[1] TUCK C O, PÉREZ E, HORVÁTH I T, et al. Valorization of biomass: Deriving more value from waste[J]. Science, 2012, 337(6095): 695-699.
[2] GALLEZOT P. Conversion of biomass to selected chemical products[J]. Chemical Society Reviews, 2012, 41(4): 1538-1558.
[3] CANTU D C, PADMAPERUMA A B, NGUYEN M T, et al. A Combined Experimental and Theoretical Study on the Activity and Selectivity of the Electrocatalytic Hydrogenation of Aldehydes[J]. ACS Catalysis, 2018, 8(8): 7645-7658.
[4] GUISNET M, MAGNOUX P. Organic chemistry of coke formation[J]. Applied Catalysis A: General, 2001, 212(1-2): 83-96.
[5] WEBER R S, OLARTE M V., WANG H. Modeling the kinetics of deactivation of catalysts during the upgrading of bio-oil[J]. Energy and Fuels, 2015, 29(1): 273-277.
[6] ZHANG X, CUI G, FENG H, et al. Platinum–copper single atom alloy catalysts with high performance towards glycerol hydrogenolysis[J]. Nature Communications, 2019, 10(1): 1-12.
[7] SAELEE T, LIMSOONTHAKUL P, APHICHOKSIRI P, et al. Experimental and computational study on roles of WOx promoting strong metal support promoter interaction in Pt catalysts during glycerol hydrogenolysis[J]. Scientific Reports, 2021, 11(1): 1-12.
[8] DONG C, LI Y, CHENG D, et al. Supported Metal Clusters: Fabrication and Application in Heterogeneous Catalysis[J]. ACS Catalysis, 2020, 10(19): 11011-11045.
[9] LAN X, WANG T. Highly Selective Catalysts for the Hydrogenation of Unsaturated Aldehydes: A Review[J]. ACS Catalysis, 2020, 10(4): 2764-2790.
[10] CATTANEO S, CAPELLI S, STUCCHI M, et al. Discovering the role of substrate in aldehyde hydrogenation[J]. Journal of Catalysis, 2021, 399: 162-169.
[11] MONTINI T, MELCHIONNA M, MONAI M, et al. Fundamentals and Catalytic Applications of CeO2-Based Materials[J]. Chemical Reviews, 2016, 116(10): 5987-6041.
[12] YUK S F, LEE M S, AKHADE S A, et al. First-principle investigation on catalytic hydrogenation of benzaldehyde over Pt-group metals[J]. Catalysis Today, 2022, 388-389(March): 208-215.
[13] STEPHENS I E L, BONDARENKO A S, PEREZ-ALONSO F J, et al. Tuning the activity of Pt(111) for oxygen electroreduction by subsurface alloying[J]. Journal of the American Chemical Society, 2011, 133(14): 5485-5491.
[14] MÄKI-ARVELA P, HÁJEK J, SALMI T, et al. Chemoselective hydrogenation of carbonyl compounds over heterogeneous catalysts[J]. Applied Catalysis A: General, 2005, 292(1-2): 1-49.
[15] SHEKHAR M, WANG J, LEE W S, et al. Size and support effects for the water-gas shift catalysis over gold nanoparticles supported on model Al 2O 3 and TiO 2[J]. Journal of the American Chemical Society, 2012, 134(10): 4700-4708.
[16] TAUSTER S J, FUNG S C, GARTEN R L. Strong Metal-Support Interactions. Group 8 Noble Metals Supported on TiO2[J]. Journal of the American Chemical Society, 1978, 100(1): 170-175.
[17] ZANG G, SUN P, ELGOWAINY A, et al. Life Cycle Analysis of Electrofuels: Fischer–Tropsch Fuel Production from Hydrogen and Corn Ethanol Byproduct CO2[J]. Environmental Science & Technology, 2021, 55(6): 3888-3897.
[18] MEIER D, URAKAWA A, BAIKER A. In situ PM-IRRAS study of liquid-phase benzyl alcohol oxidation on palladium[J]. Journal of Physical Chemistry C, 2009, 113(52): 21849–21855.
[19] ANDANSON J M, BAIKER A. Exploring catalytic solid/liquid interfaces by in situ attenuated total reflection infrared spectroscopy[J]. Chemical Society Reviews, 2010, 39(12): 4571-4584.
[20] SERRANO-RUIZ J C, WEST R M, DUMESIC J A. Catalytic conversion of renewable biomass resources to fuels and chemicals.[J]. Annual review of chemical and biomolecular engineering, 2010, 1: 79-100.
[21] VERMA M, GODBOUT S, BRAR S K, et al. Biofuels Production from Biomass by Thermochemical Conversion Technologies[J]. 2012, 2012.
[22] MAY A S, BIDDINGER E J. Strategies to Control Electrochemical Hydrogenation and Hydrogenolysis of Furfural and Minimize Undesired Side Reactions[J]. ACS Catalysis, 2020, 10(5): 3212-3221.
[23] MARISCAL R, MAIRELES-TORRES P, OJEDA M, et al. Furfural: A renewable and versatile platform molecule for the synthesis of chemicals and fuels[J]. Energy and Environmental Science, 2016, 9(4): 1144-1189.
[24] LI X, JIA P, WANG T. Furfural: A Promising Platform Compound for Sustainable Production of C4 and C5 Chemicals[J]. ACS Catalysis, 2016, 6(11): 7621-7640.
[25] WANG Y, LE Q Van, YANG H, et al. Chemosphere Progress in microbial biomass conversion into green energy[J]. Chemosphere, 2021, 281(April): 130835.
[26] LEE C B T L, WU T Y. A review on solvent systems for furfural production from lignocellulosic biomass[J]. Renewable and Sustainable Energy Reviews, 2021, 137(xxxx): 110172.
