中文版 | English
题名

面向电催化CO2还原的双金属氮掺杂碳材料研究

其他题名
STUDY ON BIMETALLIC NITROGEN DOPED CARBON MATERIALS FOR ELECTROCATALYTIC CO2 REDUCTION
姓名
姓名拼音
DING Yutian
学号
12032065
学位类型
硕士
学位专业
070304 物理化学
学科门类/专业学位类别
07 理学
导师
吴昌宁
导师单位
创新创业学院;化学系
论文答辩日期
2023-05-27
论文提交日期
2023-06-26
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

为了缓解大气中过高二氧化碳(CO2)浓度诱发的全球变暖等问题,实现CO2的净零排放,急需开展以风电、光电等为主要来源的可再生能源高效转化和CO2资源化利用过程研究。CO2资源化利用技术中的电化学还原方法因其能在温和条件下生产高附加值燃料及工业化学品的优势而受到关注。然而,产物选择性低、稳定性差、过电位较高等问题限制了技术应用。开发制备工艺简单和成本低廉的高性能非贵金属催化剂是解决上述问题的一种合适策略。本论文以金属有机骨架(MOFs)衍生多孔碳基材料为研究对象,制备了具有高稳定性特征的双金属氮掺杂碳催化剂,通过对照实验和系统的结构表征等手段初步探究材料中催化活性位点的作用机制。主要内容如下

通过溶剂热法制备了前驱体Co/Ni-ZIF-8ZIF 沸石咪唑酯骨架),并采用高温金属替代策略得到多孔碳材料Co/Ni-N-C。探究双金属掺杂对ZIF-8前驱体成型的干扰及材料电催化性能。结果显示Co/Ni-N-C相对可逆氢电极(vs. RHE)在−1.0 V−1.2 V高还原电势区间保持CO/H2比在7:1附近,并于−1.2 Vvs. RHE)取得最高电流密度(23 mA cm−2),经10 h极化后电流密度和产物法拉第效率无明显衰减。这项工作验证了引入CoNi双金属对提升氮掺杂碳ECO2RR稳定性和催化活性存在积极作用。

3-巯基丙酸为S供体,使用金属乙酸盐和2-甲基咪唑在水溶液中一步合成类MOF配位的双金属掺杂多层片状前驱体Co/Ni-ZIF-8-S。通过高温处理得到具备CoNi合金纳米颗粒和原子级CoNi分散位点的Co/Ni-N-S-C催化剂,探究其电催化性能和体系中S的作用机制。Co/Ni-N-S-C−0.5 V−1.1 Vvs. RHE)宽电势范围内能基本保持产物CO/H2比为1:2,在−0.9 Vvs. RHE)持续极化9 h后仍能保持25 mA cm−2的电流密度且产物法拉第效率基本不变。电催化过程金属-S的脱落将形成空穴结构并使体系中吡啶N的含量上升。这项工作为理解双金属NS共掺杂碳结构中S的作用提供补充。

本文提供了一种构建高稳定性的碳基催化剂新途径,有助于加深对NS双非金属共掺杂碳材料活性位点的认识,为后续高性能双金属氮掺杂碳催化剂的开发提供借鉴

 

 

其他摘要

In order to alleviate environmental problems (e.g., global warming) caused by excessive carbon dioxide (CO2) concentrations in the atmosphere and achieve net-zero CO2 emissions, it is an urgent need for research on the efficient conversion and utilization of CO2 from the renewable energy sources, such as wind power and photovoltaics. At present, the electrochemical reduction method in CO2 resource utilization technology has attracted attention because of its advantages in producing high-value-added fuels and industrial chemicals under mild conditions. However, some problems such as low product selectivity, poor stability, and high overpotential limit the application of the technology. Designing an easy preparation and inexpensive non-noble metal catalyst with high catalytic activity and high stability is a suitable strategy to solve the above problems. In this dissertation, two highly stable bimetallic nitrogen-doped carbon catalysts were prepared by metal organic framework (MOFs) as the precursors, and the mechanism of catalytic active sites in the materials was preliminarily explored through control experiments and systematic structural characterization. The main works are as follows:

