中文版 | English
题名

模型降阶与指数积分混合方法研究

其他题名
RESEARCH ON HYBRID EXPONENTIAL INTEGRATOR AND MODEL ORDER REDUCTION APPROACH
姓名
姓名拼音
WANG Cong
学号
12132472
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
陈全
导师单位
深港微电子学院
论文答辩日期
2023-05-15
论文提交日期
2023-06-26
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

长期以来模型降阶是一种被视为有效加速大规模电路瞬态仿真的主流算法。而指数积分则是近年来被提出的一种与模型降阶相似的加速方法,之前很多工作已经证明了这种指数积分方法在加速电源地网络分析是有效的。然而由于指数积分要求输入波形在一个步长内满足分段线性的条件,因此当输入波形不对齐的情况下会产生大量的断点从而严重限制仿真步长大小使得效率降低。为了解决这一问题,本文对于指数积分与模型降阶这两种长期被视为完全独立的方法进行了研究并且揭示出它们之间存在着一定的等价性。具体来说,在一定条件下,指数积分相当于在每个时间步内进行了一次基于有理Krylov子空间投影的矩匹配模型降阶,然后将降阶后的系统在时域中向前求解一步。此外,本文对于它们在瞬态电路分析情景中的表现也从不同的角度进行了一定深度的阐述。希望这些新见解将推动这一经典课题的发展。除此之外,基于本文所提出两种方法的等价性,本文设计出一种指数积分与模型降阶的混合方法,即在瞬态仿真中结合使用指数积分和模型降阶。大多数对齐良好的输入仍然像往常一样由指数积分处理,而一些未对齐的输入被选择由模型降阶过程处理,生成适用于任意输入的降阶模型。这种做法可以大大放宽由未对齐输入带来的步长限制,本文还进行了数值实验以证明所提出方法的有效性。

其他摘要

Model order reduction has long been a mainstream strategy to accelerate large-scale transient circuit simulation. Exponential integrator methods, on the other hand, are more recently developed for a similar goal. The exponential integrator method has been proved to be an effective technique to accelerate large-scale transient power/ground network analysis. However, exponential integrator requires the inputs to be piece-wise linear in one step, which greatly limits the step size when the inputs are poorly aligned. To address this issue, in this work we first examine in-depth the underlying relationship between model order reduction and exponential integrator that are commonly seen as two separate methods. The main finding is that exponential integrator can be viewed as a moment-matching model order reduction in the time domain. Specifically, exponential integrator, under certain conditions, is equivalent to performing moment-matching model order reduction based on rational Krylov subspace projection at each time step with a single input vector and a selected expansion point, then advancing the reduced system one step in the time domain. Their differences in the transient circuit analysis context are also elaborated from various perspectives. It is hoped that these new insights would benefit the development of this classical topic. Based on this equivalence and their differences, we next devise a hybrid method, to combine the usage of exponential integrator and model order reduction in the same transient simulation. A majority group of well-aligned inputs are still treated by exponential integrator as usual, while a few misaligned inputs are selected to be handled by a model order reduction process producing a reduced model that works for arbitrary inputs. Therefore the step size limitation imposed by the misaligned inputs can be largely alleviated. Numerical experiments are conducted to demonstrate the efficacy of the proposed method.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2023-06
参考文献列表

