261.

[19] HUAN Y W, SUN S M, GU C J, et al. Recent Advances in β-Ga2O3–Metal Contacts[J/OL]. Nanoscale Research Letters, 2018, 13(1): 246. DOI:10.1186/s11671-018-2667-2.

[20] GRECO G, IUCOLANO F, ROCCAFORTE F. Ohmic contacts to Gallium Nitride materials[J/OL]. Applied Surface Science, 2016, 383: 324-345. DOI:10.1016/j.apsusc.2016.04.016.

[21] GREEN A J, CHABAK K D, BALDINI M, et al. β -Ga2O3 MOSFETs for Radio Frequency Operation[J/OL]. IEEE Electron Device Letters, 2017, 38(6): 790-793. DOI:10.1109/LED.2017.2694805.

[22] NG K K, LIU R. On the calculation of specific contact resistivity on[J/OL]. IEEE Transactions on Electron Devices, 1990, 37(6): 1535-1537. DOI:10.1109/16.106252.

[23] SASAKI K, HIGASHIWAKI M, KURAMATA A, et al. Si-Ion Implantation Doping in β-Ga 2 O 3 and Its Application to Fabrication of Low-Resistance Ohmic Contacts[J/OL]. Applied Physics Express, 2013, 6(8): 086502. DOI:10.7567/APEX.6.086502.

[24] WONG M H, NAKATA Y, KURAMATA A, et al. Enhancement-mode Ga 2 O 3 MOSFETs with Si-ion-implanted source and drain[J/OL]. Applied Physics Express, 2017, 10(4): 041101. DOI:10.7567/APEX.10.041101.

[25] YU A Y C. Electron tunneling and contact resistance of metal-silicon contact barriers[J/OL]. Solid-State Electronics, 1970, 13(2): 239-247. DOI:10.1016/0038-1101(70)90056-0.

[26] WONG M H, SASAKI K, KURAMATA A, et al. Electron channel mobility in silicon-doped Ga2O3 MOSFETs with a resistive buffer layer[J/OL]. Japanese Journal of Applied Physics, 2016, 55(12): 1202B9. DOI:10.7567/JJAP.55.1202B9.

[27] SHI J, XIA X, ABBAS Q, et al. Current transport mechanism of Mg/Au ohmic contacts to lightly doped n-type β-Ga2O3[J/OL]. Journal of Semiconductors, 2019, 40(1): 012805. DOI:10.1088/1674-4926/40/1/012805.

[28] WONG M H, SASAKI K, KURAMATA A, et al. Field-Plated Ga2O3 MOSFETs With a Breakdown Voltage of Over 750 V[J/OL]. IEEE Electron Device Letters, 2016, 37(2): 212-215. DOI:10.1109/LED.2015.2512279.

[29] CAREY P H, YANG J, REN F, et al. Ohmic contacts on n-type β-Ga 2 O 3 using AZO/Ti/Au[J/OL]. AIP Advances, 2017, 7(9): 095313. DOI:10.1063/1.4996172.

[30] CAREY P H, YANG J, REN F, et al. Improvement of Ohmic contacts on Ga 2 O 3 through use of ITO-interlayers[J/OL]. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 2017, 35(6): 061201. DOI:10.1116/1.4995816.

[31] Process and characterization of ohmic contacts for beta‑phase gallium oxide[J].

[32] VÍLLORA E G, SHIMAMURA K, UJIIE T, et al. Electrical conductivity and lattice expansion of β-Ga2O3 below room temperature[J/OL]. Applied Physics Letters, 2008, 92(20): 202118. DOI:10.1063/1.2910770.

[33] XIA Z, JOISHI C, KRISHNAMOORTHY S, et al. Delta Doped β -Ga2O3 Field Effect Transistors With Regrown Ohmic Contacts[J/OL]. IEEE Electron Device Letters, 2018, 39(4): 568-571. DOI:10.1109/LED.2018.2805785.

[34] XIA Z, XUE H, JOISHI C, et al. β -Ga2O3 Delta-Doped Field-Effect Transistors With Current Gain Cutoff Frequency of 27 GHz[J/OL]. IEEE Electron Device Letters, 2019, 40(7): 1052-1055. DOI:10.1109/LED.2019.2920366.

