中文版 | English
题名

水相中负载型金属催化剂催化醛基加氢的动态机理研究

其他题名
UNDERSTANDING THE DYNAMICAL MECHANISM OF ALDEHYDE HYDROGENATION CATALYZED BY SUPPORTED METAL CATALYST IN AQUEOUS PHASE
姓名
姓名拼音
CAO Wei
学号
12032091
学位类型
硕士
学位专业
070304 物理化学
学科门类/专业学位类别
07 理学
导师
王阳刚
导师单位
化学系
论文答辩日期
2023-05-23
论文提交日期
2023-06-27
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

生物质的利用近年来已成为绿色催化领域极具前景的方向,醛基(RCHO)加氢是其中重要的反应。目前,大量生物质催化实验是在水相环境中利用氧化物负载的金属催化剂实现的。然而,由于水相环境下表征的困难,其反应机制仍不明确,因此相关理论模拟研究显得尤为重要。本文结合密度泛函理论计算和从头算分子动力学模拟,研究了在水相中二氧化钛负载的铂催化剂(Pt/TiO2)催化醛基加氢的模型反应。研究结果表明,催化剂载体上的氧空位和水相中的溶剂水分子都可以向Pt团簇提供电荷,其中氧空位起主导作用,能够将Pt团簇带电性质由正还原为负。在甲醛氢化过程中,水分子通过酸碱交换作用可以自发地质子化醛基中的氧,并进一步通过长程质子转移在金属-载体界面生成吸附态的OH*中间体。通过对比符合化学计量的二氧化钛(TiO2)表面和因存在氧空位而被还原的二氧化钛(TiO2-x)表面,发现OH*进一步氢化过程对TiO2载体上的带正电荷的Pt团簇来说比较困难。相比之下,TiO2-x载体上带负电荷的Pt团簇使得OH*氢化的基元步骤不仅在热力学上能够自发进行,而且在动力学上更加容易。这说明二氧化钛表面氧空位可以防止OH*对催化剂的毒化,有利于水分子的质子转移过程,从而协同地促进醛基加氢。本工作中研究结果显示,在水相环境中即使是如此简单的甲醛加氢模型反应,其机理可以与体系中所有的催化组分(金属团簇、氧化物载体和水溶剂环境)直接相关联。考虑到可还原性氧化物载体表面广泛存在的氧空位和常见的水相反应条件,该协同效应可能不仅限于Pt/TiO2催化剂,还对其他生物质转化中负载型金属催化剂的理性设计和实验条件的高效选择非常关键

其他摘要

The utilization of biomass is a promising way in the development of green catalysis in recent years, with hydrogenation of aldehydes (RCHO) being an important reaction. For now, many biomass catalytical experiments have been carried out in aqueous phase using metal catalysts supported by oxide. However, given the difficulty of characterizing reactions in aqueous phase, the reaction mechanism is still unclear, making related theoretical simulation research particularly needed. In this study, a model reaction of aldehyde hydrogenation was investigated using a platinum catalyst supported on titanium dioxide (Pt/TiO2) in aqueous phase, combining density functional theory (DFT) calculations and ab initio molecular dynamics (AIMD) simulations. The results show that both the oxygen vacancy on the catalyst support and the solvent water molecules in the aqueous phase can donate electrons to the Pt cluster, with the oxygen vacancy playing a dominant role in reducing the Pt cluster from positively charged to negatively charged. During the formaldehyde hydrogenation process, water molecules can spontaneously protonate the oxygen in the aldehyde group through acid-base exchange, and further generate adsorbed OH* intermediates at the metal-support interface through a long-range proton transfer. By comparing the stoichiometric titanium dioxide surface (TiO2) and the reduced titanium dioxide surface (TiO2-x) due to the existence of oxygen vacancy, it was found that the further hydrogenation process of OH* on the TiO2 support is more difficult for the positively charged Pt cluster. However, the negatively charged Pt cluster on the TiO2-x support make this elementary reaction not only thermodynamically spontaneous, but also more kinetically favorable. This suggests that oxygen vacancy on the titanium dioxide surface can prevent poisoning of the catalyst by OH* and have a synergistic promoting effect on aldehyde hydrogenation with water molecules. The results of this study show that even for such a simple model reaction of formaldehyde hydrogenation in an aqueous phase, the mechanism may directly relate to all the catalytic components (metal clusters, oxide supports, and water solvent environment). Considering the widespread existence of oxygen vacancies in reducible oxide supports and common aqueous reaction conditions, this synergistic effect may not only be limited to Pt/TiO2 but also be crucial for the rational design of supported metal catalysts and the efficient selection of experimental conditions in biomass conversion.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2023-06
参考文献列表

[1] TUCK C O, PÉREZ E, HORVÁTH I T, et al. Valorization of biomass: Deriving more value from waste[J]. Science, 2012, 337(6095): 695-699.
