[1] HERNáNDEZ S, AMIN FARKHONDEHFAL M, SASTRE F, et al. Syngas production from electrochemical reduction of CO2: current status and prospective implementation [J]. Green Chemistry, 2017, 19(10): 2326-2346.
[2] LI J, ABBAS S U, WANG H, et al. Recent Advances in Interface Engineering for Electrocatalytic CO2 Reduction Reaction [J]. Nanomicro Letters, 2021, 13(1): 216-251.
[3] CHEN Q, LV M, GU Y, et al. Hybrid Energy System for a Coal-Based Chemical Industry [J]. Joule, 2018, 2(4): 607-620.
[4] ANDERSON K, PETERS G, The trouble with negative emissions [J]. Science, 2016, 354: 182-183.
[5] JIN S, HAO Z, ZHANG K, et al. Advances and Challenges for the Electrochemical Reduction of CO2 to CO: From Fundamentals to Industrialization [J]. Angewandte Chemie International Edition, 2021, 60: 2-24.
[6] TAN X, YU C, REN Y, et al. Recent advances in innovative strategies for the CO2 electroreduction reaction [J]. Energy & Environmental Science, 2021, 14(2): 765-780.
[7] 张媛媛, 王永刚, 田亚峻. 典型现代煤化工过程的二氧化碳排放比较[J]. 化工进展, 2016, 35(12): 4060-4064.
[8] QIAO J L, LIU Y Y, HONG F, et al. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels [J]. Chemical Society Reviews, 2014, 43: 631-675.
[9] SCHWARZ H. A., DODSON R.W., Reduction potentials of CO2- and the alcohol radicals [J]. The Journal of Chemical Physics, 1989, 93: 409-414.
[10] YANG X F, WANG A, QIAO B, et al. Single-atom catalysts: a new frontier in heterogeneous catalysis [J]. Accounts of chemical research, 2013, 46(8): 1740-1748.
[11] HE Q, LIU D, LEE J H, et al. Electrochemical Conversion of CO2 to Syngas with Controllable CO/H2 Ratios over Co and Ni Single-Atom Catalysts [J]. Angewandte Chemie International Edition, 2020, 59(8): 3033-3037.
[12] WANG A, LI J, ZHANG T. Heterogeneous single-atom catalysis [J]. Nature Reviews Chemistry, 2018, 2(6): 65-81.
[13] JI S, CHEN Y, WANG X, et al. Chemical Synthesis of Single Atomic Site Catalysts [J]. Chemical Reviews, 2020, 120(21): 11900-11955.
[14] HORI Y, WAKEBE H, TSUKAMOTO T, et al. Electrocatalytic Process of Co Selectivity in Electrochemical Reduction of CO2 at Metal-Electrodes in Aqueous-Media [J]. Electrochimica Acta, 1994, 39, 1833-1839.
[15] BIRDJA Y Y, REZ-GALLENT E P, FIGUEIREDO M C, et al. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels [J]. Nature Energy, 2019, 4, 732-745.
[16] ZHANG W, HU Y, MA L, et al. Progress and Perspective of Electrocatalytic CO2 Reduction for Renewable Carbonaceous Fuels and Chemicals [J]. Advanced Science, 2018, 5(1): 1700275.
[17] RABIEE H, GE L, ZHANG X Q, et al. Gas diffusion electrodes (GDEs) for electrochemical reduction of carbon dioxide, carbon monoxide, and dinitrogen to value-added products: a review [J]. Energy & Environmental Science, 2021, 14(4): 1959-2008.
[18] NIU Z Z, CHI L P, LIU R, et al. Rigorous assessment of CO2 electroreduction products in a flow cell [J]. Energy & Environmental Science, 2021, 14(8): 4169-4176.
[19] BARD ALLEN J, FAULKNER LARRY R. Electrochemical Methods: Fundamentals and Applications. [M]. New York: John Wiley, 2001.
[20] HAMANN C H, HAMNETT A, VIELSTICH W. 电化学[M]. 陈艳霞,夏兴华,蔡俊译. 北京: 化学工业出版社,2010.
[21] JIA C, TAN X, ZHAO Y, et al. Sulfur-Dopant-Promoted Electroreduction of CO2 over Coordinatively Unsaturated Ni-N2 Moieties [J]. Angewandte Chemie International Edition, 2021, 60(43): 23342-23348.