[35] BHATTACHARYYA A, ROY S, RANGA P, et al. 130 mA mm−1 β-Ga2O3 metal semiconductor field effect transistor with low-temperature metalorganic vapor phase epitaxy-regrown ohmic contacts[J/OL]. Applied Physics Express, 2021, 14(7): 076502. DOI:10.35848/1882-0786/ac07ef.

[36] GREEN A J, CHABAK K D, HELLER E R, et al. 3.8 MV/cm Breakdown Strength of MOVPE-Grown Sn-doped β-Ga2O3 MOSFETs[J/OL]. IEEE Electron Device Letters, 2016, 37(7): 902-905. DOI:10.1109/LED.2016.2568139.

[37] CAREY P H, REN F, HAYS D C, et al. Valence and conduction band offsets in AZO/Ga2O3 heterostructures[J/OL]. Vacuum, 2017, 141: 103-108. DOI:10.1016/j.vacuum.2017.03.031.

[38] SHI J, XIA X, LIANG H, et al. Low resistivity ohmic contacts on lightly doped n-type β-Ga2O3 using Mg/Au[J/OL]. Journal of Materials Science: Materials in Electronics, 2019, 30(4): 3860-3864. DOI:10.1007/s10854-019-00669-7.

[39] LEE M H, PETERSON R L. Accelerated Aging Stability of β‑Ga2O3–Titanium/Gold Ohmic Interfaces[J/OL]. ACS Appl. Mater. Interfaces, 2020, 12(41): 46277-46287. DOI:10.1021/acsami.0c10598.

[40] OSHIMA T, OKUNO T, ARAI N, et al. Vertical Solar-Blind Deep-Ultraviolet Schottky Photodetectors Based on β-Ga2O3 Substrates[J/OL]. Applied Physics Express, 2008, 1(1): 011202. DOI:10.1143/APEX.1.011202.

[41] ZENG K, WALLACE J S, HEIMBURGER C, et al. Ga2O3 MOSFETs Using Spin-On-Glass Source/Drain Doping Technology[J/OL]. IEEE Electron Device Letters, 2017, 38(4): 513-516. DOI:10/gjt3nd.

[42] MAZZOLINI P, FALKENSTEIN A, WOUTERS C, et al. Substrate-orientation dependence of β-Ga2O3 (100), (010), (001), and (2¯01) homoepitaxy by indium-mediated metal-exchange catalyzed molecular beam epitaxy (MEXCAT-MBE)[J/OL]. APL Materials, 2020, 8(1): 011107. DOI:10.1063/1.5135772.

[43] SCHEWSKI R, LION K, FIEDLER A, et al. Step-flow growth in homoepitaxy of β-Ga2O3 (100)—The influence of the miscut direction and faceting[J/OL]. APL Materials, 2019, 7(2): 022515. DOI:10.1063/1.5054943.

[44] MURAKAMI H, NOMURA K, GOTO K, et al. Homoepitaxial growth of β-Ga2O3 layers by halide vapor phase epitaxy[J/OL]. Applied Physics Express, 2014, 8(1): 015503. DOI:10.7567/APEX.8.015503.

[45] SCHRODER D K. Semiconductor Material And Device Characterization[J/OL]. 2005

[2023-03-19]. https://xueshu.baidu.com/usercenter/paper/show?paperid=883df86b6d103f51f9d2ae077d5e550c&site=xueshu_se&hitarticle=1. DOI:10.1002/0471749095.

[46] SHEN T C, GAO G B, MORKOÇ H. Recent developments in ohmic contacts for III–V compound semiconductors[J/OL]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 1992, 10(5): 2113-2132. DOI:10.1116/1.586179.

[47] BARDEEN J. Surface States and Rectification at a Metal Semi-Conductor Contact[J/OL]. Physical Review, 1947, 71(10): 717-727. DOI:10.1103/PhysRev.71.717.

[48] ZHOU H, SI M, ALGHAMDI S, et al. High-Performance Depletion/Enhancement-ode β -Ga2O3 on Insulator (GOOI) Field-Effect Transistors With Record Drain Currents of 600/450 mA/mm[J/OL]. IEEE Electron Device Letters, 2017, 38(1): 103-106. DOI:10.1109/LED.2016.2635579.