[27] AKHADE S A, SINGH N, GUTIÉRREZ O Y, et al. Electrocatalytic Hydrogenation of Biomass-Derived Organics: A Review[M]//Chemical Reviews. American Chemical Society, 2020. DOI:10.1021/acs.chemrev.0c00158.
[28] ANDRÉ CREMONEZ P, FEROLDI M, CÉZAR NADALETI W, et al. Biodiesel production in Brazil: Current scenario and perspectives[J]. Renewable and Sustainable Energy Reviews, 2015, 42: 415-428.
[29] MARISCAL R, OJEDA M. Furfural: a renewable and versatile platform molecule for the synthesis of chemicals and fuels[J]. Energy& Environmental Science, 2016: 1144-1189.
[30] NEGAHDAR L, GONZALEZ-QUIROGA A, OTYUSKAYA D, et al. Characterization and Comparison of Fast Pyrolysis Bio-oils from Pinewood, Rapeseed Cake, and Wheat Straw Using 13C NMR and Comprehensive GC × GC[J]. ACS Sustainable Chemistry and Engineering, 2016, 4(9): 4974-4985.
[31] SITTHISA S, RESASCO D E. Hydrodeoxygenation of furfural over supported metal catalysts: A comparative study of Cu, Pd and Ni[J]. Catalysis Letters, 2011, 141(6): 784-791.
[32] HUBER G W, DUMESIC J A. An overview of aqueous-phase catalytic processes for production of hydrogen and alkanes in a biorefinery[J]. Catalysis Today, 2006, 111: 119-132.
[33] QIAO Z, WANG Z, ZHANG C, et al. Mechanistic Insights into the Structure-Dependent Selectivity of Catalytic Furfural Conversion on Platinum Catalysts[J]. AIChE Journal, 2012, 59(4): 215-228.
[34] ALBILALI R, DOUTHWAITE M, HE Q, et al. The selective hydrogenation of furfural over supported palladium nanoparticle catalysts prepared by sol-immobilisation: Effect of catalyst support and reaction conditions[J]. Catalysis Science and Technology, 2018, 8(1): 252-267.
[35] CAO Y, CHEN B, GUERRERO-SÁNCHEZ J, et al. Controlling Selectivity in Unsaturated Aldehyde Hydrogenation Using Single-Site Alloy Catalysts[J]. ACS Catalysis, 2019, 9(10): 9150-9157.
[36] LUNEAU M, LIM J S, PATEL D A, et al. Guidelines to Achieving High Selectivity for the Hydrogenation of α,β-Unsaturated Aldehydes with Bimetallic and Dilute Alloy Catalysts: A Review[J]. Chemical Reviews, 2020, 120(23): 12834-12872.
[37] QIAO Z, WANG Z, ZHANG C, et al. Mechanistic Insights into the Structure-Dependent Selectivity of Catalytic Furfural Conversion on Platinum Catalysts[J]. AIChE Journal, 2012, 59(4): 215-228.
[38] WANG J, LV C Q, LIU J H, et al. Theoretical investigation of solvent effects on the selective hydrogenation of furfural over Pt(111)[J]. International Journal of Hydrogen Energy, 2020, 46(2): 1592-1604.
[39] KITANOSONO T, MASUDA K, XU P, et al. Catalytic Organic Reactions in Water toward Sustainable Society[J]. Chemical Reviews, 2018, 118(2): 679-746.
[40] LI K, DENG L, YI S, et al. Boosting the performance by the water solvation shell with hydrogen bonds on protonic ionic liquids: insights into the acid catalysis of the glycosidic bond[J]. Catalysis Science and Technology, 2021, 11(10): 3527-3538.
[41] FARNESI CAMELLONE M, MARX D. On the impact of solvation on a Au/TiO2 nanocatalyst in contact with water[J]. Journal of Physical Chemistry Letters, 2013, 4(3): 514-518.
[42] SHANGGUAN J, CHIN Y H C. Kinetic Significance of Proton-Electron Transfer during Condensed Phase Reduction of Carbonyls on Transition Metal Clusters[J]. ACS Catalysis, 2019, 9(3): 1763-1778.
[43] WAN H, VITTER A, CHAUDHARI R V, et al. Kinetic investigations of unusual solvent effects during Ru / C catalyzed hydrogenation of model oxygenates[J]. Journal of Catalysis, 2014, 309: 174-184.
[44] AKPA B S, AGOSTINO C D, GLADDEN L F, et al. Solvent effects in the hydrogenation of 2-butanone[J]. Journal of Catalysis, 2012, 289: 30-41.
[45] LOVELESS B T, BUDA C, NEUROCK M, et al. CO Chemisorption and Dissociation at High Coverages during CO Hydrogenation on Ru Catalysts[J]. Journal of the American Chemical Society, 2013.
[46] MATTEO FARNESI CAMELLONE D M. On the Impact of Solvation on a Au/TiO2 Nanocatalyst in Contact with Water[J]. J. Phys. Chem. Lett., 2013, 4(3): 514-518.
[47] ZHAO Z, BABABRIK R, XUE W, et al. Solvent-mediated charge separation drives alternative hydrogenation path of furanics in liquid water[J]. Nature Catalysis, 2019, 2(5): 431-436.
[48] ZOPE B N, HIBBITTS D D, NEUROCK M, et al. Reactivity of the Gold/Water Interface During Selective Oxidation Catalysis[J]. Science, 2010, 330(6000): 74-78.
[49] LIU J C, TANG Y, CHANG C R, et al. Mechanistic Insights into Propene Epoxidation with O2-H2O Mixture on Au7/α-Al2O3: A Hydroproxyl Pathway from ab Initio Molecular Dynamics Simulations[J]. ACS Catalysis, 2016, 6(4): 2525-2535.
[50] XIA G J, WANG Y G. Solvent Promotion on the Metal-Support Interaction and Activity of Pd@ZrO2 Catalyst: Formation of Metal Hydrides as the New Catalytic Active Phase at the Solid-Liquid Interface[J]. Journal of Catalysis, 2021, 404: 537-550.