[2] GALLEZOT P. Conversion of biomass to selected chemical products[J]. Chemical Society Reviews, 2012, 41(4): 1538-1558.
[3] CANTU D C, PADMAPERUMA A B, NGUYEN M T, et al. A Combined Experimental and Theoretical Study on the Activity and Selectivity of the Electrocatalytic Hydrogenation of Aldehydes[J]. ACS Catalysis, 2018, 8(8): 7645-7658.
[4] GUISNET M, MAGNOUX P. Organic chemistry of coke formation[J]. Applied Catalysis A: General, 2001, 212(1-2): 83-96.
[5] WEBER R S, OLARTE M V., WANG H. Modeling the kinetics of deactivation of catalysts during the upgrading of bio-oil[J]. Energy and Fuels, 2015, 29(1): 273-277.
[6] ZHANG X, CUI G, FENG H, et al. Platinum–copper single atom alloy catalysts with high performance towards glycerol hydrogenolysis[J]. Nature Communications, 2019, 10(1): 1-12.
[7] SAELEE T, LIMSOONTHAKUL P, APHICHOKSIRI P, et al. Experimental and computational study on roles of WOx promoting strong metal support promoter interaction in Pt catalysts during glycerol hydrogenolysis[J]. Scientific Reports, 2021, 11(1): 1-12.
[8] DONG C, LI Y, CHENG D, et al. Supported Metal Clusters: Fabrication and Application in Heterogeneous Catalysis[J]. ACS Catalysis, 2020, 10(19): 11011-11045.
[9] LAN X, WANG T. Highly Selective Catalysts for the Hydrogenation of Unsaturated Aldehydes: A Review[J]. ACS Catalysis, 2020, 10(4): 2764-2790.
[10] CATTANEO S, CAPELLI S, STUCCHI M, et al. Discovering the role of substrate in aldehyde hydrogenation[J]. Journal of Catalysis, 2021, 399: 162-169.
[11] MONTINI T, MELCHIONNA M, MONAI M, et al. Fundamentals and Catalytic Applications of CeO2-Based Materials[J]. Chemical Reviews, 2016, 116(10): 5987-6041.
[12] YUK S F, LEE M S, AKHADE S A, et al. First-principle investigation on catalytic hydrogenation of benzaldehyde over Pt-group metals[J]. Catalysis Today, 2022, 388-389(March): 208-215.
[13] STEPHENS I E L, BONDARENKO A S, PEREZ-ALONSO F J, et al. Tuning the activity of Pt(111) for oxygen electroreduction by subsurface alloying[J]. Journal of the American Chemical Society, 2011, 133(14): 5485-5491.
[14] MÄKI-ARVELA P, HÁJEK J, SALMI T, et al. Chemoselective hydrogenation of carbonyl compounds over heterogeneous catalysts[J]. Applied Catalysis A: General, 2005, 292(1-2): 1-49.
[15] SHEKHAR M, WANG J, LEE W S, et al. Size and support effects for the water-gas shift catalysis over gold nanoparticles supported on model Al 2O 3 and TiO 2[J]. Journal of the American Chemical Society, 2012, 134(10): 4700-4708.
[16] TAUSTER S J, FUNG S C, GARTEN R L. Strong Metal-Support Interactions. Group 8 Noble Metals Supported on TiO2[J]. Journal of the American Chemical Society, 1978, 100(1): 170-175.
[17] ZANG G, SUN P, ELGOWAINY A, et al. Life Cycle Analysis of Electrofuels: Fischer–Tropsch Fuel Production from Hydrogen and Corn Ethanol Byproduct CO2[J]. Environmental Science & Technology, 2021, 55(6): 3888-3897.