[1] GIELEN G G, WALSCHARTS H C, SANSEN W M. ISAAC: A symbolic simulator for analog integrated circuits[J]. IEEE Journal of Solid-State Circuits, 1989, 24(6): 1587-1597.
[2] PEDRAM M. Power minimization in IC design: principles and applications[J]. ACM Transactions on Design Automation of Electronic Systems, 1996, 1(1): 3-56.
[3] NAGEL L W. SPICE2: a computer program to simulate semiconductor circuits: UCB/ERL M520[D]. EECS Department, University of California, Berkeley, 1975: 401-438.
[4] 张航. 模拟数字混合电路仿真方法的研究与应用[D]. 山东: 山东大学, 2016: 178-206.
[5] KISIELEWICZ T, CUENCA M. Overview of transient simulations of grounding systems under surge conditions[J]. Energies, 2022, 15(20): 7694-8089.
[6] CORTI F, REATTI A, CARDELI E, et al. Improved SPICE simulation of dynamic core losses for ferrites with nonuniform field and its experimental validation[J]. IEEE Transactions on Industrial Electronics, 2020, 68(12): 12069-12078.
[7] DELPORT J A, JACKMAN K, LE ROUX P, et al. Josim—superconductor spice simulator[J]. IEEE Transactions on Applied Superconductivity, 2019, 29(5): 1-5.
[8] VIEIRA R, HORTA N, LOURENÇO N, et al. Layout[J]. Tunable Low-Power Low-Noise Amplifier for Healthcare Applications, 2021: 75-84.
[9] SHOOK B, BHANSALI P, KASHYAP C, et al. MLParest: machine learning based parasitic estimation for custom circuit design[C]//2020 57th ACM/IEEE Design Automation Conference. IEEE, 2020: 1-6.
[10] HAKHAMANESHI K, WERBLUN N, ABBEEL P, et al. BagNet: Berkeley analog generator with layout optimizer boosted with deep neural networks[C]//2019 IEEE/ACM International Conference on Computer-Aided Design. IEEE, 2019: 1-8.
[11] LIU M, ZHU K, TANG X, et al. Closing the design loop: Bayesian optimization assisted hierarchical analog layout synthesis[C]//2020 57th ACM/IEEE Design Automation Conference. IEEE, 2020: 1-6.
[12] NAUNG S W, RAHMATI M, FAROKHI H. Direct numerical simulation of interaction between transient flow and blade structure in a modern low-pressure turbine[J]. International Journal of Mechanical Sciences, 2021, 192: 106104-106118.
[13] XIE R, CHEN G, ZHAO Y, et al. In-situ observation and numerical simulation on the transient strain and distortion prediction during additive manufacturing[J]. Journal of Manufacturing Processes, 2019, 38: 494-501.
[14] 刘伟平. 电路并行仿真算法研究与应用[D]. 北京: 清华大学, 2019: 170-196.
[15] DINAVAHI V, LIN N. Parallel dynamic and transient simulation of large-scale power systems: a high performance computing solution[M]. Springer Nature, 2022: 55-62.
[16] LI D, QIN Y, ZUO Z, et al. Numerical simulation on pump transient characteristic in a model pump turbine[J]. Journal of Fluids Engineering, 2019, 141(11): 694-801.
[17] DEMO N, TEZZELE M, MOLA A, et al. Hull shape design optimization with parameter space and model reductions, and self-learning mesh morphing[J]. Journal of Marine Science and Engineering, 2021, 9(2): 185.
[18] ODABASIOGLU A, CELIK M, PILEGGI L T. PRIMA: Passive reduced-order interconnect macromodeling algorithm[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 1998, 17(8): 645-654.
[19] GU J, WANG W, YIN R, et al. Complex circuit simulation and nonlinear characteristics analysis of GaN power switching device[J]. Nonlinear Engineering, 2022, 10(1): 555-562.
[20] BAKER R J. CMOS: circuit design, layout, and simulation[M]. John Wiley & Sons, 2019:15-32.
[21] BARNETT J, FARHAT C. Quadratic approximation manifold for mitigating the Kolmogorov barrier in nonlinear projection-based model order reduction[J]. Journal of Computational Physics, 2022, 464: 111348-111360.
[22] CHEN L, LIAN H, NATARAJAN S, et al. Multi-frequency acoustic topology optimization of sound-absorption materials with isogeometric boundary element methods accelerated by frequency-decoupling and model order reduction techniques[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 395: 114997-11511.
[23] HESTHAVEN J S, PAGLIANTINI C, ROZZA G. Reduced basis methods for time-dependent problems[J]. Acta Numerica, 2022, 31: 265-345.
[24] GOBAT G, OPRENI A, FRESCA S, et al. Reduced order modeling of nonlinear microstructures through proper orthogonal decomposition[J]. Mechanical Systems and Signal Processing, 2022, 171: 108864-108889.
[25] PILLAGE L T, ROHRER R A. Asymptotic waveform evaluation for timing analysis[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 1990, 9(4): 352-366.
[26] BULTHEEL A, VAN BAREL M. Padé techniques for model reduction in linear system theory: a survey[J]. Journal of Computational and Applied Mathematics, 1986, 14(3): 401-438.
[27] ZHUANG H, WENG S H, LIN J H, et al. MATEX: a distributed framework for transient simulationof power distribution networks[C]//2014 55th ACM/IEEE Design Automation Conference. IEEE, 2014: 81:1-81:6.
[28] ZHUANG H, WENG S H, CHENG C K. Power grid simulation using matrix exponential method with rational Krylov subspaces[C]//2013 IEEE 10th International Conference on ASIC. IEEE, 2013: 1-4.
[29] WENG S H, CHEN Q, WONG N, et al. Circuit simulation via matrix exponential method for stiffness handling and parallel processing[C]//2012 IEEE/ACM International Conference on Computer-Aided Design. ACM, 2012: 407-414.