[51] YOON Y, ROUSSEAU R, WEBER R S, et al. First-principles study of phenol hydrogenation on pt and ni catalysts in aqueous phase[J]. Journal of the American Chemical Society, 2014, 136(29): 10287-10298.
[52] SCHNOOR J K, FUCHS M, BÖCKING A, et al. Homogeneous Catalyst Recycling and Separation of a Multicomponent Mixture Using Organic Solvent Nanofiltration[J]. Chemical Engineering and Technology, 2019, 42(10): 2187-2194.
[53] ZHANG X, LLABRÉS I XAMENA F X, CORMA A. Gold(III) – metal organic framework bridges the gap between homogeneous and heterogeneous gold catalysts[J]. Journal of Catalysis, 2009, 265(2): 155-160.
[54] ERLEBACHER J, AZIZ M J, KARMA A, et al. Evolution of nanoporosity in dealloying[J]. Nature, 2001, 410(6827): 450-453.
[55] LIU L, CORMA A. Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles[J]. Chemical Reviews, 2018, 118(10): 4981-5079.
[56] DEY S, MEHTA N S. Automobile pollution control using catalysis[J]. Resources, Environment and Sustainability, 2020, 2(November): 100006.
[57] SATTLER J J H B, RUIZ-MARTINEZ J, SANTILLAN-JIMENEZ E, et al. Catalytic Dehydrogenation of Light Alkanes on Metals and Metal Oxides[J]. Chemical Reviews, 2014, 114(20): 10613-10653.
[58] SINGH N, LEE M S, AKHADE S A, et al. Impact of pH on Aqueous-Phase Phenol Hydrogenation Catalyzed by Carbon-Supported Pt and Rh[J]. ACS Catalysis, 2019, 9(2): 1120-1128.
[59] RAMOS R, TIŠLER Z, KIKHTYANIN O, et al. Solvent effects in hydrodeoxygenation of furfural-acetone aldol condensation products over Pt/TiO2 catalyst[J]. Applied Catalysis A: General, 2017, 530: 174-183.
[60] TOLEK W, KHRUECHAO K, PONGTHAWORNSAKUN B, et al. Flame spray-synthesized Pt-Co/TiO2 catalysts for the selective hydrogenation of furfural to furfuryl alcohol[J]. Catalysis Communications, 2021, 149(November 2020): 0-5.
[61] JIMÉNEZ-GÓMEZ C P, CECILIA J A, DURÁN-MARTÍN D, et al. Gas-phase hydrogenation of furfural to furfuryl alcohol over Cu/ZnO catalysts[J]. Journal of Catalysis, 2016, 336: 107-115.
[62] BI X, DU G, KALAM A, et al. Tuning oxygen vacancy content in TiO2 nanoparticles to enhance the photocatalytic performance[J]. Chemical Engineering Science, 2021, 234: 116440.
[63] WANG B, ZHANG M, CUI X, et al. Unconventional Route to Oxygen-Vacancy-Enabled Highly Efficient Electron Extraction and Transport in Perovskite Solar Cells[J]. Angewandte Chemie - International Edition, 2020, 59(4): 1611-1618.
[64] CAO H, XIA G J, CHEN J W, et al. Mechanistic Insight into the Oxygen Reduction Reaction on the Mn-N4/C Single-Atom Catalyst: The Role of the Solvent Environment[J]. Journal of Physical Chemistry C, 2020, 124(13): 7287-7294.
[65] HARUTA M. Size- and support-dependency in the catalysis of gold[J]. Catalysis Today, 1997, 36(1): 153-166.
[66] LIU L, DÍAZ U, ARENAL R, et al. Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D[J]. Nature Materials, 2017, 16(1): 132-138.
[67] YARDIMCI D, SERNA P, GATES B C. Tuning catalytic selectivity: Zeolite- and magnesium oxide-supported molecular rhodium catalysts for hydrogenation of 1,3-butadiene[J]. ACS Catalysis, 2012, 2(10): 2100-2113.
[68] LIU L, LOPEZ-HARO M, LOPES C W, et al. Regioselective generation and reactivity control of subnanometric platinum clusters in zeolites for high-temperature catalysis[J]. Nature Materials, 2019, 18(8): 866-873.
[69] KIM G, SHIN S, CHOI Y, et al. Gas-Permeable Iron-Doped Ceria Shell on Rh Nanoparticles with High Activity and Durability[J]. Journal of the American Chemical Society, 2022.
[70] PEI Q, HE T, YU Y, et al. Fabrication of oxygen vacancies through assembling an amorphous titanate overlayer on titanium oxide for a catalytic water-gas shift reaction[J]. Journal of Materials Chemistry A, 2021, 9(5): 2784-2791.
[71] GENG Z, JIN X, WANG R, et al. Low-Temperature Hydrogen Production via Water Conversion on Pt/TiO2[J]. Journal of Physical Chemistry C, 2018, 122(20): 10956-10962.
[72] RODRÍGUEZ J A, EVANS J, GRACIANI J, et al. High water-gas shift activity in TiO 2(110) supported Cu and Au nanoparticles: role of the oxide and metal particle size[J]. Journal of Physical Chemistry C, 2009, 113(17): 7364-7370.
[73] ZHANG Z, LI H. Water-mediated catalytic hydrodeoxygenation of biomass[J]. Fuel, 2022, 310(PA): 122242.
[74] CATTANEO S, CAPELLI S, STUCCHI M, et al. Discovering the role of substrate in aldehyde hydrogenation[J]. Journal of Catalysis, 2021, 399: 162-169.
[75] PROCHÁZKOVÁ D, ZÁMOSTNÝ P, BEJBLOVÁ M, et al. Hydrodeoxygenation of aldehydes catalyzed by supported palladium catalysts[J]. Applied Catalysis A: General, 2007, 332(1): 56-64.