[49] LI Z, LIU Y, ZHANG A, et al. Quasi-two-dimensional β-Ga2O3 field effect transistors with large drain current density and low contact resistance via controlled formation of interfacial oxygen vacancies[J/OL]. Nano Research, 2019, 12(1): 143-148. DOI:10.1007/s12274-018-2193-7.

[50] BAE J, KIM H Y, KIM J. Contacting Mechanically Exfoliated β-Ga2O3 Nanobelts for (Opto)electronic Device Applications[J/OL]. ECS Journal of Solid State Science and Technology, 2016, 6(2): Q3045. DOI:10/gp58h2.

[51] PORTER L M, HAJZUS J R. Perspectives from research on metal-semiconductor contacts: Examples from Ga2O3, SiC, (nano)diamond, and SnS[J/OL]. Journal of Vacuum Science & Technology A, 2020, 38(3): 031005. DOI:10.1116/1.5144502.

[52] LEE M H, PETERSON R L. Interfacial reactions of titanium/gold ohmic contacts with Sn-doped β-Ga 2 O 3[J/OL]. APL Materials, 2019, 7(2): 022524. DOI:10.1063/1.5054624.

[53] GUO D Y, WU Z P, AN Y H, et al. Oxygen vacancy tuned Ohmic-Schottky conversion for enhanced performance in β- Ga 2 O 3 solar-blind ultraviolet photodetectors[J/OL]. Applied Physics Letters, 2014, 105(2): 023507. DOI:10.1063/1.4890524.

[54] YAO Y, DAVIS R F, PORTER L M. Investigation of Different Metals as Ohmic Contacts to β-Ga2O3: Comparison and Analysis of Electrical Behavior, Morphology, and Other Physical Properties[J/OL]. Journal of Electronic Materials, 2017, 46(4): 2053-2060. DOI:10.1007/s11664-016-5121-1.

[55] WHEELER V D, SHAHIN D I, TADJER M J, et al. Band Alignments of Atomic Layer Deposited ZrO2 and HfO2 High-k Dielectrics with (-201) β-Ga2O3[J/OL]. ECS Journal of Solid State Science and Technology, 2016, 6(2): Q3052. DOI:10.1149/2.0131702jss.

[56] MOHAMED M, IRMSCHER K, JANOWITZ C, et al. Schottky barrier height of Au on the transparent semiconducting oxide β -Ga 2 O 3[J/OL]. Applied Physics Letters, 2012, 101(13): 132106. DOI:10.1063/1.4755770.

[57] KRISHNAMOORTHY S, XIA Z, JOISHI C, et al. Modulation-doped β-(Al0.2Ga0.8)2O3/Ga2O3 field-effect transistor[J/OL]. Applied Physics Letters, 2017, 111(2): 023502. DOI:10.1063/1.4993569.

[58] CHABAK K, GREEN A, MOSER N, et al. Gate-recessed, laterally-scaled β-Ga2O3 MOSFETs with high-voltage enhancement-mode operation[C/OL]//2017 75th Annual Device Research Conference (DRC). 2017: 1-2. DOI:10.1109/DRC.2017.7999398.

[59] CHIU Y S, LIN T M, NGUYEN H Q, et al. Ti/Al/Ti/Ni/Au ohmic contacts on AlGaN/GaN high electron mobility transistors with improved surface morphology and low contact resistance[J/OL]. Journal of Vacuum Science & Technology B, 2014, 32(1): 011216. DOI:10.1116/1.4862165.

[60] MOHAMMED F M, WANG L, ADESIDA I, et al. The role of barrier layer on Ohmic performance of Ti∕Al-based contact metallizations on AlGaN∕GaN heterostructures[J/OL]. Journal of Applied Physics, 2006, 100(2): 023708. DOI:10.1063/1.2218766.

[61] KHANNA R, GILA B P, STAFFORD L, et al. Ir-Based Schottky and Ohmic Contacts on n-GaN[J/OL]. Journal of The Electrochemical Society, 2007, 154(7): H584. DOI:10.1149/1.2734102.

[62] LYLE L A M, BACK T C, BOWERS C T, et al. Electrical and chemical analysis of Ti/Au contacts to β-Ga2O3[J/OL]. APL Materials, 2021, 9(6): 061104. DOI:10.1063/5.0051340.