The precursor Co/Ni-ZIF-8 was prepared by solvothermal method. By high temperature metal substitution strategy, the porous carbon material Co/Ni-N-C was successfully obtained. Then, the effects of bimetallic doping on the precursor molding process and electrochemical CO2 reduction performance were studied. The results showed that the bimetallic doped Co/Ni-N-C maintained the ratio of CO/H2 fluctuating around 7 in a high reduction potential window of −1.0 V to −1.2 V (vs. RHE), and achieved a current density up to 23 mA cm−2 at −1.2 V (vs. RHE). Besides, the current density and product Faraday efficiency were not significantly declined after 10 h polarization process. This work verifies the positive effect of doping Co and Ni on improving the stability and catalytic activity of nitrogen-doped carbon for ECO2RR, and provides reference for developing subsequent high-performance bimetallic nitrogen-doped carbon catalysts.

With 3-mercaptopropionic acid as the S donor agent, MOF-coordinated bimetallic doped multilayer sheet precursor Co/Ni-ZIF-8-S was synthesized in one step by using metal acetate and 2-methylimidazole in aqueous solution. Through high temperature calcination, the material named as Co/Ni-N-S-C with CoNi alloy nanoparticles and atomic-level Co and Ni dispersion sites was obtained. Then, the electrocatalytic properties of Co/Ni-N-S-C and the mechanism of S in the system were explored. Co/Ni-N-S-C basically maintained the ratio of CO/H2 as 1:2 in the wide potential range of −0.5 V to −1.1 V (vs. RHE), and maintained the Faraday efficiency of the product and the current density of 25 mA cm−2 after continuous polarization at −0.9 V (vs. RHE) for 9 h. The hollow structure generated by the detachment of the metal-S bond in the electrocatalytic process increases the content of pyridine N in the catalyst. This work complements the understanding of the role of S in bimetallic N and S co-doped carbon structures and provides a new way to build high-stability carbon-based catalysts.

This dissertation provides a new way to construct a highly stable carbon-based catalyst, which is helpful to deepen the understanding of the active sites of N and S bimetallic co-doped carbon materials, and provide reference for the subsequent development of high-performance bimetallic nitrogen-doped carbon catalysts.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2023-06
参考文献列表