[76] SINGH U K, VANNICE M A. Kinetics of liquid-phase hydrogenation reactions over supported metal catalysts - A review[J]. Applied Catalysis A: General, 2001, 213(1): 1-24.
[77] POROSOFF M D, YANG X, BOSCOBOINIK J A, et al. Molybdenum carbide as alternative catalysts to precious metals for highly selective reduction of CO2 to CO[J]. Angewandte Chemie - International Edition, 2014, 53(26): 6705-6709.
[78] CAO H, ZHANG Z, CHEN J W, et al. Potential-Dependent Free Energy Relationship in Interpreting the Electrochemical Performance of CO2 Reduction on Single Atom Catalysts[J]. ACS Catalysis, 2022, 12(11): 6606-6617.
[79] VASILEFF A, XU C, JIAO Y, et al. Surface and Interface Engineering in Copper-Based Bimetallic Materials for Selective CO2 Electroreduction[J]. Chem, 2018, 4(8): 1809-1831.
[80] KIM S K, ZHANG Y J, BERGSTROM H, et al. Understanding the Low-Overpotential Production of CH4 from CO2 on Mo2C Catalysts[J]. ACS Catalysis, 2016, 6(3): 2003-2013.
[81] POSADA-PÉREZ S, RAMÍREZ P J, EVANS J, et al. Highly Active Au/δ-MoC and Cu/δ-MoC Catalysts for the Conversion of CO2: The Metal/C Ratio as a Key Factor Defining Activity, Selectivity, and Stability[J]. Journal of the American Chemical Society, 2016, 138(26): 8269-8278.
[82] DESSAL C, MARTÍNEZ L, MAHEU C, et al. Influence of Pt particle size and reaction phase on the photocatalytic performances of ultradispersed Pt/TiO2 catalysts for hydrogen evolution[J]. Journal of Catalysis, 2019, 375: 155-163.
[83] FAN Q Y, WANG Y, CHENG J. Size-Sensitive Dynamic Catalysis of Subnanometer Cu Clusters in CO2Dissociation[J]. Journal of Physical Chemistry Letters, 2021, 12(16): 3891-3897.
[84] KIM S S, LEE H H, HONG S C. A study on the effect of support’s reducibility on the reverse water-gas shift reaction over Pt catalysts[J]. Applied Catalysis A: General, 2012, 423-424: 100-107.
[85] DONG H, ZHENG Y, HU P. DFT study of furfural conversion on a Re/Pt bimetallic surface: Synergetic effect on the promotion of hydrodeoxygenation[J]. Physical Chemistry Chemical Physics, 2019, 21(16): 8384-8393.
[86] GRABOW L C, MAVRIKAKIS M. Mechanism of methanol synthesis on cu through CO2 and CO hydrogenation[J]. ACS Catalysis, 2011, 1(4): 365-384.
[87] BAILÓN-GARCÍA E, CARRASCO-MARÍN F, PÉREZ-CADENAS A F, et al. Influence of the pretreatment conditions on the development and performance of active sites of Pt/TiO2 catalysts used for the selective citral hydrogenation[J]. Journal of Catalysis, 2015, 327: 86-95.
[88] NEWMAN C, ZHOU X, GOUNDIE B, et al. Effects of support identity and metal dispersion in supported ruthenium hydrodeoxygenation catalysts[J]. Applied Catalysis A: General, 2014, 477: 64-74.
[89] FU J, ZHANG X, LI H, et al. Enhancing electronic metal support interaction (EMSI) over Pt/TiO2 for efficient catalytic wet air oxidation of phenol in wastewater[J]. Journal of Hazardous Materials, 2022, 426: 128088.
[90] XIA G J, LEE M S, GLEZAKOU V A, et al. Diffusion and Surface Segregation of Interstitial Ti Defects Induced by Electronic Metal–Support Interactions on a Au/TiO2 Nanocatalyst[J]. ACS Catalysis, 2022: 4455-4464.
[91] VAN DEELEN T W, HERNÁNDEZ MEJÍA C, DE JONG K P. Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity[J]. Nature Catalysis, 2019, 2(11): 955-970.
[92] HU S, LI W X. Sabatier principle of metal-support interaction for design of ultrastable metal nanocatalysts[J]. Science, 2021, 374(6573): 1360-1365.
[93] ZHAO W, ZHOU D, HAN S, et al. Metal-Support Interaction in Pt/TiO2: Formation of Surface Pt-Ti Alloy[J]. Journal of Physical Chemistry C, 2021, 125(19): 10386-10396.
[94] GATES B C. Supported Metal Clusters: Synthesis, Structure, and Catalysis[J]. Chemical Reviews, 1995, 95(3): 511-522.
[95] YE R, ZHUKHOVITSKIY A V, DERAEDT C V, et al. Supported Dendrimer-Encapsulated Metal Clusters: Toward Heterogenizing Homogeneous Catalysts[J]. Accounts of Chemical Research, 2017, 50(8): 1894-1901.
[96] YAMAZOE S, KOYASU K, TSUKUDA T. Nonscalable Oxidation Catalysis of Gold Clusters[J]. Accounts of Chemical Research, 2014, 47(3): 816-824.
[97] CHE M, BENNETT C O. The Influence of Particle Size on the Catalytic Properties of Supported Metals[J]. Advances in Catalysis, 1989, 36(C): 55-172.
[98] CHEN W, JI J, FENG X, et al. Mechanistic insight into size-dependent activity and durability in Pt/CNT catalyzed hydrolytic dehydrogenation of ammonia borane[J]. Journal of the American Chemical Society, 2014, 136(48): 16736-16739.