[63] YOSHIDA T, EGAWA T. Role of thin Ti layer in formation mechanism of low temperature-annealed Ti/Al-based ohmic contact on AlGaN/GaN heterostructure[J/OL]. Semiconductor Science and Technology, 2018, 33(7): 075006. DOI:10/gn4p3w.

[64] KIM M J, KIM T G. Fabrication of Metal-Deposited Indium Tin Oxides: Its Applications to 385 nm Light-Emitting Diodes[J/OL]. ACS Applied Materials & Interfaces, 2016, 8(8): 5453-5457. DOI:10.1021/acsami.5b12127.

[65] WALSH A, SILVA J L F D, WEI S H. Multi-component transparent conducting oxides: progress in materials modelling[J/OL]. Journal of Physics: Condensed Matter, 2011, 23(33): 334210. DOI:10.1088/0953-8984/23/33/334210.

[66] HOSONO H, NOMURA K, OGO Y, et al. Factors controlling electron transport properties in transparent amorphous oxide semiconductors[J/OL]. Journal of Non-Crystalline Solids, 2008, 354(19-25): 2796-2800. DOI:10.1016/j.jnoncrysol.2007.10.071.

[67] OSHIMA T, WAKABAYASHI R, HATTORI M, et al. Formation of indium–tin oxide ohmic contacts for β-Ga 2 O 3[J/OL]. Japanese Journal of Applied Physics, 2016, 55(12): 1202B7. DOI:10.7567/JJAP.55.1202B7.

[68] OKUMURA H, TANAKA T. Dry and wet etching for β-Ga2O3 Schottky barrier diodes with mesa termination[J/OL]. Japanese Journal of Applied Physics, 2019, 58(12): 120902. DOI:10.7567/1347-4065/ab4f90.

[69] ZHANG Y, MAUZE A, SPECK J S. Anisotropic etching of β-Ga2O3 using hot phosphoric acid[J/OL]. Applied Physics Letters, 2019, 115(1): 013501. DOI:https://doi.org/10.1063/1.5093188.

[70] JANG S, JUNG S, BEERS K, et al. A comparative study of wet etching and contacts on ( 2 ¯ 01 ) and (010) oriented β-Ga2O3[J/OL]. Journal of Alloys and Compounds, 2018, 731: 118-125. DOI:10.1016/j.jallcom.2017.09.336.

[71] LIU T, HUANG R, LI F, et al. Study on the measurement accuracy of circular transmission line model for low-resistance Ohmic contacts on III-V wide band-gap semiconductors[J/OL]. Current Applied Physics, 2018, 18(7): 853-858. DOI:10.1016/j.cap.2018.03.012.

[72] 陈存礼, 李建年, 华文玉. 钛-硅系快速热退火固相反应机制的研究[J/OL]. 物理学报, 2005, 39(7): 127-133. DOI:10.7498/aps.39.127.

[73] HOLSTEIN W L. Thermal Diffusion in Metal‐Organic Chemical Vapor Deposition[J/OL]. Journal of The Electrochemical Society, 1988, 135(7): 1788. DOI:10.1149/1.2096131.

[74] PHILLIPS A. Blog - New resource available: Hall Effect Measurement Handbook[EB/OL].

[2023-03-28]. https://blog.lakeshore.com/new-resource-available-for-download-hall-effect-measurement-handbook.

[75] TSIVIDIS Y, MCANDREW C. Operation and Modeling of the MOS Transistor[M]. 3rd edition. New York: Oxford University Press, 2010.

[76] Contact Resistance and Schottky Barriers[M/OL]//Semiconductor Material and Device Characterization. John Wiley & Sons, Ltd, 2005: 127-184

[2023-03-21]. https://onlinelibrary.wiley.com/doi/abs/10.1002/0471749095.ch3. DOI:10.1002/0471749095.ch3.

[77] 冯博渊. β-Ga2O3薄膜外延机理及其 MOSFET 器件工艺研究[D]. 江苏省苏州工业园区若水路中国科学院苏州纳米技术与纳米仿生研究所(三期),上善苑,纳米真空互联实验站: 苏州纳米技术与纳米仿生研究所, 二〇二二年五月三十一日.