[18] MEIER D, URAKAWA A, BAIKER A. In situ PM-IRRAS study of liquid-phase benzyl alcohol oxidation on palladium[J]. Journal of Physical Chemistry C, 2009, 113(52): 21849–21855.
[19] ANDANSON J M, BAIKER A. Exploring catalytic solid/liquid interfaces by in situ attenuated total reflection infrared spectroscopy[J]. Chemical Society Reviews, 2010, 39(12): 4571-4584.
[20] SERRANO-RUIZ J C, WEST R M, DUMESIC J A. Catalytic conversion of renewable biomass resources to fuels and chemicals.[J]. Annual review of chemical and biomolecular engineering, 2010, 1: 79-100.
[21] VERMA M, GODBOUT S, BRAR S K, et al. Biofuels Production from Biomass by Thermochemical Conversion Technologies[J]. 2012, 2012.
[22] MAY A S, BIDDINGER E J. Strategies to Control Electrochemical Hydrogenation and Hydrogenolysis of Furfural and Minimize Undesired Side Reactions[J]. ACS Catalysis, 2020, 10(5): 3212-3221.
[23] MARISCAL R, MAIRELES-TORRES P, OJEDA M, et al. Furfural: A renewable and versatile platform molecule for the synthesis of chemicals and fuels[J]. Energy and Environmental Science, 2016, 9(4): 1144-1189.
[24] LI X, JIA P, WANG T. Furfural: A Promising Platform Compound for Sustainable Production of C4 and C5 Chemicals[J]. ACS Catalysis, 2016, 6(11): 7621-7640.
[25] WANG Y, LE Q Van, YANG H, et al. Chemosphere Progress in microbial biomass conversion into green energy[J]. Chemosphere, 2021, 281(April): 130835.
[26] LEE C B T L, WU T Y. A review on solvent systems for furfural production from lignocellulosic biomass[J]. Renewable and Sustainable Energy Reviews, 2021, 137(xxxx): 110172.
[27] AKHADE S A, SINGH N, GUTIÉRREZ O Y, et al. Electrocatalytic Hydrogenation of Biomass-Derived Organics: A Review[M]//Chemical Reviews. American Chemical Society, 2020. DOI:10.1021/acs.chemrev.0c00158.
[28] ANDRÉ CREMONEZ P, FEROLDI M, CÉZAR NADALETI W, et al. Biodiesel production in Brazil: Current scenario and perspectives[J]. Renewable and Sustainable Energy Reviews, 2015, 42: 415-428.
[29] MARISCAL R, OJEDA M. Furfural: a renewable and versatile platform molecule for the synthesis of chemicals and fuels[J]. Energy& Environmental Science, 2016: 1144-1189.
[30] NEGAHDAR L, GONZALEZ-QUIROGA A, OTYUSKAYA D, et al. Characterization and Comparison of Fast Pyrolysis Bio-oils from Pinewood, Rapeseed Cake, and Wheat Straw Using 13C NMR and Comprehensive GC × GC[J]. ACS Sustainable Chemistry and Engineering, 2016, 4(9): 4974-4985.
[31] SITTHISA S, RESASCO D E. Hydrodeoxygenation of furfural over supported metal catalysts: A comparative study of Cu, Pd and Ni[J]. Catalysis Letters, 2011, 141(6): 784-791.
[32] HUBER G W, DUMESIC J A. An overview of aqueous-phase catalytic processes for production of hydrogen and alkanes in a biorefinery[J]. Catalysis Today, 2006, 111: 119-132.
[33] QIAO Z, WANG Z, ZHANG C, et al. Mechanistic Insights into the Structure-Dependent Selectivity of Catalytic Furfural Conversion on Platinum Catalysts[J]. AIChE Journal, 2012, 59(4): 215-228.
[34] ALBILALI R, DOUTHWAITE M, HE Q, et al. The selective hydrogenation of furfural over supported palladium nanoparticle catalysts prepared by sol-immobilisation: Effect of catalyst support and reaction conditions[J]. Catalysis Science and Technology, 2018, 8(1): 252-267.
[35] CAO Y, CHEN B, GUERRERO-SÁNCHEZ J, et al. Controlling Selectivity in Unsaturated Aldehyde Hydrogenation Using Single-Site Alloy Catalysts[J]. ACS Catalysis, 2019, 9(10): 9150-9157.