[99] CRESPO-QUESADA M, YARULIN A, JIN M, et al. Structure sensitivity of alkynol hydrogenation on shape- and size-controlled palladium nanocrystals: Which sites are most active and selective?[J]. Journal of the American Chemical Society, 2011, 133(32): 12787-12794.
[100] GAO D, ZHOU H, WANG J, et al. Size-Dependent Electrocatalytic Reduction of CO2 over Pd Nanoparticles[J]. Journal of the American Chemical Society, 2015, 137(13): 4288-4291.
[101] KENT J, GREEN R E, MADDEN J, et al. Ammonia Synthesis from First-Principles Calculations[J]. Science, 2005, 4963(January): 2003-2006.
[102] BEZEMER G L, BITTER J H, KUIPERS H P C E, et al. Cobalt Particle Size Effects in the Fischer−Tropsch Reaction Studied with Carbon Nanofiber Supported Catalysts[J]. Journal of the American Chemical Society, 2006, 128(12): 3956-3964.
[103] VAJDA S, PELLIN M J, GREELEY J P, et al. Subnanometre platinum clusters as highly active and selective catalysts for the oxidative dehydrogenation of propane[J]. Nature Materials, 2009, 8(3): 213-216.
[104] CLARY D C, NEUMARK D M, POLANYI J C, et al. Increased Silver Activity for Direct[J]. Science, 2010, 328(April): 224.
[105] QIAO B, WANG A, YANG X, et al. Single-atom catalysis of CO oxidation using Pt1/FeOx[J]. Nature Chemistry, 2011, 3(8): 634-641.
[106] FEI H, DONG J, CHEN D, et al. Single atom electrocatalysts supported on graphene or graphene-like carbons[J]. Chemical Society Reviews, 2019, 48(20): 5207-5241.
[107] PENG Y, LU B, CHEN S. Carbon-Supported Single Atom Catalysts for Electrochemical Energy Conversion and Storage[J]. Advanced Materials, 2018, 30(48): 1-25.
[108] KUAI L, CHEN Z, LIU S, et al. Titania supported synergistic palladium single atoms and nanoparticles for room temperature ketone and aldehydes hydrogenation[J]. Nature Communications, 2020, 11(1): 1-9.
[109] SUN T, XU L, WANG D, et al. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion[J]. Nano Research, 2019, 12(9): 2067-2080.
[110] CUI X, LI W, RYABCHUK P, et al. Bridging homogeneous and heterogeneous catalysis by heterogeneous single-metal-site catalysts[J]. Nature Catalysis, 1(6): 385-397.
[111] JIANG F, WANG S, LIU B, et al. Insights into the Influence of CeO2Crystal Facet on CO2Hydrogenation to Methanol over Pd/CeO2Catalysts[J]. ACS Catalysis, 2020, 10(19): 11493-11509.
[112] MITCHELL S, PÉREZ-RAMÍREZ J. Single atom catalysis: a decade of stunning progress and the promise for a bright future[J]. Nature Communications, 2020, 11(1): 10-12.
[113] YAN H, SU C, HE J, et al. Single-atom catalysts and their applications in organic chemistry[J]. Journal of Materials Chemistry A, 2018, 6(19): 8793-8814.
[114] SALAEH R, FAUNGNAWAKIJ K, KUNGWAN N, et al. The Role of Metal Species on Aldehyde Hydrogenation over Co13 and Ni13 Supported on γ-Al2O3(110) Surfaces: A Theoretical Study[J]. ChemistrySelect, 2020, 5(13): 4058-4068.
[115] FARNESI CAMELLONE M, NEGREIROS RIBEIRO F, SZABOVÁ L, et al. Catalytic Proton Dynamics at the Water/Solid Interface of Ceria-Supported Pt Clusters[J]. Journal of the American Chemical Society, 2016, 138(36): 11560-11567.
[116] LIU Y, TSUNOYAMA H, AKITA T, et al. Efficient and selective epoxidation of styrene with TBHP catalyzed by Au25 clusters on hydroxyapatite[J]. Chemical Communications, 2010, 46(4): 550-552.
[117] LAM E, CORRAL-PÉREZ J J, LARMIER K, et al. CO2 Hydrogenation on Cu/Al2O3: Role of the Metal/Support Interface in Driving Activity and Selectivity of a Bifunctional Catalyst[J]. Angewandte Chemie - International Edition, 2019, 58(39): 13989-13996.
[118] LV Y, HAN M, GONG W, et al. Fe-Co Alloyed Nanoparticles Catalyzing Efficient Hydrogenation of Cinnamaldehyde to Cinnamyl Alcohol in Water[J]. Angewandte Chemie - International Edition, 2020, 59(52): 23521-23526.
[119] CHEN J W, ZHANG Z, YAN H M, et al. Pseudo-adsorption and long-range redox coupling during oxygen reduction reaction on single atom electrocatalyst[J]. Nature Communications, 2022, 13(1): 1-13.
[120] LANGE J P. Renewable Feedstocks: The Problem of Catalyst Deactivation and its Mitigation[J]. Angewandte Chemie - International Edition, 2015, 54(45): 13187-13197.
[121] MOLINER M, GABAY J E, KLIEWER C E, et al. Reversible Transformation of Pt Nanoparticles into Single Atoms inside High-Silica Chabazite Zeolite[J]. Journal of the American Chemical Society, 2016, 138(48): 15743-15750.
[122] WANG N, SUN Q, BAI R, et al. In Situ Confinement of Ultrasmall Pd Clusters within Nanosized Silicalite-1 Zeolite for Highly Efficient Catalysis of Hydrogen Generation[J]. Journal of the American Chemical Society, 2016, 138(24): 7484-7487.
[123] ZHANG F, PAN X, HU Y, et al. Tuning the redox activity of encapsulated metal clusters via the metallic and semiconducting character of carbon nanotubes[J]. Proceedings of the National Academy of Sciences, 2013, 110(37): 14861-14866.