[1] HERNáNDEZ S, AMIN FARKHONDEHFAL M, SASTRE F, et al. Syngas production from electrochemical reduction of CO2: current status and prospective implementation [J]. Green Chemistry, 2017, 19(10): 2326-2346.
[2] LI J, ABBAS S U, WANG H, et al. Recent Advances in Interface Engineering for Electrocatalytic CO2 Reduction Reaction [J]. Nanomicro Letters, 2021, 13(1): 216-251.
[3] CHEN Q, LV M, GU Y, et al. Hybrid Energy System for a Coal-Based Chemical Industry [J]. Joule, 2018, 2(4): 607-620.
[4] ANDERSON K, PETERS G, The trouble with negative emissions [J]. Science, 2016, 354: 182-183.
[5] JIN S, HAO Z, ZHANG K, et al. Advances and Challenges for the Electrochemical Reduction of CO2 to CO: From Fundamentals to Industrialization [J]. Angewandte Chemie International Edition, 2021, 60: 2-24.
[6] TAN X, YU C, REN Y, et al. Recent advances in innovative strategies for the CO2 electroreduction reaction [J]. Energy & Environmental Science, 2021, 14(2): 765-780.
[7] 张媛媛, 王永刚, 田亚峻. 典型现代煤化工过程的二氧化碳排放比较[J]. 化工进展, 2016, 35(12): 4060-4064.
[8] QIAO J L, LIU Y Y, HONG F, et al. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels [J]. Chemical Society Reviews, 2014, 43: 631-675.
[9] SCHWARZ H. A., DODSON R.W., Reduction potentials of CO2- and the alcohol radicals [J]. The Journal of Chemical Physics, 1989, 93: 409-414.
[10] YANG X F, WANG A, QIAO B, et al. Single-atom catalysts: a new frontier in heterogeneous catalysis [J]. Accounts of chemical research, 2013, 46(8): 1740-1748.
[11] HE Q, LIU D, LEE J H, et al. Electrochemical Conversion of CO2 to Syngas with Controllable CO/H2 Ratios over Co and Ni Single-Atom Catalysts [J]. Angewandte Chemie International Edition, 2020, 59(8): 3033-3037.
[12] WANG A, LI J, ZHANG T. Heterogeneous single-atom catalysis [J]. Nature Reviews Chemistry, 2018, 2(6): 65-81.
[13] JI S, CHEN Y, WANG X, et al. Chemical Synthesis of Single Atomic Site Catalysts [J]. Chemical Reviews, 2020, 120(21): 11900-11955.
[14] HORI Y, WAKEBE H, TSUKAMOTO T, et al. Electrocatalytic Process of Co Selectivity in Electrochemical Reduction of CO2 at Metal-Electrodes in Aqueous-Media [J]. Electrochimica Acta, 1994, 39, 1833-1839.
[15] BIRDJA Y Y, REZ-GALLENT E P, FIGUEIREDO M C, et al. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels [J]. Nature Energy, 2019, 4, 732-745.
[16] ZHANG W, HU Y, MA L, et al. Progress and Perspective of Electrocatalytic CO2 Reduction for Renewable Carbonaceous Fuels and Chemicals [J]. Advanced Science, 2018, 5(1): 1700275.
[17] RABIEE H, GE L, ZHANG X Q, et al. Gas diffusion electrodes (GDEs) for electrochemical reduction of carbon dioxide, carbon monoxide, and dinitrogen to value-added products: a review [J]. Energy & Environmental Science, 2021, 14(4): 1959-2008.
[18] NIU Z Z, CHI L P, LIU R, et al. Rigorous assessment of CO2 electroreduction products in a flow cell [J]. Energy & Environmental Science, 2021, 14(8): 4169-4176.
[19] BARD ALLEN J, FAULKNER LARRY R. Electrochemical Methods: Fundamentals and Applications. [M]. New York: John Wiley, 2001.
[20] HAMANN C H, HAMNETT A, VIELSTICH W. 电化学[M]. 陈艳霞,夏兴华,蔡俊译. 北京: 化学工业出版社,2010.
[21] JIA C, TAN X, ZHAO Y, et al. Sulfur-Dopant-Promoted Electroreduction of CO2 over Coordinatively Unsaturated Ni-N2 Moieties [J]. Angewandte Chemie International Edition, 2021, 60(43): 23342-23348.
[22] FU J, WANG Y, LIU J, et al. Low Overpotential for Electrochemically Reducing CO2 to CO on Nitrogen-Doped Graphene Quantum Dots-Wrapped Single-Crystalline Gold Nanoparticles [J]. ACS Energy Letters, 2018, 3(4): 946-951.
