[1] RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by backpropagating errors[J]. Nature, 1986, 323(6088): 533-536.
[2] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
[3] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
[4] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[A]. 2014. arXiv preprint arXiv:1409.1556.
[5] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016: 770-778.
[6] XIAO L, BAHRI Y, SOHL-DICKSTEIN J, et al. Dynamical isometry and a mean field theory of CNNs: How to train 10,000-layer vanilla convolutional neural networks[A]. 2018. arXiv preprint arXiv:1806.05393.
[7] OORD A V D, DIELEMAN S, ZEN H, et al. Wavenet: A generative model for raw audio[A]. 2016.
[8] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. Advances in Neural Information Processing Systems, 2017, 30.
[9] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016: 779-788.
[10] FANG C, LI G, PAN C, et al. Globally guided progressive fusion network for 3D pancreas segmentation[C]//Medical Image Computing and Computer Assisted Intervention. Springer, 2019: 210-218.
[11] PARISOT S, KTENA S I, FERRANTE E, et al. Spectral graph convolutions for population- based disease prediction[C]//Medical Image Computing and Computer Assisted Intervention. Springer, 2017: 177-185.
[12] CHEN L, CUI G, KOU Z, et al. What comprises a good talking-head video generation?: A survey and benchmark[A]. 2020. arXiv preprint arXiv:2005.03201.
[13] DENG L, LI G, HAN S, et al. Model compression and hardware acceleration for neural networks: A comprehensive survey[J]. Proceedings of the IEEE, 2020, 108(4): 485-532.
[14] BUCILUǎ C, CARUANA R, NICULESCU-MIZIL A. Model compression[C]//Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2006: 535-541.
[15] HINTON G, VINYALS O, DEAN J, et al. Distilling the knowledge in a neural network: volume 2[A]. 2015. arXiv preprint arXiv:1503.02531.
[16] YOU S, XU C, XU C, et al. Learning from multiple teacher networks[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2017: 1285-1294.
[17] GOU J, YU B, MAYBANK S J, et al. Knowledge distillation: A survey[J]. International Journal of Computer Vision, 2021, 129: 1789-1819.
[18] KIM J, PARK S, KWAK N. Paraphrasing complex network: Network compression via factor transfer[J]. Advances in Neural Information Processing Systems, 2018, 31.
[19] MIRZADEH S I, FARAJTABAR M, LI A, et al. Improved knowledge distillation via teacher assistant[C]//Proceedings of the AAAI Conference on Artificial Intelligence: volume 34. 2020: 5191-5198.
[20] ROMERO A, BALLAS N, KAHOU S E, et al. Fitnets: Hints for thin deep nets[A]. 2014. arXiv preprint arXiv:1412.6550.
[21] HUANG Z, WANG N. Like what you like: Knowledge distill via neuron selectivity transfer[A]. 2017. arXiv preprint arXiv:1707.01219.
[22] AHN S, HU S X, DAMIANOU A, et al. Variational information distillation for knowledge trans- fer[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019: 9163-9171.
[23] HEO B, LEE M, YUN S, et al. Knowledge transfer via distillation of activation boundaries formed by hidden neurons[C]//Proceedings of the AAAI Conference on Artificial Intelligence: volume 33. 2019: 3779-3787.
[24] YIM J, JOO D, BAE J, et al. A gift from knowledge distillation: Fast optimization, network minimization and transfer learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2017: 4133-4141.
[25] LEE S, SONG B C. Graph-based knowledge distillation by multi-head attention network[A]. 2019. arXiv preprint arXiv:1907.02226.
[26] LIU Y, CAO J, LI B, et al. Knowledge distillation via instance relationship graph[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019: 7096-7104.
[27] LI T, LI J, LIU Z, et al. Few sample knowledge distillation for efficient network compression [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 14639-14647.
[28] ZHANG Y, XIANG T, HOSPEDALES T M, et al. Deep mutual learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018: 4320-4328.
[29] CHEN D, MEI J P, WANG C, et al. Online knowledge distillation with diverse peers[C]// Proceedings of the AAAI Conference on Artificial Intelligence: volume 34. 2020: 3430-3437.
[30] ZHANG L, SONG J, GAO A, et al. Be your own teacher: Improve the performance of con- volutional neural networks via self distillation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019: 3713-3722.
[31] MOBAHI H, FARAJTABAR M, BARTLETT P. Self-distillation amplifies regularization in hilbert space[J]. Advances in Neural Information Processing Systems, 2020, 33: 3351-3361.
[32] WANG H, ZHAO H, LI X, et al. Progressive blockwise knowledge distillation for neural network acceleration.[C]//International Joint Conferences on Artificial Intelligence. 2018: 2769-2775.
[33] ZHU X, GONG S, et al. Knowledge distillation by on-the-fly native ensemble[J]. Advances in Neural Information Processing Systems, 2018, 31.