[124] WANG Y G, YOON Y, GLEZAKOU V A, et al. The role of reducible oxide-metal cluster charge transfer in catalytic processes: New insights on the catalytic mechanism of CO oxidation on Au/TiO2 from ab initio molecular dynamics[J]. Journal of the American Chemical Society, 2013, 135(29): 10673-10683.
[125] WANG Y G, CANTU D C, LEE M S, et al. CO Oxidation on Au/TiO2: Condition-Dependent Active Sites and Mechanistic Pathways[J]. Journal of the American Chemical Society, 2016, 138(33): 10467-10476.
[126] WANG Y G, YOON Y, GLEZAKOU V A, et al. The role of reducible oxide-metal cluster charge transfer in catalytic processes: New insights on the catalytic mechanism of CO oxidation on Au/TiO2 from ab initio molecular dynamics[J]. Journal of the American Chemical Society, 2013, 135(29): 10673-10683.
[127] TAUSTER S J. Strong Metal-Support Interactions[J]. Accounts of Chemical Research, 1987, 20(11): 389-394.
[128] BRUMBERGER H, DELAGLIO F, GOODISMAN J, et al. Investigation of the SMSI catalyst Pt TiO2 by small-angle X-ray scattering[J]. Journal of Catalysis, 1985, 92(2): 199-210.
[129] FU Q, WAGNER T, OLLIGES S, et al. Metal-oxide interfacial reactions: Encapsulation of Pd on TiO2 (110)[J]. Journal of Physical Chemistry B, 2005, 109(2): 944-951.
[130] TANG Y, ZHAO S, LONG B, et al. On the Nature of Support Effects of Metal Dioxides MO2 (M = Ti, Zr, Hf, Ce, Th) in Single-Atom Gold Catalysts: Importance of Quantum Primogenic Effect[J]. Journal of Physical Chemistry C, 2016, 120(31): 17514-17526.
[131] LIU J C, WANG Y G, LI J. Toward Rational Design of Oxide-Supported Single-Atom Catalysts: Atomic Dispersion of Gold on Ceria[J]. Journal of the American Chemical Society, 2017, 139(17): 6190-6199.
[132] SAQLAIN M A, HUSSAIN A, SIDDIQ M, et al. Thermally activated surface oxygen defects at the perimeter of Au/TiO2: A DFT+U study[J]. Physical Chemistry Chemical Physics, 2015, 17(38): 25403-25410.
[133] FINAZZI E, DI VALENTIN C, PACCHIONI G. Nature of Ti Interstitials in Reduced Bulk Anatase and Rutile TiO2[J]. The Journal of Physical Chemistry C, 2009, 113(9): 3382-3385.
[134] HENDERSON M A. An HREELS and TPD study of water on TiO2(110): The extent of molecular versus dissociative adsorption[J]. Surface Science, 1996, 355(1-3): 151-166.
[135] PAN J ‐M., MASCHHOFF B L, DIEBOLD U, et al. Interaction of water, oxygen, and hydrogen with TiO 2 (110) surfaces having different defect densities [J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1992, 10(4): 2470-2476.
[136] PAN X, YANG M Q, FU X, et al. Defective TiO2 with oxygen vacancies: Synthesis, properties and photocatalytic applications[J]. Nanoscale, 2013, 5(9): 3601-3614.
[137] AHMADI M, TIMOSHENKO J, BEHAFARID F, et al. Tuning the Structure of Pt Nanoparticles through Support Interactions: An in Situ Polarized X-ray Absorption Study Coupled with Atomistic Simulations[J]. Journal of Physical Chemistry C, 2019, 123(16): 10666-10676.
[138] ASO R, HOJO H, TAKAHASHI Y, et al. Direct identification of the charge state in a single platinum nanoparticle on titanium oxide[J]. Science (New York, N.Y.), 2022, 378(6616): 202-206.
[139] KALAMARAS C M, PANAGIOTOPOULOU P, KONDARIDES D I, et al. Kinetic and mechanistic studies of the water-gas shift reaction on Pt/TiO2 catalyst[J]. Journal of Catalysis, 2009, 264(2): 117-129.
[140] KENNEDY G, BAKER L R, SOMORJAI G A. Selective amplification of C=O bond hydrogenation on Pt/TiO2: Catalytic reaction and sum-frequency generation vibrational spectroscopy studies of crotonaldehyde hydrogenation[J]. Angewandte Chemie - International Edition, 2014, 53(13): 3405-3408.
[141] DOHNÁLEK Z, LYUBINETSKY I, ROUSSEAU R. Thermally-driven processes on rutile TiO2(1 1 0)-(1 × 1): A direct view at the atomic scale[J]. Progress in Surface Science, 2010, 85(5-8): 161-205.
[142] ZHAO S, JIN R, ABROSHAN H, et al. Gold Nanoclusters Promote Electrocatalytic Water Oxidation at the Nanocluster/CoSe 2 Interface [J]. Journal of the American Chemical Society, 2017, 139(3): 1077-1080.
[143] MENARD L D, XU F, NUZZO R G, et al. Preparation of TiO2-supported Au nanoparticle catalysts from a Au13 cluster precursor: Ligand removal using ozone exposure versus a rapid thermal treatment[J]. Journal of Catalysis, 2006, 243(1): 64-73.
[144] CHUANG I L, COMPUTATION Q, SHOR P W, et al. on TiO 2 Surfaces[J]. 2009(November): 826-830.
[145] CHENG N, STAMBULA S, WANG D, et al. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction[J]. Nature Communications, 2016, 7(1): 13638.
[146] LU J, ELAM J W, STAIR P C. Synthesis and Stabilization of Supported Metal Catalysts by Atomic Layer Deposition[J]. Accounts of Chemical Research, 2013, 46(8): 1806-1815.