[22] FU J, WANG Y, LIU J, et al. Low Overpotential for Electrochemically Reducing CO2 to CO on Nitrogen-Doped Graphene Quantum Dots-Wrapped Single-Crystalline Gold Nanoparticles [J]. ACS Energy Letters, 2018, 3(4): 946-951.
[23] KIM C, JEON H S, EOM T, et al. Achieving Selective and Efficient Electrocatalytic Activity for CO2 Reduction Using Immobilized Silver Nanoparticles [J]. Journal of the Chemical Society, 2015, 137(43): 13844-13850.
[24] HE Q, LEE J H, LIU D B, et al. Accelerating CO2 Electroreduction to CO Over Pd Single-Atom Catalyst [J]. Advanced Functional Materials, 2020, 30(17): 2000407
[25] MESHITSUKA S, ICHIKAWA M, TAMARU K. Electrocatalysis by Metal Phthalocyanines in the Reduction of Carbon Dioxide [J]. Journal of the Chemical Society, Chemical Communications, 1974, 158-159.
[26] KORNIENKO N, ZHAO Y, KLEY C S, et al. Metal-organic frameworks for electrocatalytic reduction of carbon dioxide [J]. Journal of the American Chemical Society, 2015, 137(44): 14129-14135.
[27] ZHAO C, DAI X, YAO T, et al. Ionic Exchange of Metal-Organic Frameworks to Access Single Nickel Sites for Efficient Electroreduction of CO2 [J]. Journal of the American Chemical Society, 2017, 139(24): 8078-8081.
[28] CHEN Y, JI S, WANG Y, et al. Isolated Single Iron Atoms Anchored on N-Doped Porous Carbon as an Efficient Electrocatalyst for the Oxygen Reduction Reaction. [J]. Angewandte Chemie International Edition, 2017, 56: 6937-6941.
[29] GONG Y N, JIAO L, QIAN Y, et al. Regulating the Coordination Environment of MOF-Templated Single-Atom Nickel Electrocatalysts for Boosting CO2 Reduction [J]. Angewandte Chemie International Edition, 2020, 59(7): 2705-2709.
[30] JIAO L, YANG W, WAN G, et al. Single-Atom Electrocatalysts from Multivariate Metal-Organic Frameworks for Highly Selective Reduction of CO2 at Low Pressures [J]. Angewandte Chemie International Edition, 2020, 59(46): 20589-20595.
[31] GUO Z, ZHANG Q, SHEN F, et al. Boosting electron transport over controllable N ligand doping for electrochemical conversion of CO2 to syngas [J]. Electrochimica Acta, 2021, 388: 138647.
[32] CHEN Z, ZHANG X, LIU W, et al. Amination strategy to boost the CO2 electroreduction current density of M-N/C single-atom catalysts to the industrial application level [J]. Energy & Environmental Science, 2021, 14(4): 2349-2356.
[33] ZHANG W, CHAO Y, ZHANG W, et al. Emerging Dual-Atomic-Site Catalysts for Efficient Energy Catalysis [J]. Advanced Materials, 2021, 33(36): e2102576.
[34] REN W, TAN X, YANG W, et al. Isolated Diatomic Ni-Fe Metal-Nitrogen Sites for Synergistic Electroreduction of CO2 [J]. Angewandte Chemie International Edition, 2019, 58(21): 6972-6976.
[35] WEI X, WEI S, CAO S, et al. Cu acting as Fe activity promoter in dual-atom Cu/Fe-NC catalyst in CO2RR to C1 products [J]. Applied Surface Science, 2021, 564, 150423.
[36] GAO J, HU Y, WANG Y, et al. MOF Structure Engineering to Synthesize CoNC Catalyst with Richer Accessible Active Sites for Enhanced Oxygen Reduction [J]. Small, 2021, 17(49): e2104684.
[37] MOHD ADLI N, SHAN W, HWANG S, et al. Engineering Atomically Dispersed FeN4 Active Sites for CO2 Electroreduction [J]. Angewandte Chemie International Edition, 2021, 60(2): 1022-1032.
[38] KUMAR B, ASADI M, PISASALE D, et al. Renewable and metal-free carbon nanofibre catalysts for carbon dioxide reduction [J]. Nature Communications, 2013, 4: 2819.
[39] LI J, ZAN W-Y, KANG H, et al. Graphitic-N highly doped graphene-like carbon: A superior metal-free catalyst for efficient reduction of CO2 [J]. Applied Catalysis B: Environmental, 2021, 298, 120510.
[40] MA X, DU J, SUN H, et al. Boron, nitrogen co-doped carbon with abundant mesopores for efficient CO2 electroreduction [J]. Applied Catalysis B: Environmental, 2021, 298, 120543.