[34] POLINO A, PASCANU R, ALISTARH D. Model compression via distillation and quantization [A]. 2018. arXiv preprint arXiv:1802.05668.
[35] MISHRA A, MARR D. Apprentice: Using knowledge distillation techniques to improve low- precision network accuracy[A]. 2017. arXiv preprint arXiv:1711.05852.
[36] WEI Y, PAN X, QIN H, et al. Quantization mimic: Towards very tiny cnn for object detection [C]//Proceedings of the European Conference on Computer Vision. 2018: 267-283.
[37] HOWARD A G, ZHU M, CHEN B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications[A]. 2017. arXiv preprint arXiv:1704.04861.
[38] ZHANG X, ZHOU X, LIN M, et al. Shufflenet: An extremely efficient convolutional neural network for mobile devices[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 6848-6856.
[39] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017: 4700-4708.
[40] SAU B B, BALASUBRAMANIAN V N. Deep model compression: Distilling knowledge from noisy teachers[A]. 2016. arXiv preprint arXiv:1610.09650.
[41] CHEN X, SU J, ZHANG J. A two-teacher framework for knowledge distillation[C]//Advances in Neural Networks. Springer, 2019: 58-66.
[42] PARK S, KWAK N. Feature-level ensemble knowledge distillation for aggregating knowledge from multiple networks[M]//European Association for Artificial Intelligence. IOS Press, 2020: 1411-1418.
[43] WU G, GONG S. Peer collaborative learning for online knowledge distillation[C]//Proceedings of the AAAI Conference on Artificial Intelligence: volume 35. 2021: 10302-10310.
[44] ASIF U, TANG J, HARRER S. Ensemble knowledge distillation for learning improved and efficient networks[A]. 2019. arXiv preprint arXiv:1909.08097.
[45] FUKUDA T, SUZUKI M, KURATA G, et al. Efficient Knowledge Distillation from an Ensem- ble of Teachers.[C]//Interspeech. 2017: 3697-3701.
[46] WANG C, ZHANG S, SONG S, et al. Learn from the past: Experience ensemble knowledge distillation[C]//International Conference on Pattern Recognition. IEEE, 2022: 4736-4743.
[47] ZHANG H, CHEN D, WANG C. Confidence-aware multi-teacher knowledge distillation[C]// IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2022: 4498- 4502.
[48] LIU Y, ZHANG W, WANG J. Adaptive multi-teacher multi-level knowledge distillation[J]. Neurocomputing, 2020, 415: 106-113.
[49] WU C, WU F, QI T, et al. Unified and effective ensemble knowledge distillation[A]. 2022. arXiv preprint arXiv:2204.00548.
[50] DU S, YOU S, LI X, et al. Agree to disagree: Adaptive ensemble knowledge distillation in gradient space[J]. Advances in Neural Information Processing Systems, 2020, 33: 12345-12355.
[51] KUMAR R, SOTELO J, KUMAR K, et al. Obamanet: Photo-realistic lip-sync from text[A]. 2017. arXiv preprint arXiv:1801.01442.
[52] SUWAJANAKORN S, SEITZ S M, KEMELMACHER-SHLIZERMAN I. Synthesizing obama: Learning lip sync from audio[J]. ACM Transactions on Graphics, 2017, 36(4): 1-13.
[53] THIES J, ELGHARIB M, TEWARI A, et al. Neural voice puppetry: Audio-driven facial reen- actment[C]//European Conference on Computer Vision. Springer, 2020: 716-731.
[54] FRIED O, TEWARI A, ZOLLHÖFER M, et al. Text-based editing of talking-head video[J]. ACM Transactions on Graphics, 2019, 38(4): 1-14.
[55] JAMALUDIN A, CHUNG J S, ZISSERMAN A. You said that?: Synthesising talking faces from audio[J]. International Journal of Computer Vision, 2019, 127(11): 1767-1779.
[56] PRAJWAL K, MUKHOPADHYAY R, NAMBOODIRI V P, et al. A lip sync expert is all you need for speech to lip generation in the wild[C]//Proceedings of the 28th ACM International Conference on Multimedia. 2020: 484-492.
[57] ZHOU H, LIU Y, LIU Z, et al. Talking face generation by adversarially disentangled audio- visual representation[C]//Proceedings of the AAAI Conference on Artificial Intelligence: vol- ume 33. 2019: 9299-9306.
[58] ZHOU H, SUN Y, WU W, et al. Pose-controllable talking face generation by implicitly modu- larized audio-visual representation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: 4176-4186.
[59] CHEN L, LI Z, MADDOX R K, et al. Lip movements generation at a glance[C]//Proceedings of the European Conference on Computer Vision. 2018: 520-535.
[60] VOUGIOUKAS K, PETRIDIS S, PANTIC M. Realistic speech-driven facial animation with GANs[J]. International Journal of Computer Vision, 2020, 128(5): 1398-1413.
[61] CHEN L, MADDOX R K, DUAN Z, et al. Hierarchical cross-modal talking face generation with dynamic pixel-wise loss[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019: 7832-7841.
