[1] GIELEN G G, WALSCHARTS H C, SANSEN W M. ISAAC: A symbolic simulator for analog integrated circuits[J]. IEEE Journal of Solid-State Circuits, 1989, 24(6): 1587-1597.
[2] PEDRAM M. Power minimization in IC design: principles and applications[J]. ACM Transactions on Design Automation of Electronic Systems, 1996, 1(1): 3-56.
[3] NAGEL L W. SPICE2: a computer program to simulate semiconductor circuits: UCB/ERL M520[D]. EECS Department, University of California, Berkeley, 1975: 401-438.
[4] 张航. 模拟数字混合电路仿真方法的研究与应用[D]. 山东: 山东大学, 2016: 178-206.
[5] KISIELEWICZ T, CUENCA M. Overview of transient simulations of grounding systems under surge conditions[J]. Energies, 2022, 15(20): 7694-8089.
[6] CORTI F, REATTI A, CARDELI E, et al. Improved SPICE simulation of dynamic core losses for ferrites with nonuniform field and its experimental validation[J]. IEEE Transactions on Industrial Electronics, 2020, 68(12): 12069-12078.
[7] DELPORT J A, JACKMAN K, LE ROUX P, et al. Josim—superconductor spice simulator[J]. IEEE Transactions on Applied Superconductivity, 2019, 29(5): 1-5.
[8] VIEIRA R, HORTA N, LOURENÇO N, et al. Layout[J]. Tunable Low-Power Low-Noise Amplifier for Healthcare Applications, 2021: 75-84.
[9] SHOOK B, BHANSALI P, KASHYAP C, et al. MLParest: machine learning based parasitic estimation for custom circuit design[C]//2020 57th ACM/IEEE Design Automation Conference. IEEE, 2020: 1-6.
[10] HAKHAMANESHI K, WERBLUN N, ABBEEL P, et al. BagNet: Berkeley analog generator with layout optimizer boosted with deep neural networks[C]//2019 IEEE/ACM International Conference on Computer-Aided Design. IEEE, 2019: 1-8.
[11] LIU M, ZHU K, TANG X, et al. Closing the design loop: Bayesian optimization assisted hierarchical analog layout synthesis[C]//2020 57th ACM/IEEE Design Automation Conference. IEEE, 2020: 1-6.
[12] NAUNG S W, RAHMATI M, FAROKHI H. Direct numerical simulation of interaction between transient flow and blade structure in a modern low-pressure turbine[J]. International Journal of Mechanical Sciences, 2021, 192: 106104-106118.
[13] XIE R, CHEN G, ZHAO Y, et al. In-situ observation and numerical simulation on the transient strain and distortion prediction during additive manufacturing[J]. Journal of Manufacturing Processes, 2019, 38: 494-501.
[14] 刘伟平. 电路并行仿真算法研究与应用[D]. 北京: 清华大学, 2019: 170-196.
[15] DINAVAHI V, LIN N. Parallel dynamic and transient simulation of large-scale power systems: a high performance computing solution[M]. Springer Nature, 2022: 55-62.
[16] LI D, QIN Y, ZUO Z, et al. Numerical simulation on pump transient characteristic in a model pump turbine[J]. Journal of Fluids Engineering, 2019, 141(11): 694-801.
[17] DEMO N, TEZZELE M, MOLA A, et al. Hull shape design optimization with parameter space and model reductions, and self-learning mesh morphing[J]. Journal of Marine Science and Engineering, 2021, 9(2): 185.
[18] ODABASIOGLU A, CELIK M, PILEGGI L T. PRIMA: Passive reduced-order interconnect macromodeling algorithm[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 1998, 17(8): 645-654.
[19] GU J, WANG W, YIN R, et al. Complex circuit simulation and nonlinear characteristics analysis of GaN power switching device[J]. Nonlinear Engineering, 2022, 10(1): 555-562.
[20] BAKER R J. CMOS: circuit design, layout, and simulation[M]. John Wiley & Sons, 2019:15-32.
[21] BARNETT J, FARHAT C. Quadratic approximation manifold for mitigating the Kolmogorov barrier in nonlinear projection-based model order reduction[J]. Journal of Computational Physics, 2022, 464: 111348-111360.
[22] CHEN L, LIAN H, NATARAJAN S, et al. Multi-frequency acoustic topology optimization of sound-absorption materials with isogeometric boundary element methods accelerated by frequency-decoupling and model order reduction techniques[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 395: 114997-11511.
[23] HESTHAVEN J S, PAGLIANTINI C, ROZZA G. Reduced basis methods for time-dependent problems[J]. Acta Numerica, 2022, 31: 265-345.
[24] GOBAT G, OPRENI A, FRESCA S, et al. Reduced order modeling of nonlinear microstructures through proper orthogonal decomposition[J]. Mechanical Systems and Signal Processing, 2022, 171: 108864-108889.
[25] PILLAGE L T, ROHRER R A. Asymptotic waveform evaluation for timing analysis[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 1990, 9(4): 352-366.
[26] BULTHEEL A, VAN BAREL M. Padé techniques for model reduction in linear system theory: a survey[J]. Journal of Computational and Applied Mathematics, 1986, 14(3): 401-438.
[27] ZHUANG H, WENG S H, LIN J H, et al. MATEX: a distributed framework for transient simulationof power distribution networks[C]//2014 55th ACM/IEEE Design Automation Conference. IEEE, 2014: 81:1-81:6.
[28] ZHUANG H, WENG S H, CHENG C K. Power grid simulation using matrix exponential method with rational Krylov subspaces[C]//2013 IEEE 10th International Conference on ASIC. IEEE, 2013: 1-4.
[29] WENG S H, CHEN Q, WONG N, et al. Circuit simulation via matrix exponential method for stiffness handling and parallel processing[C]//2012 IEEE/ACM International Conference on Computer-Aided Design. ACM, 2012: 407-414.