[41] PAN B, ZHU X, WU Y, et al. Toward Highly Selective Electrochemical CO2 Reduction using Metal-Free Heteroatom-Doped Carbon [J]. Advanced Science, 2020, 7(16): 2001002.
[42] YANG H, WU Y, LIN Q, et al. Composition Tailoring via N and S Co-doping and Structure Tuning by Constructing Hierarchical Pores: Metal-Free Catalysts for High-Performance Electrochemical Reduction of CO2 [J]. Angewandte Chemie International Edition, 2018, 57(47): 15476-15480.
[43] SUI R, PEI J, FANG J, et al. Engineering Ag-Nx Single-Atom Sites on Porous Concave N-Doped Carbon for Boosting CO2 Electroreduction [J]. ACS Applied Materials & Interfaces, 2021, 13(15): 17736-17744.
[44] LIN R, ALBANI D, FAKO E, et al. Design of Single Gold Atoms on Nitrogen-Doped Carbon for Molecular Recognition in Alkyne Semi-Hydrogenation [J]. Angewandte Chemie International Edition, 2019, 58(2): 504-509.
[45] GUAN J, LIU Y, FANG Y, et al. Co-Ni alloy nanoparticles supported by carbon nanofibers for hydrogen evolution reaction [J]. Journal of Alloys and Compounds, 2021, 868, 159172.
[46] VARELA A S, JU W, BAGGER A, et al. Electrochemical Reduction of CO2 on Metal-Nitrogen-Doped Carbon Catalysts [J]. ACS Catalysis, 2019, 9(8): 7270-7284.
[47] LI Y, ADLI N M, SHAN W T, et al. Atomically dispersed single Ni site catalysts for high-efficiency CO2 electroreduction at industrial-level current densities [J]. Energy & Environmental Science, 2022, 15(5): 2108-2119.
[48] CAO S, ZHOU S, CHEN H, et al. How can the Dual‐atom Catalyst FeCo-NC Surpass Single‐atom Catalysts Fe-NC/Co-NC in CO2RR? -CO Intermediate Assisted Promotion via a Synergistic Effect [J]. Energy & Environmental Materials, 2022, 6(1): 1-9.
[49] FAIREN-JIMENEZ D, MOGGACH S A, WHARMBY M T, et al. Opening the gate: framework flexibility in ZIF-8 explored by experiments and simulations [J]. Journal of the American Chemical Society, 2011, 133(23): 8900-8902.
[50] LAI Q, ZHAO Y, LIANG Y, et al. In Situ Confinement Pyrolysis Transformation of ZIF-8 to Nitrogen-Enriched Meso-Microporous Carbon Frameworks for Oxygen Reduction [J]. Advanced Functional Materials, 2016, 26(45): 8334-8344.
[51] REN Q, WANG H, LU X F, et al. Recent Progress on MOF-Derived Heteroatom-Doped Carbon-Based Electrocatalysts for Oxygen Reduction Reaction [J]. Advanced Science, 2018, 5(3): 1700515.
[52] HE L, WENIGER F, NEUMANN H, et al. Synthesis, Characterization, and Application of Metal Nanoparticles Supported on Nitrogen-Doped Carbon: Catalysis beyond Electrochemistry [J]. Angewandte Chemie International Edition, 2016, 55(41): 12582-12594.
[53] WANG S, HE Q, WANG C, et al. Active Sites Engineering toward Superior Carbon-Based Oxygen Reduction Catalysts via Confinement Pyrolysis [J]. Small, 2018, 14(19): e1800128.
[54] MINGYE YANG, LU WANG, MIN LI, et al. Structural stability and O2 dissociation on nitrogen-doped graphene with transition metal atoms embedded: A first-principles study [J]. AIP Advanced, 2015, 5: 067136.
[55] ZHOU H, YANG T, KOU Z, et al. Negative Pressure Pyrolysis Induced Highly Accessible Single Sites Dispersed on 3D Graphene Frameworks for Enhanced Oxygen Reduction [J]. Angewandte Chemie International Edition, 2020, 59(46): 20465-20469.
[56] ZHANG Y, JIAO L, YANG W, et al. Rational Fabrication of Low-Coordinate Single-Atom Ni Electrocatalysts by MOFs for Highly Selective CO2 Reduction [J]. Angewandte Chemie International Edition, 2021, 60(14): 7607-7611.