[62] GU K, ZHOU Y, HUANG T. Flnet: Landmark driven fetching and learning network for faith- ful talking facial animation synthesis[C]//Proceedings of the AAAI Conference on Artificial Intelligence: volume 34. 2020: 10861-10868.
[63] BLANZ V, VETTER T. Face recognition based on fitting a 3D morphable model[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(9): 1063-1074.
[64] SONG L, WU W, QIAN C, et al. Everybody’s talkin’: Let me talk as you want[J]. IEEE Transactions on Information Forensics and Security, 2022, 17: 585-598.
[65] YI R, YE Z, ZHANG J, et al. Audio-driven talking face video generation with learning-based personalized head pose[A]. 2020. arXiv preprint arXiv:2002.10137.
[66] JI X, ZHOU H, WANG K, et al. Audio-driven emotional video portraits[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: 14080-14089.
[67] WALAWALKAR D, SHEN Z, SAVVIDES M. Online ensemble model compression using knowledge distillation[C]//European Conference on Computer Vision. Springer, 2020: 18-35.
[68] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks [J]. Communications of the ACM, 2020, 63(11): 139-144.
[69] NIE X, FENG J, ZHANG J, et al. Single-stage multi-person pose machines[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019: 6951-6960.
[70] LI B, LI J, TANG K, et al. Many-objective evolutionary algorithms: A survey[J]. ACM Com- puting Surveys, 2015, 48(1): 1-35.
[71] CHU X, ZHANG B, XU R. Multi-objective reinforced evolution in mobile neural architecture search[C]//European Conference on Computer Vision. Springer, 2020: 99-113.
[72] LU Z, DEB K, GOODMAN E, et al. NSGANetV2: Evolutionary multi-objective surrogate- assisted neural architecture search[C]//European Conference on Computer Vision. Springer, 2020: 35-51.
[73] HONG W, LI G, LIU S, et al. Multi-objective evolutionary optimization for hardware-aware neural network pruning[J]. Fundamental Research, 2022, in press.
[74] HOLLAND J H. Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence[M]. MIT press, 1992.
[75] DEB K, AGRAWAL S, PRATAP A, et al. A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II[C]//International Conference on Parallel Problem Solving from Nature. Springer, 2000: 849-858.
[76] HONG M, XIE Y, LI C, et al. Distilling image dehazing with heterogeneous task imitation[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 3462-3471.
[77] WANG T, YUAN L, ZHANG X, et al. Distilling object detectors with fine-grained feature im- itation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog- nition. 2019: 4933-4942.
[78] YOON J W, LEE H, KIM H Y, et al. TutorNet: Towards flexible knowledge distillation for end-to-end speech recognition[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2021, 29: 1626-1638.
[79] KRIZHEVSKY A, HINTON G, et al. Learning multiple layers of features from tiny images [M]. Toronto, ON, Canada, 2009.
[80] ZAGORUYKO S, KOMODAKIS N. Paying more attention to attention: Improving the per- formance of convolutional neural networks via attention transfer[A]. 2016. arXiv preprint arXiv:1612.03928.
[81] TIAN Y, KRISHNAN D, ISOLA P. Contrastive representation distillation[A]. 2019. arXiv preprint arXiv:1910.10699.
[82] CHEN L, CUI G, LIU C, et al. Talking-head generation with rhythmic head motion[C]// European Conference on Computer Vision. Springer, 2020: 35-51.
[83] WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: From error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.
[84] HONG W, YANG P, TANG K. Evolutionary computation for large-scale multi-objective op- timization: A decade of progresses[J]. International Journal of Automation and Computing, 2021, 18(2): 155-169.
[85] HONG W, TANG K, ZHOU A, et al. A scalable indicator-based evolutionary algorithm for large-scale multiobjective optimization[J]. IEEE Transactions on Evolutionary Computation, 2018, 23(3): 525-537.
[86] ZHOU A, QU B Y, LI H, et al. Multiobjective evolutionary algorithms: A survey of the state of the art[J]. Swarm and Evolutionary Computation, 2011, 1(1): 32-49.
[87] LIN W, JIN X, MU Y, et al. A two-stage multi-objective scheduling method for integrated community energy system[J]. Applied Energy, 2018, 216(APR.15): 428-441.
[88] XIAO W, CHENG A, LI S, et al. A multi-objective optimization strategy of steam power system to achieve standard emission and optimal economic by NSGA-II[J]. Energy, 2021.
[89] CHUNG J S, ZISSERMAN A. Lip reading in the wild[C]//Asian Conference on Computer Vision. Springer, 2016: 87-103.
[90] SON CHUNG J, SENIOR A, VINYALS O, et al. Lip reading sentences in the wild[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017: 6447- 6456.
[91] REN Y, WU J, XIAO X, et al. Online multi-granularity distillation for gan compression[C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021: 6793-6803.
修改评论