[23] KIM C, JEON H S, EOM T, et al. Achieving Selective and Efficient Electrocatalytic Activity for CO2 Reduction Using Immobilized Silver Nanoparticles [J]. Journal of the Chemical Society, 2015, 137(43): 13844-13850.
[24] HE Q, LEE J H, LIU D B, et al. Accelerating CO2 Electroreduction to CO Over Pd Single-Atom Catalyst [J]. Advanced Functional Materials, 2020, 30(17): 2000407
[25] MESHITSUKA S, ICHIKAWA M, TAMARU K. Electrocatalysis by Metal Phthalocyanines in the Reduction of Carbon Dioxide [J]. Journal of the Chemical Society, Chemical Communications, 1974, 158-159.
[26] KORNIENKO N, ZHAO Y, KLEY C S, et al. Metal-organic frameworks for electrocatalytic reduction of carbon dioxide [J]. Journal of the American Chemical Society, 2015, 137(44): 14129-14135.
[27] ZHAO C, DAI X, YAO T, et al. Ionic Exchange of Metal-Organic Frameworks to Access Single Nickel Sites for Efficient Electroreduction of CO2 [J]. Journal of the American Chemical Society, 2017, 139(24): 8078-8081.
[28] CHEN Y, JI S, WANG Y, et al. Isolated Single Iron Atoms Anchored on N-Doped Porous Carbon as an Efficient Electrocatalyst for the Oxygen Reduction Reaction. [J]. Angewandte Chemie International Edition, 2017, 56: 6937-6941.
[29] GONG Y N, JIAO L, QIAN Y, et al. Regulating the Coordination Environment of MOF-Templated Single-Atom Nickel Electrocatalysts for Boosting CO2 Reduction [J]. Angewandte Chemie International Edition, 2020, 59(7): 2705-2709.
[30] JIAO L, YANG W, WAN G, et al. Single-Atom Electrocatalysts from Multivariate Metal-Organic Frameworks for Highly Selective Reduction of CO2 at Low Pressures [J]. Angewandte Chemie International Edition, 2020, 59(46): 20589-20595.
[31] GUO Z, ZHANG Q, SHEN F, et al. Boosting electron transport over controllable N ligand doping for electrochemical conversion of CO2 to syngas [J]. Electrochimica Acta, 2021, 388: 138647.
[32] CHEN Z, ZHANG X, LIU W, et al. Amination strategy to boost the CO2 electroreduction current density of M-N/C single-atom catalysts to the industrial application level [J]. Energy & Environmental Science, 2021, 14(4): 2349-2356.
[33] ZHANG W, CHAO Y, ZHANG W, et al. Emerging Dual-Atomic-Site Catalysts for Efficient Energy Catalysis [J]. Advanced Materials, 2021, 33(36): e2102576.
[34] REN W, TAN X, YANG W, et al. Isolated Diatomic Ni-Fe Metal-Nitrogen Sites for Synergistic Electroreduction of CO2 [J]. Angewandte Chemie International Edition, 2019, 58(21): 6972-6976.
[35] WEI X, WEI S, CAO S, et al. Cu acting as Fe activity promoter in dual-atom Cu/Fe-NC catalyst in CO2RR to C1 products [J]. Applied Surface Science, 2021, 564, 150423.
[36] GAO J, HU Y, WANG Y, et al. MOF Structure Engineering to Synthesize CoNC Catalyst with Richer Accessible Active Sites for Enhanced Oxygen Reduction [J]. Small, 2021, 17(49): e2104684.
[37] MOHD ADLI N, SHAN W, HWANG S, et al. Engineering Atomically Dispersed FeN4 Active Sites for CO2 Electroreduction [J]. Angewandte Chemie International Edition, 2021, 60(2): 1022-1032.
[38] KUMAR B, ASADI M, PISASALE D, et al. Renewable and metal-free carbon nanofibre catalysts for carbon dioxide reduction [J]. Nature Communications, 2013, 4: 2819.
[39] LI J, ZAN W-Y, KANG H, et al. Graphitic-N highly doped graphene-like carbon: A superior metal-free catalyst for efficient reduction of CO2 [J]. Applied Catalysis B: Environmental, 2021, 298, 120510.
[40] MA X, DU J, SUN H, et al. Boron, nitrogen co-doped carbon with abundant mesopores for efficient CO2 electroreduction [J]. Applied Catalysis B: Environmental, 2021, 298, 120543.
[41] PAN B, ZHU X, WU Y, et al. Toward Highly Selective Electrochemical CO2 Reduction using Metal-Free Heteroatom-Doped Carbon [J]. Advanced Science, 2020, 7(16): 2001002.