[57] PEI J, WANG T, SUI R, et al. N-Bridged Co-N-Ni: new bimetallic sites for promoting electrochemical CO2 reduction [J]. Energy & Environmental Science, 2021, 14(5): 3019-3028.
[58] PAN F, LI B, SARNELLO E, et al. Pore-Edge Tailoring of Single-Atom Iron-Nitrogen Sites on Graphene for Enhanced CO2 Reduction [J]. ACS Catalysis, 2020, 10(19): 10803-10811.
[59] ZHENG T, JIANG K, WANG H. Recent Advances in Electrochemical CO2 -to-CO Conversion on Heterogeneous Catalysts [J]. Advanced Materials, 2018, 30(48): e1802066.
[60] ZHOU W, CHENG K, KANG J, et al. New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels [J]. Chemical Society Reviews, 2019, 48(12): 3193-3228.
[61] CHU S, CUI Y, LIU N. The path towards sustainable energy [J]. Nature Materials, 2016, 16(1): 16-22.
[62] TAN M, HAN X, RU S, et al. Low-loading gold in situ doped with sulfur by biomolecule-assisted approach for promoted electrochemical carbon dioxide reduction [J]. Nano Research, 2022, 16(2): 2059-2064.
[63] ZHANG Z, WEN G, LUO D, et al. "Two Ships in a Bottle" Design for Zn-Ag-O Catalyst Enabling Selective and Long-Lasting CO2 Electroreduction [J]. Journal of the American Chemical Society, 2021, 143(18): 6855-6864.
[64] FENG Y, YANG H, ZHANG Y, et al. Te-Doped Pd Nanocrystal for Electrochemical Urea Production by Efficiently Coupling Carbon Dioxide Reduction with Nitrite Reduction [J]. Nano Letters, 2020, 20(11): 8283-8289.
[65] ZHAO J, DENG J, HAN J, et al. Effective tunable syngas generation via CO2 reduction reaction by non-precious Fe-N-C electrocatalyst [J]. Chemical Engineering Journal, 2020, 389, 124323.
[66] PAN Y, LIN R, CHEN Y, et al. Design of Single-Atom Co-N5 Catalytic Site: A Robust Electrocatalyst for CO2 Reduction with Nearly 100% CO Selectivity and Remarkable Stability [J]. Journal of the American Chemical Society, 2018, 140(12): 4218-4221.
[67] HWA JEONG G, CHUAN TAN Y, TAE SONG J, et al. Synthetic multiscale design of nanostructured Ni single atom catalyst for superior CO2 electroreduction [J]. Chemical Engineering Journal, 2021, 426, 131063.
[68] YANG F, SONG P, LIU X, et al. Highly Efficient CO2 Electroreduction on ZnN4 -based Single-Atom Catalyst [J]. Angewandte Chemie International Edition, 2018, 57(38): 12303-12307.
[69] KOJIMA H, NAGASAWA K, TODOROKI N, et al. Influence of renewable energy power fluctuations on water electrolysis for green hydrogen production [J]. International Journal of Hydrogen Energy, 2023, 48(12): 4573-4593.
[70] RAHMAN M Z, KIBRIA M G, MULLINS C B. Metal-free photocatalysts for hydrogen evolution [J]. Chemical Society Reviews, 2020, 49(6): 1887-1931.
[71] FEI H, YANG Y, PENG Z, et al. Cobalt nanoparticles embedded in nitrogen-doped carbon for the hydrogen evolution reaction [J]. ACS Applied Materials & Interfaces, 2015, 7(15): 8083-8087.
[72] CHEN L, YANG S, QIAN K, et al. In situ growth of N-doped carbon coated CoNi alloy with graphene decoration for enhanced HER performance [J]. Journal of Energy Chemistry, 2019, 29, 129-135.
[73] HE F, WANG Y, ZHONG M, et al. Construction of nickel nanoparticles embedded in nitrogen self-doped graphene-like carbon derived from waste grapefruit peel for multifunctional OER, HER, and magnetism investigations [J]. Journal of Environmental Chemical Engineering, 2021, 9(6):106894.
[74] RONG X, WANG H J, LU X L, et al. Controlled Synthesis of a Vacancy-Defect Single-Atom Catalyst for Boosting CO2 Electroreduction [J]. Angewandte Chemie International Edition, 2020, 59(5): 1961-1965.
[75] DAIYAN R, CHEN R, KUMAR P, et al. Tunable Syngas Production through CO2 Electroreduction on Cobalt-Carbon Composite Electrocatalyst [J]. ACS Applied Materials & Interfaces, 2020, 12(8): 9307-9315.