[30] CHEN Q, WENG S, CHENG C. A practical regularization technique for modified nodal analysis in large-scale time-domain circuit simulation[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2012, 31(7): 1031-1040.
[31] HACHTEL G, BRAYTON R, GUSTAVSON F. The sparse tableau approach to network analysis and design[J]. IEEE Transactions on Circuit Theory, 1971, 18(1): 101-113.
[32] HO C W, RUEHLI A, BRENNAN P. The modified nodal approach to network analysis[J]. IEEE Transactions on Circuits and Systems, 1975, 22(6): 504-509.
[33] NAJM F N. Circuit simulation[M]. Wiley-IEEE Press, 2010: 11-49.
[34] 李庆扬. 数值分析[M]. 北京: 清华大学出版社有限公司, 2001: 163-310.
[35] DEMMEL J W, EISENSTAT S C, GILBERT J R, et al. A supernodal approach to sparse partial pivoting[J]. SIAM Journal on Matrix Analysis and Applications, 1999, 20(3): 720-755.
[36] CHEN X. Numerically-stable and highly-scalable parallel LU factorization for circuit simulation [C]//2022 IEEE/ACM International Conference on Computer-Aided Design. ACM, 2022: 1-9.
[37] SAAD Y. Iterative methods for sparse linear systems[M]. Society for Industrial and Applied Mathematics, 2003: 13-19.
[38] 蒋耀林. 模型降阶方法[M]. 北京: 科学出版社, 2010: 260-350.
[39] 侯丽敏, 杨帆, 曾璇. 互连线高效时域梯形差分模型降阶算法[J]. 计算机辅助设计与图形学学报, 2012, 24(5): 683-689.
[40] ARNOLDI W E. The principle of minimized iterations in the solution of the matrix eigenvalue problem[J]. Quarterly of Applied Mathematics, 1951, 9(1): 17-29.
[41] FELDMANN P, FREUND R W. Reduced-order modeling of large linear subcircuits via a block Lanczos algorithm[C]//1995 32nd IEEE/ACM Design Automation Conference. IEEE, 1995: 474-479.
[42] 杨帆. 集成电路分析中的模型降阶方法研究[D]. 上海: 复旦大学, 2008: 127-201.
[43] ELFADEL, LING. A block rational Arnoldi algorithm for multipoint passive model-order reduction of multiport RLC networks[C]//1997 IEEE International Conference on Computer-Aided Design. IEEE, 1997: 66-71.
[44] ZHANG Z, HU X, CHENG C K, et al. A block-diagonal structured model reduction scheme for power grid networks[C]//2011 Design, Automation & Test in Europe. IEEE, 2011: 1-6.
[45] CHEN Q. EI-NK: a robust exponential integrator method with singularity removal and Newton–Raphson iterations for transient nonlinear circuit simulation[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022, 41(6): 1693-1703.
[46] DAVIS T A. Direct methods for sparse linear systems[M]. Society for Industrial and Applied Mathematics, 2006: 41-69.
[47] NIESEN J, WRIGHT W M. Algorithm 919: a Krylov subspace algorithm for evaluating the 𝜙-functions appearing in exponential integrators[J]. ACM Transactions on Mathematical Software, 2012, 38(3): 1-19.
[48] ALMOHY A H, HIGHAM N J. Computing the action of the matrix exponential, with an application to exponential integrators[J]. SIAM Journal on Scientific Computing, 2011, 33(2): 488-511.
[49] SAAD Y. Analysis of some Krylov subspace approximations to the matrix exponential operator [J]. SIAM Journal on Numerical Analysis, 1992: 166-276.
[50] HIGHAM N J. The scaling and squaring method for the matrix exponential revisited[J]. SIAM Journal on Matrix Analysis and Applications, 2005, 26(4): 1179-1193.
[51] ZHUANG H, YU W, WENG S, et al. Simulation algorithms with exponential integration for time-domain analysis of large-scale power delivery networks[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2016, 35(10): 1681-1694.
[52] 关乐. 基于宏模型技术的MEMS 系统级仿真研究[D]. 辽宁: 大连理工大学, 2011: 25-32.
[53] CHEN P, CHENG C K, PARK D, et al. Transient circuit simulation for differential algebraic systems using matrix exponential[C]//2018 IEEE/ACM International Conference on Computer-Aided Design. ACM, 2018: 1-6.
[54] CHEN Q. A robust exponential integrator method for generic nonlinear circuit simulation[C]//2020 57th ACM/IEEE Design Automation Conference. IEEE, 2020: 1-6.
[55] BEATTIE C, GUGERCIN S, MEHRMANN V. Model reduction for systems with inhomogeneous initial conditions[J]. Systems & Control Letters, 2017, 99: 99-106.
[56] SALIMBAHRAMI B, LOHMANN B. Order reduction of large scale second-order systems using Krylov subspace methods[J]. Linear Algebra and its Applications, 2006, 415(2-3): 385-405.
[57] 崔庆博. 电路中电源/地网络的优化研究[D]. 北京: 北京交通大学, 2010: 140-146.
[58] MA S, WANG X, TAN S X D, et al. An adaptive electromigration assessment algorithm for fullchip power/ground networks[C]//2020 25th Asia and South Pacific Design Automation Conference. IEEE, 2020: 38-43.
[59] 蔡懿慈, 洪先龙, 傅静静, 等. 基于等效电路降阶的电源/地线网络快速瞬态模拟[J]. 半导体学报, 2005, 26(7): 1340-1346.
[60] NASSIF S R. Power grid analysis benchmarks[C]//2008 13th Asia and South Pacific Design Automation Conference. IEEE, 2008: 376-381.
修改评论