[42] YANG H, WU Y, LIN Q, et al. Composition Tailoring via N and S Co-doping and Structure Tuning by Constructing Hierarchical Pores: Metal-Free Catalysts for High-Performance Electrochemical Reduction of CO2 [J]. Angewandte Chemie International Edition, 2018, 57(47): 15476-15480.
[43] SUI R, PEI J, FANG J, et al. Engineering Ag-Nx Single-Atom Sites on Porous Concave N-Doped Carbon for Boosting CO2 Electroreduction [J]. ACS Applied Materials & Interfaces, 2021, 13(15): 17736-17744.
[44] LIN R, ALBANI D, FAKO E, et al. Design of Single Gold Atoms on Nitrogen-Doped Carbon for Molecular Recognition in Alkyne Semi-Hydrogenation [J]. Angewandte Chemie International Edition, 2019, 58(2): 504-509.
[45] GUAN J, LIU Y, FANG Y, et al. Co-Ni alloy nanoparticles supported by carbon nanofibers for hydrogen evolution reaction [J]. Journal of Alloys and Compounds, 2021, 868, 159172.
[46] VARELA A S, JU W, BAGGER A, et al. Electrochemical Reduction of CO2 on Metal-Nitrogen-Doped Carbon Catalysts [J]. ACS Catalysis, 2019, 9(8): 7270-7284.
[47] LI Y, ADLI N M, SHAN W T, et al. Atomically dispersed single Ni site catalysts for high-efficiency CO2 electroreduction at industrial-level current densities [J]. Energy & Environmental Science, 2022, 15(5): 2108-2119.
[48] CAO S, ZHOU S, CHEN H, et al. How can the Dual‐atom Catalyst FeCo-NC Surpass Single‐atom Catalysts Fe-NC/Co-NC in CO2RR? -CO Intermediate Assisted Promotion via a Synergistic Effect [J]. Energy & Environmental Materials, 2022, 6(1): 1-9.
[49] FAIREN-JIMENEZ D, MOGGACH S A, WHARMBY M T, et al. Opening the gate: framework flexibility in ZIF-8 explored by experiments and simulations [J]. Journal of the American Chemical Society, 2011, 133(23): 8900-8902.
[50] LAI Q, ZHAO Y, LIANG Y, et al. In Situ Confinement Pyrolysis Transformation of ZIF-8 to Nitrogen-Enriched Meso-Microporous Carbon Frameworks for Oxygen Reduction [J]. Advanced Functional Materials, 2016, 26(45): 8334-8344.
[51] REN Q, WANG H, LU X F, et al. Recent Progress on MOF-Derived Heteroatom-Doped Carbon-Based Electrocatalysts for Oxygen Reduction Reaction [J]. Advanced Science, 2018, 5(3): 1700515.
[52] HE L, WENIGER F, NEUMANN H, et al. Synthesis, Characterization, and Application of Metal Nanoparticles Supported on Nitrogen-Doped Carbon: Catalysis beyond Electrochemistry [J]. Angewandte Chemie International Edition, 2016, 55(41): 12582-12594.
[53] WANG S, HE Q, WANG C, et al. Active Sites Engineering toward Superior Carbon-Based Oxygen Reduction Catalysts via Confinement Pyrolysis [J]. Small, 2018, 14(19): e1800128.
[54] MINGYE YANG, LU WANG, MIN LI, et al. Structural stability and O2 dissociation on nitrogen-doped graphene with transition metal atoms embedded: A first-principles study [J]. AIP Advanced, 2015, 5: 067136.
[55] ZHOU H, YANG T, KOU Z, et al. Negative Pressure Pyrolysis Induced Highly Accessible Single Sites Dispersed on 3D Graphene Frameworks for Enhanced Oxygen Reduction [J]. Angewandte Chemie International Edition, 2020, 59(46): 20465-20469.
[56] ZHANG Y, JIAO L, YANG W, et al. Rational Fabrication of Low-Coordinate Single-Atom Ni Electrocatalysts by MOFs for Highly Selective CO2 Reduction [J]. Angewandte Chemie International Edition, 2021, 60(14): 7607-7611.
[57] PEI J, WANG T, SUI R, et al. N-Bridged Co-N-Ni: new bimetallic sites for promoting electrochemical CO2 reduction [J]. Energy & Environmental Science, 2021, 14(5): 3019-3028.
[58] PAN F, LI B, SARNELLO E, et al. Pore-Edge Tailoring of Single-Atom Iron-Nitrogen Sites on Graphene for Enhanced CO2 Reduction [J]. ACS Catalysis, 2020, 10(19): 10803-10811.