[76] JU W, BAGGER A, HAO G P, et al. Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2 [J]. Nature Communications, 2017, 8(1): 944.
[77] TAN H Y, LIN S C, WANG J, et al. MOF-Templated Sulfurization of Atomically Dispersed Manganese Catalysts Facilitating Electroreduction of CO2 to CO [J]. ACS Applied Materials & Interfaces, 2021, 13(44): 52134-52143.
[78] HAILE A S, HANSEN H A, YOHANNES W, et al. The role of nitrogen and sulfur dual coordination of cobalt in Co-N4-xSx/C single atom catalysts in the oxygen reduction reaction [J]. Sustainable Energy & Fuels, 2022, 6(1): 179-187.
[79] PAN F, LI B, SARNELLO E, et al. Boosting CO2 reduction on Fe-N-C with sulfur incorporation: Synergistic electronic and structural engineering [J]. Nano Energy, 2020, 68, 104384.
[80] BUSTAMANTE E L, FERNANDEZ J L, ZAMARO J M. Influence of the solvent in the synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals at room temperature [J]. Journal of Colloid and Interface Science, 2014, 424, 37-43.
[81] TA D N, NGUYEN H K D, TRINH B X, et al. Preparation of nano-ZIF-8 in methanol with high yield [J]. The Canadian Journal of Chemical Engineering, 2018, 96(7): 1518-1531.
[82] LI X, LI Z, LU L, et al. The Solvent Induced Inter-Dimensional Phase Transformations of Cobalt Zeolitic-Imidazolate Frameworks [J]. Chemistry - A European Journal, 2017, 23(44): 10638-10643.
[83] LI Z H, HE H Y, CAO H B, et al. Atomic Co/Ni dual sites and Co/Ni alloy nanoparticles in N-doped porous Janus-like carbon frameworks for bifunctional oxygen electrocatalysis [J]. Applied Catalysis B: Environmental, 2019, 240, 112-121.
[84] SHARMA P P, WU J, YADAV R M, et al. Nitrogen-Doped Carbon Nanotube Arrays for High-Efficiency Electrochemical Reduction of CO2: On the Understanding of Defects, Defect Density, and Selectivity [J]. Angewandte Chemie International Edition, 2015, 54(46): 13701-13705.
[85] WANG X, LI X, DING S, et al. Constructing ample active sites in nitrogen-doped carbon materials for efficient electrocatalytic carbon dioxide reduction [J]. Nano Energy, 2021, 90, 106541.
[86] GALTAYRIES A, GRIMBLOT J. Formation and electronic properties of oxide and sulphide films of Co, Ni and Mo studied by XPS [J]. Journal of Electron Spectroscopy and Related Phenomena, 1999, 98, 267-275.
[87] CAI X, QIN B, LI Y, et al. Chlorine‐Promoted Nitrogen and Sulfur Co‐Doped Biocarbon Catalyst for Electrochemical Carbon Dioxide Reduction [J]. ChemElectroChem, 2020, 7(1): 320-327.
[88] GUO H, YOULIWASI N, ZHAO L, et al. Carbon-encapsulated nickel-cobalt alloys nanoparticles fabricated via new post-treatment strategy for hydrogen evolution in alkaline media [J]. Applied Surface Science, 2018, 435, 237-246.
[89] VOIRY D, CHHOWALLA M, GOGOTSI Y, et al. Best Practices for Reporting Electrocatalytic Performance of Nanomaterials [J]. ACS Nano, 2018, 12(10): 9635-9638.
[90] LI W, BANDOSZ T J. Role of Heteroatoms in S, N-Codoped Nanoporous Carbon Materials in CO2 (Photo)electrochemical Reduction [J]. ChemSusChem, 2018, 11(17): 2987-2999.
[91] PAN F, LI B, DENG W, et al. Promoting electrocatalytic CO2 reduction on nitrogen-doped carbon with sulfur addition [J]. Applied Catalysis B: Environmental, 2019, 252, 240-249.
[92] LI W, SEREDYCH M, RODRIGUEZ-CASTELLON E, et al. Metal-free Nanoporous Carbon as a Catalyst for Electrochemical Reduction of CO2 to CO and CH4 [J]. ChemSusChem, 2016, 9(6): 606-616.
[93] YANG H B, HUNG S F, LIU S, et al. Atomically dispersed Ni(i) as the active site for electrochemical CO2 reduction [J]. Nature Energy, 2018, 3(2): 140-147.
修改评论