[147] KULKARNI A, LOBO-LAPIDUS R J, GATES B C. Metal clusters on supports: Synthesis, structure, reactivity, and catalytic properties[J]. Chemical Communications, 2010, 46(33): 5997-6015.
[148] SAMAD J E, BLANCHARD J, SAYAG C, et al. The controlled synthesis of metal-acid bifunctional catalysts: Selective Pt deposition and nanoparticle synthesis on amorphous aluminosilicates[J]. Journal of Catalysis, 2016, 342: 213-225.
[149] HENKELMAN G, UBERUAGA B P, JÓNSSON H. Climbing image nudged elastic band method for finding saddle points and minimum energy paths[J]. Journal of Chemical Physics, 2000, 113(22): 9901-9904.
[150] HOOVER W G. Canonical dynamics: Equilibrium phase-space distributions[J]. Physical Review A, 1985, 31(3): 1695-1697.
[151] NOSÉ S. A unified formulation of the constant temperature molecular dynamics methods[J]. The Journal of Chemical Physics, 1984, 81(1): 511-519.
[152] KÜHNE T D, IANNUZZI M, DEL BEN M, et al. CP2K: An electronic structure and molecular dynamics software package -Quickstep: Efficient and accurate electronic structure calculations[J]. Journal of Chemical Physics, 2020, 152(19).
[153] PARRINELLO R C and M. Unified Approach for Molecular Dynamics and Density-Functional Theory[J]. PHYSICAL REVIEW LETTERS, 1985, 55: 2471.
[154] KÜHNE T D, KRACK M, MOHAMED F R, et al. Efficient and accurate car-parrinello-like approach to born-oppenheimer molecular dynamics[J]. Physical Review Letters, 2007, 98(6): 1-4.
[155] CARTER E A, CICCOTTI G, HYNES J T, et al. Constrained reaction coordinate dynamics for the simulation of rare events[J]. Chemical Physics Letters, 1989, 156(5): 472-477.
[156] SPRIK M, CICCOTTI G. Free energy from constrained molecular dynamics[J]. Journal of Chemical Physics, 1998, 109(18): 7737-7744.
[157] BASH P A, SINGH U C, BROWN F K, et al. Calculation of the Relative Change in Binding Free Energy of a Protein-Inhibitor Complex[J]. Science, 1987, 235(4788): 574-576.
[158] PATEY G N, VALLEAU J P. A Monte Carlo method for obtaining the interionic potential of mean force in ionic solution[J]. The Journal of Chemical Physics, 1975, 63(6): 2334-2339.
[159] LAIO A, PARRINELLO M. Escaping free-energy minima[J]. PNAS, 2002, 99(20): 12562-12566.
[160] LAIO A, GERVASIO F L. Metadynamics: A method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science[J]. Reports on Progress in Physics, 2008, 71(12).
[161] BARDUCCI A, BUSSI G, PARRINELLO M. Well-Tempered Metadynamics: A Smoothly Converging and Tunable Free-Energy Method[J]. Physical Review Letters, 2008, 100(2): 20603.
[162] DOMENE C, BARBINI P, FURINI S. Bias-exchange metadynamics simulations: An efficient strategy for the analysis of conduction and selectivity in ion channels[J]. Journal of Chemical Theory and Computation, 2015, 11(4): 1896-1906.
[163] CICCOTTI G, KAPRAL R, VANDEN-EIJNDEN E. Blue Moon sampling, vectorial reaction coordinates, and unbiased constrained dynamics[J]. ChemPhysChem, 2005, 6(9): 1809-1814.
[164] BOUDART M. From the century of the rate equation to the century of the rate constants: A revolution in catalytic kinetics and assisted catalyst design[J]. Catalysis Letters, 2000, 65(1-3): 1-3.
[165] MOTAGAMWALA A H, DUMESIC J A. Microkinetic Modeling: A Tool for Rational Catalyst Design[J]. Chemical Reviews, 2021, 121(2): 1049-1076.
[166] FAHEEM M, SALEHEEN M, LU J, et al. Ethylene glycol reforming on Pt(111): First-principles microkinetic modeling in vapor and aqueous phases[J]. Catalysis Science and Technology, 2016, 6(23): 8242-8256.
[167] FILOT I A W, BROOS R J P, VAN RIJN J P M, et al. First-Principles-Based Microkinetics Simulations of Synthesis Gas Conversion on a Stepped Rhodium Surface[J]. ACS Catalysis, 2015, 5(9): 5453-5467.
[168] LIN F, HOANG D T, TSUNG C K, et al. Catalytic properties of Pt cluster-decorated CeO2 nanostructures[J]. Nano Research, 2011, 4(1): 61-71.
[169] SHANGGUAN J, OLARTE M V., CHIN Y H. Mechanistic insights on C-O and C-C bond activation and hydrogen insertion during acetic acid hydrogenation catalyzed by ruthenium clusters in aqueous medium[J]. Journal of Catalysis, 2016, 340: 107-121.
[170] KUO C Te, LU Y, KOVARIK L, et al. Structure Sensitivity of Acetylene Semi-Hydrogenation on Pt Single Atoms and Subnanometer Clusters[J]. ACS Catalysis, 2019: 11030-11041.
[171] MA X L, LIU J C, XIAO H, et al. Surface Single-Cluster Catalyst for N 2 -to-NH 3 Thermal Conversion[J]. Journal of the American Chemical Society, 2018, 140(1): 46-49.
[172] SANCHEZ M G, GAZQUEZ J L. Oxygen vacancy model in strong metal-support interaction[J]. Journal of Catalysis, 1987, 104(1): 120-135.
[173] AMMAL S C, HEYDEN A. Modeling the noble metal/TiO2 (110) interface with hybrid DFT functionals: A periodic electrostatic embedded cluster model study[J]. Journal of Chemical Physics, 2010, 133(16): 164703.