[78] ONUMA T, FUJIOKA S, YAMAGUCHI T, et al. Correlation between blue luminescence intensity and resistivity in β-Ga2O3 single crystals[J/OL]. Applied Physics Letters, 2013, 103(4): 041910. DOI:10/gqtmvg.

[79] GAO H, MURALIDHARAN S, PRONIN N, et al. Optical signatures of deep level defects in Ga2O3[J/OL]. Applied Physics Letters, 2018, 112(24): 242102. DOI:10/gp72tv.

[80] ZHANG F, LI H, CUI Y T, et al. Evolution of optical properties and band structure from amorphous to crystalline Ga2O3 films[J/OL]. AIP Advances, 2018, 8(4): 045112. DOI:10/gdrqm2.

[81] WANG Y, DICKENS P T, VARLEY J B, et al. Incident wavelength and polarization dependence of spectral shifts in β-Ga2O3 UV photoluminescence[J/OL]. Scientific Reports, 2018, 8(1): 18075. DOI:10/gfsb5x.

[82] ZHANG F, ARITA M, WANG X, et al. Toward controlling the carrier density of Si doped Ga2O3 films by pulsed laser deposition[J/OL]. Applied Physics Letters, 2016, 109(10): 102105. DOI:10.1063/1.4962463.

[83] LANY S. Defect phase diagram for doping of Ga2O3[J/OL]. APL Materials, 2018, 6(4): 046103. DOI:10.1063/1.5019938.

[84] KALARICKAL N K, XIA Z, MCGLONE J, et al. Mechanism of Si doping in plasma assisted MBE growth of β-Ga2O3[J/OL]. Applied Physics Letters, 2019, 115(15): 152106. DOI:10.1063/1.5123149.

[85] 于宗光, 李海鸥, 黄伟. 基于Ti/Pt/Au欧姆接触金属系统的InP基HEMT器件[J/OL]. 半导体技术, 2014, 39(3): 179-182+192. DOI:10/grb4tm.

[86] SHAH A P, RAHMAN A A, BHATTACHARYA A. ICP-RIE etching of polar, semi-polar and non-polar AlN: comparison of Cl2/Ar and Cl2/BCl3/Ar plasma chemistry and surface pretreatment[J/OL]. Semiconductor Science and Technology, 2014, 30(1): 015021. DOI:10.1088/0268-1242/30/1/015021.

[87] HOGAN J E, KAUN S W, AHMADI E, et al. Chlorine-based dry etching of beta-Ga2O3[J/OL]. Semiconductor Science and Technology, 2016, 31(6): 065006. DOI:10/gkzhdb.

[88] JIAN Z (Ashley), OSHIMA Y, WRIGHT S, et al. Chlorine-based inductive coupled plasma etching of α -Ga 2 O 3[J/OL]. Semiconductor Science and Technology, 2019, 34(3): 035006. DOI:10.1088/1361-6641/aafeb2.

[89] DRIVE P H, CLARA S. DEVICE SIMULATION SOFTWARE[J]. 1508.

[90] XU D Z, JIN P, XU P F, et al. Investigation of Ga2O3/diamond heterostructure solar-blind avalanche photodiode via TCAD simulation[J/OL]. Chinese Physics B, 2023

[2023-03-28]. http://iopscience.iop.org/article/10.1088/1674-1056/acc44d. DOI:10.1088/1674-1056/acc44d.

[91] 李政成. 镓基宽禁带半导体表界面分析与能带调控[D]. 中国科学院苏州纳米技术与纳米仿生研究所: 中国科学技术大学, 2023.

[92] HUANG H C, REN Z, CHAN C, et al. Wet etch, dry etch, and MacEtch of β-Ga2O3: A review of characteristics and mechanism[J/OL]. Journal of Materials Research, 2021, 36(23): 4756-4770. DOI:10/grkz8v.

所在学位评定分委会
材料与化工
国内图书分类号
TN355
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544056
专题南方科技大学-香港科技大学深港微电子学院筹建办公室
推荐引用方式
GB/T 7714
詹家立. 氧化镓钛基欧姆接触 工艺实现与机理研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132486-詹家立-南方科技大学-(6203KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[詹家立]的文章
百度学术
百度学术中相似的文章
[詹家立]的文章
必应学术
必应学术中相似的文章
[詹家立]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。