[30] CHEN Q, WENG S, CHENG C. A practical regularization technique for modified nodal analysis in large-scale time-domain circuit simulation[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2012, 31(7): 1031-1040.
[31] HACHTEL G, BRAYTON R, GUSTAVSON F. The sparse tableau approach to network analysis and design[J]. IEEE Transactions on Circuit Theory, 1971, 18(1): 101-113.
[32] HO C W, RUEHLI A, BRENNAN P. The modified nodal approach to network analysis[J]. IEEE Transactions on Circuits and Systems, 1975, 22(6): 504-509.
[33] NAJM F N. Circuit simulation[M]. Wiley-IEEE Press, 2010: 11-49.
[34] 李庆扬. 数值分析[M]. 北京: 清华大学出版社有限公司, 2001: 163-310.
[35] DEMMEL J W, EISENSTAT S C, GILBERT J R, et al. A supernodal approach to sparse partial pivoting[J]. SIAM Journal on Matrix Analysis and Applications, 1999, 20(3): 720-755.
[36] CHEN X. Numerically-stable and highly-scalable parallel LU factorization for circuit simulation [C]//2022 IEEE/ACM International Conference on Computer-Aided Design. ACM, 2022: 1-9.
[37] SAAD Y. Iterative methods for sparse linear systems[M]. Society for Industrial and Applied Mathematics, 2003: 13-19.
[38] 蒋耀林. 模型降阶方法[M]. 北京: 科学出版社, 2010: 260-350.
[39] 侯丽敏, 杨帆, 曾璇. 互连线高效时域梯形差分模型降阶算法[J]. 计算机辅助设计与图形学学报, 2012, 24(5): 683-689.
[40] ARNOLDI W E. The principle of minimized iterations in the solution of the matrix eigenvalue problem[J]. Quarterly of Applied Mathematics, 1951, 9(1): 17-29.
[41] FELDMANN P, FREUND R W. Reduced-order modeling of large linear subcircuits via a block Lanczos algorithm[C]//1995 32nd IEEE/ACM Design Automation Conference. IEEE, 1995: 474-479.
[42] 杨帆. 集成电路分析中的模型降阶方法研究[D]. 上海: 复旦大学, 2008: 127-201.
[43] ELFADEL, LING. A block rational Arnoldi algorithm for multipoint passive model-order reduction of multiport RLC networks[C]//1997 IEEE International Conference on Computer-Aided Design. IEEE, 1997: 66-71.
[44] ZHANG Z, HU X, CHENG C K, et al. A block-diagonal structured model reduction scheme for power grid networks[C]//2011 Design, Automation & Test in Europe. IEEE, 2011: 1-6.
[45] CHEN Q. EI-NK: a robust exponential integrator method with singularity removal and Newton–Raphson iterations for transient nonlinear circuit simulation[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022, 41(6): 1693-1703.
[46] DAVIS T A. Direct methods for sparse linear systems[M]. Society for Industrial and Applied Mathematics, 2006: 41-69.
[47] NIESEN J, WRIGHT W M. Algorithm 919: a Krylov subspace algorithm for evaluating the 𝜙-functions appearing in exponential integrators[J]. ACM Transactions on Mathematical Software, 2012, 38(3): 1-19.
[48] ALMOHY A H, HIGHAM N J. Computing the action of the matrix exponential, with an application to exponential integrators[J]. SIAM Journal on Scientific Computing, 2011, 33(2): 488-511.
[49] SAAD Y. Analysis of some Krylov subspace approximations to the matrix exponential operator [J]. SIAM Journal on Numerical Analysis, 1992: 166-276.
[50] HIGHAM N J. The scaling and squaring method for the matrix exponential revisited[J]. SIAM Journal on Matrix Analysis and Applications, 2005, 26(4): 1179-1193.
[51] ZHUANG H, YU W, WENG S, et al. Simulation algorithms with exponential integration for time-domain analysis of large-scale power delivery networks[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2016, 35(10): 1681-1694.
[52] 关乐. 基于宏模型技术的MEMS 系统级仿真研究[D]. 辽宁: 大连理工大学, 2011: 25-32.
[53] CHEN P, CHENG C K, PARK D, et al. Transient circuit simulation for differential algebraic systems using matrix exponential[C]//2018 IEEE/ACM International Conference on Computer-Aided Design. ACM, 2018: 1-6.
[54] CHEN Q. A robust exponential integrator method for generic nonlinear circuit simulation[C]//2020 57th ACM/IEEE Design Automation Conference. IEEE, 2020: 1-6.
[55] BEATTIE C, GUGERCIN S, MEHRMANN V. Model reduction for systems with inhomogeneous initial conditions[J]. Systems & Control Letters, 2017, 99: 99-106.
[56] SALIMBAHRAMI B, LOHMANN B. Order reduction of large scale second-order systems using Krylov subspace methods[J]. Linear Algebra and its Applications, 2006, 415(2-3): 385-405.
[57] 崔庆博. 电路中电源/地网络的优化研究[D]. 北京: 北京交通大学, 2010: 140-146.
[58] MA S, WANG X, TAN S X D, et al. An adaptive electromigration assessment algorithm for fullchip power/ground networks[C]//2020 25th Asia and South Pacific Design Automation Conference. IEEE, 2020: 38-43.
[59] 蔡懿慈, 洪先龙, 傅静静, 等. 基于等效电路降阶的电源/地线网络快速瞬态模拟[J]. 半导体学报, 2005, 26(7): 1340-1346.
[60] NASSIF S R. Power grid analysis benchmarks[C]//2008 13th Asia and South Pacific Design Automation Conference. IEEE, 2008: 376-381.

所在学位评定分委会
材料与化工
国内图书分类号
TN402
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544061
专题南方科技大学-香港科技大学深港微电子学院筹建办公室
推荐引用方式
GB/T 7714
王聪. 模型降阶与指数积分混合方法研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132472-王聪-南方科技大学-香(4171KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[王聪]的文章
百度学术
百度学术中相似的文章
[王聪]的文章
必应学术
必应学术中相似的文章
[王聪]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。