[59] ZHENG T, JIANG K, WANG H. Recent Advances in Electrochemical CO2 -to-CO Conversion on Heterogeneous Catalysts [J]. Advanced Materials, 2018, 30(48): e1802066.
[60] ZHOU W, CHENG K, KANG J, et al. New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels [J]. Chemical Society Reviews, 2019, 48(12): 3193-3228.
[61] CHU S, CUI Y, LIU N. The path towards sustainable energy [J]. Nature Materials, 2016, 16(1): 16-22.
[62] TAN M, HAN X, RU S, et al. Low-loading gold in situ doped with sulfur by biomolecule-assisted approach for promoted electrochemical carbon dioxide reduction [J]. Nano Research, 2022, 16(2): 2059-2064.
[63] ZHANG Z, WEN G, LUO D, et al. "Two Ships in a Bottle" Design for Zn-Ag-O Catalyst Enabling Selective and Long-Lasting CO2 Electroreduction [J]. Journal of the American Chemical Society, 2021, 143(18): 6855-6864.
[64] FENG Y, YANG H, ZHANG Y, et al. Te-Doped Pd Nanocrystal for Electrochemical Urea Production by Efficiently Coupling Carbon Dioxide Reduction with Nitrite Reduction [J]. Nano Letters, 2020, 20(11): 8283-8289.
[65] ZHAO J, DENG J, HAN J, et al. Effective tunable syngas generation via CO2 reduction reaction by non-precious Fe-N-C electrocatalyst [J]. Chemical Engineering Journal, 2020, 389, 124323.
[66] PAN Y, LIN R, CHEN Y, et al. Design of Single-Atom Co-N5 Catalytic Site: A Robust Electrocatalyst for CO2 Reduction with Nearly 100% CO Selectivity and Remarkable Stability [J]. Journal of the American Chemical Society, 2018, 140(12): 4218-4221.
[67] HWA JEONG G, CHUAN TAN Y, TAE SONG J, et al. Synthetic multiscale design of nanostructured Ni single atom catalyst for superior CO2 electroreduction [J]. Chemical Engineering Journal, 2021, 426, 131063.
[68] YANG F, SONG P, LIU X, et al. Highly Efficient CO2 Electroreduction on ZnN4 -based Single-Atom Catalyst [J]. Angewandte Chemie International Edition, 2018, 57(38): 12303-12307.
[69] KOJIMA H, NAGASAWA K, TODOROKI N, et al. Influence of renewable energy power fluctuations on water electrolysis for green hydrogen production [J]. International Journal of Hydrogen Energy, 2023, 48(12): 4573-4593.
[70] RAHMAN M Z, KIBRIA M G, MULLINS C B. Metal-free photocatalysts for hydrogen evolution [J]. Chemical Society Reviews, 2020, 49(6): 1887-1931.
[71] FEI H, YANG Y, PENG Z, et al. Cobalt nanoparticles embedded in nitrogen-doped carbon for the hydrogen evolution reaction [J]. ACS Applied Materials & Interfaces, 2015, 7(15): 8083-8087.
[72] CHEN L, YANG S, QIAN K, et al. In situ growth of N-doped carbon coated CoNi alloy with graphene decoration for enhanced HER performance [J]. Journal of Energy Chemistry, 2019, 29, 129-135.
[73] HE F, WANG Y, ZHONG M, et al. Construction of nickel nanoparticles embedded in nitrogen self-doped graphene-like carbon derived from waste grapefruit peel for multifunctional OER, HER, and magnetism investigations [J]. Journal of Environmental Chemical Engineering, 2021, 9(6):106894.
[74] RONG X, WANG H J, LU X L, et al. Controlled Synthesis of a Vacancy-Defect Single-Atom Catalyst for Boosting CO2 Electroreduction [J]. Angewandte Chemie International Edition, 2020, 59(5): 1961-1965.
[75] DAIYAN R, CHEN R, KUMAR P, et al. Tunable Syngas Production through CO2 Electroreduction on Cobalt-Carbon Composite Electrocatalyst [J]. ACS Applied Materials & Interfaces, 2020, 12(8): 9307-9315.
[76] JU W, BAGGER A, HAO G P, et al. Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2 [J]. Nature Communications, 2017, 8(1): 944.
[77] TAN H Y, LIN S C, WANG J, et al. MOF-Templated Sulfurization of Atomically Dispersed Manganese Catalysts Facilitating Electroreduction of CO2 to CO [J]. ACS Applied Materials & Interfaces, 2021, 13(44): 52134-52143.