[174] QIU H, MA X, SUN C, et al. Surface oxygen vacancies enriched Pt/TiO2 synthesized with a defect migration strategy for superior photocatalytic activity[J]. Applied Surface Science, 2020, 506: 145021.
[175] OYEKAN K A, VAN DE PUT M, TIWARI S, et al. Re-examining the role of subsurface oxygen vacancies in the dissociation of H2O molecules on anatase TiO2[J]. Applied Surface Science, 2022, 594(April): 153452.
[176] HARTKE B, CARTER E A. Ab initio molecular dynamics simulated annealing at the generalized valence bond level. Application to a small nickel cluster[J]. Chemical Physics Letters, 1993, 216(3-6): 324-328.
[177] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868.
[178] GRIMME S, ANTONY J, EHRLICH S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu[J]. Journal of Chemical Physics, 2010, 132(15).
[179] ARROYO-DE DOMPABLO M E, MORALES-GARCA A, TARAVILLO M. DFTU calculations of crystal lattice, electronic structure, and phase stability under pressure of TiO2 polymorphs[J]. Journal of Chemical Physics, 2011, 135: 054503.
[180] KOWALSKI P M, CAMELLONE M F, NAIR N N, et al. Charge localization dynamics induced by oxygen vacancies on the TiO 2(110) surface[J]. Physical Review Letters, 2010, 105: 146405.
[181] TANG W, SANVILLE E, HENKELMAN G. A grid-based Bader analysis algorithm without lattice bias[J]. Journal of Physics Condensed Matter, 2009, 21(8): 084204.
[182] BUSSI G, LAIO A. Using metadynamics to explore complex free-energy landscapes[J]. Nature Reviews Physics, 2020, 2(4): 200-212.
[183] GERVASIO F L, LAIO A, PARRINELLO M. Flexible docking in solution using metadynamics[J]. Journal of the American Chemical Society, 2005, 127(8): 2600-2607.
[184] BUCKO T. Ab initio calculations of free-energy reaction barriers[J]. Journal of Physics Condensed Matter, 2008, 20(6): 064211.
[185] XIE T, BODENSCHATZ C J, GETMAN R B. Insights into the roles of water on the aqueous phase reforming of glycerol[J]. Reaction Chemistry and Engineering, 2019, 4(2): 383-392.
[186] WANG D, SHENG T, CHEN J, et al. Identifying the key obstacle in photocatalytic oxygen evolution on rutile TiO2[J]. Nature Catalysis, 2018, 1(4): 291-299.
[187] SALEHEEN M, VERMA A M, MAMUN O, et al. Investigation of solvent effects on the hydrodeoxygenation of guaiacol over Ru catalysts[J]. Catalysis Science and Technology, 2019, 9(22): 6253-6273.
[188] ZHANG S, XIA Z, NI T, et al. Strong electronic metal-support interaction of Pt/CeO2 enables efficient and selective hydrogenation of quinolines at room temperature[J]. Journal of Catalysis, 2018, 359: 101-111.
[189] CALLE-VALLEJO F, LOFFREDA D, KOPER M T M, et al. Introducing structural sensitivity into adsorption-energy scaling relations by means of coordination numbers[J]. Nature Chemistry, 2015, 7(5): 403-410.
[190] LOPEZ N, JANSSENS T V W, CLAUSEN B S, et al. On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation[J]. Journal of Catalysis, 2004, 223(1): 232-235.
[191] ALLOUCHE A rahman. The Trans Effect in Square-Planar Platinum(II) Complexes—A Density Functional Study ZDENEK[J]. Journal of computational chemistry, 2012, 32(Ii): 174-182.
[192] KOZUCH S, SHAIK S. How to conceptualize catalytic cycles? the energetic Span model[J]. Accounts of Chemical Research, 2011, 44(2): 101-110.
[193] LI J, ZHOU H, ZHUO H, et al. Oxygen vacancies on TiO2 promoted the activity and stability of supported Pd nanoparticles for the oxygen reduction reaction[J]. Journal of Materials Chemistry A, 2018, 6(5): 2264-2272.
[194] LI G, WANG B, RESASCO D E. Water-Mediated Heterogeneously Catalyzed Reactions[J]. ACS Catalysis, 2020, 10(2): 1294-1309.
[195] CUKIERMAN S. Et tu, Grotthuss! and other unfinished stories[J]. Biochimica et Biophysica Acta - Bioenergetics, 2006, 1757(8): 876-885.
[196] MERTE L R, PENG G, BECHSTEIN R, et al. Water-mediated proton hopping on an iron oxide surface[J]. Science, 2012, 336(6083): 889-893.
[197] MIGLIORE A, POLIZZI N F, THERIEN M J, et al. Biochemistry and theory of proton-coupled electron transfer[J]. Chemical Reviews, 2014, 114(7): 3381-3465.
[198] MULKIDJANIAN A Y, CHEREPANOV D A, HEBERLE J, et al. Proton transfer dynamics at membrane/water interface and mechanism of biological energy conversion[J]. Biokhimiya, 2005, 70(2): 308-314.
[199] SERETIS A, DIAMANTOPOULOU P, THANOU I, et al. Recent Advances in Ruthenium-Catalyzed Hydrogenation Reactions of Renewable Biomass-Derived Levulinic Acid in Aqueous Media[J]. Frontiers in Chemistry, 2020, 8(April): 1-22.
[200] PAPADOGIANAKIS G, SHELDON R A, MURZIN D Y, et al. Editorial: Aqueous-Phase Catalytic Conversions of Renewable Feedstocks for Sustainable Biorefineries[J]. Frontiers in Chemistry, 2020, 8(December): 1-3.
[201] LIN F, LU Y, UNOCIC K A, et al. Deactivation by Potassium Accumulation on a Pt/TiO2 Bifunctional Catalyst for Biomass Catalytic Fast Pyrolysis[J]. ACS Catalysis, 2022, 12(1): 465-480.
修改评论