[78] HAILE A S, HANSEN H A, YOHANNES W, et al. The role of nitrogen and sulfur dual coordination of cobalt in Co-N4-xSx/C single atom catalysts in the oxygen reduction reaction [J]. Sustainable Energy & Fuels, 2022, 6(1): 179-187.
[79] PAN F, LI B, SARNELLO E, et al. Boosting CO2 reduction on Fe-N-C with sulfur incorporation: Synergistic electronic and structural engineering [J]. Nano Energy, 2020, 68, 104384.
[80] BUSTAMANTE E L, FERNANDEZ J L, ZAMARO J M. Influence of the solvent in the synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals at room temperature [J]. Journal of Colloid and Interface Science, 2014, 424, 37-43.
[81] TA D N, NGUYEN H K D, TRINH B X, et al. Preparation of nano-ZIF-8 in methanol with high yield [J]. The Canadian Journal of Chemical Engineering, 2018, 96(7): 1518-1531.
[82] LI X, LI Z, LU L, et al. The Solvent Induced Inter-Dimensional Phase Transformations of Cobalt Zeolitic-Imidazolate Frameworks [J]. Chemistry - A European Journal, 2017, 23(44): 10638-10643.
[83] LI Z H, HE H Y, CAO H B, et al. Atomic Co/Ni dual sites and Co/Ni alloy nanoparticles in N-doped porous Janus-like carbon frameworks for bifunctional oxygen electrocatalysis [J]. Applied Catalysis B: Environmental, 2019, 240, 112-121.
[84] SHARMA P P, WU J, YADAV R M, et al. Nitrogen-Doped Carbon Nanotube Arrays for High-Efficiency Electrochemical Reduction of CO2: On the Understanding of Defects, Defect Density, and Selectivity [J]. Angewandte Chemie International Edition, 2015, 54(46): 13701-13705.
[85] WANG X, LI X, DING S, et al. Constructing ample active sites in nitrogen-doped carbon materials for efficient electrocatalytic carbon dioxide reduction [J]. Nano Energy, 2021, 90, 106541.
[86] GALTAYRIES A, GRIMBLOT J. Formation and electronic properties of oxide and sulphide films of Co, Ni and Mo studied by XPS [J]. Journal of Electron Spectroscopy and Related Phenomena, 1999, 98, 267-275.
[87] CAI X, QIN B, LI Y, et al. Chlorine‐Promoted Nitrogen and Sulfur Co‐Doped Biocarbon Catalyst for Electrochemical Carbon Dioxide Reduction [J]. ChemElectroChem, 2020, 7(1): 320-327.
[88] GUO H, YOULIWASI N, ZHAO L, et al. Carbon-encapsulated nickel-cobalt alloys nanoparticles fabricated via new post-treatment strategy for hydrogen evolution in alkaline media [J]. Applied Surface Science, 2018, 435, 237-246.
[89] VOIRY D, CHHOWALLA M, GOGOTSI Y, et al. Best Practices for Reporting Electrocatalytic Performance of Nanomaterials [J]. ACS Nano, 2018, 12(10): 9635-9638.
[90] LI W, BANDOSZ T J. Role of Heteroatoms in S, N-Codoped Nanoporous Carbon Materials in CO2 (Photo)electrochemical Reduction [J]. ChemSusChem, 2018, 11(17): 2987-2999.
[91] PAN F, LI B, DENG W, et al. Promoting electrocatalytic CO2 reduction on nitrogen-doped carbon with sulfur addition [J]. Applied Catalysis B: Environmental, 2019, 252, 240-249.
[92] LI W, SEREDYCH M, RODRIGUEZ-CASTELLON E, et al. Metal-free Nanoporous Carbon as a Catalyst for Electrochemical Reduction of CO2 to CO and CH4 [J]. ChemSusChem, 2016, 9(6): 606-616.
[93] YANG H B, HUNG S F, LIU S, et al. Atomically dispersed Ni(i) as the active site for electrochemical CO2 reduction [J]. Nature Energy, 2018, 3(2): 140-147.

所在学位评定分委会
化学
国内图书分类号
TB34
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544062
专题理学院_化学系
推荐引用方式
GB/T 7714
丁宇田. 面向电催化CO2还原的双金属氮掺杂碳材料研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032065-丁宇田-化学系.pdf(4885KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[丁宇田]的文章
百度学术
百度学术中相似的文章
[丁宇田]的文章
必应学术
必应学术中相似的文章
[丁宇田]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。