[36] LUNEAU M, LIM J S, PATEL D A, et al. Guidelines to Achieving High Selectivity for the Hydrogenation of α,β-Unsaturated Aldehydes with Bimetallic and Dilute Alloy Catalysts: A Review[J]. Chemical Reviews, 2020, 120(23): 12834-12872.
[37] QIAO Z, WANG Z, ZHANG C, et al. Mechanistic Insights into the Structure-Dependent Selectivity of Catalytic Furfural Conversion on Platinum Catalysts[J]. AIChE Journal, 2012, 59(4): 215-228.
[38] WANG J, LV C Q, LIU J H, et al. Theoretical investigation of solvent effects on the selective hydrogenation of furfural over Pt(111)[J]. International Journal of Hydrogen Energy, 2020, 46(2): 1592-1604.
[39] KITANOSONO T, MASUDA K, XU P, et al. Catalytic Organic Reactions in Water toward Sustainable Society[J]. Chemical Reviews, 2018, 118(2): 679-746.
[40] LI K, DENG L, YI S, et al. Boosting the performance by the water solvation shell with hydrogen bonds on protonic ionic liquids: insights into the acid catalysis of the glycosidic bond[J]. Catalysis Science and Technology, 2021, 11(10): 3527-3538.
[41] FARNESI CAMELLONE M, MARX D. On the impact of solvation on a Au/TiO2 nanocatalyst in contact with water[J]. Journal of Physical Chemistry Letters, 2013, 4(3): 514-518.
[42] SHANGGUAN J, CHIN Y H C. Kinetic Significance of Proton-Electron Transfer during Condensed Phase Reduction of Carbonyls on Transition Metal Clusters[J]. ACS Catalysis, 2019, 9(3): 1763-1778.
[43] WAN H, VITTER A, CHAUDHARI R V, et al. Kinetic investigations of unusual solvent effects during Ru / C catalyzed hydrogenation of model oxygenates[J]. Journal of Catalysis, 2014, 309: 174-184.
[44] AKPA B S, AGOSTINO C D, GLADDEN L F, et al. Solvent effects in the hydrogenation of 2-butanone[J]. Journal of Catalysis, 2012, 289: 30-41.
[45] LOVELESS B T, BUDA C, NEUROCK M, et al. CO Chemisorption and Dissociation at High Coverages during CO Hydrogenation on Ru Catalysts[J]. Journal of the American Chemical Society, 2013.
[46] MATTEO FARNESI CAMELLONE D M. On the Impact of Solvation on a Au/TiO2 Nanocatalyst in Contact with Water[J]. J. Phys. Chem. Lett., 2013, 4(3): 514-518.
[47] ZHAO Z, BABABRIK R, XUE W, et al. Solvent-mediated charge separation drives alternative hydrogenation path of furanics in liquid water[J]. Nature Catalysis, 2019, 2(5): 431-436.
[48] ZOPE B N, HIBBITTS D D, NEUROCK M, et al. Reactivity of the Gold/Water Interface During Selective Oxidation Catalysis[J]. Science, 2010, 330(6000): 74-78.
[49] LIU J C, TANG Y, CHANG C R, et al. Mechanistic Insights into Propene Epoxidation with O2-H2O Mixture on Au7/α-Al2O3: A Hydroproxyl Pathway from ab Initio Molecular Dynamics Simulations[J]. ACS Catalysis, 2016, 6(4): 2525-2535.
[50] XIA G J, WANG Y G. Solvent Promotion on the Metal-Support Interaction and Activity of Pd@ZrO2 Catalyst: Formation of Metal Hydrides as the New Catalytic Active Phase at the Solid-Liquid Interface[J]. Journal of Catalysis, 2021, 404: 537-550.
[51] YOON Y, ROUSSEAU R, WEBER R S, et al. First-principles study of phenol hydrogenation on pt and ni catalysts in aqueous phase[J]. Journal of the American Chemical Society, 2014, 136(29): 10287-10298.
[52] SCHNOOR J K, FUCHS M, BÖCKING A, et al. Homogeneous Catalyst Recycling and Separation of a Multicomponent Mixture Using Organic Solvent Nanofiltration[J]. Chemical Engineering and Technology, 2019, 42(10): 2187-2194.
[53] ZHANG X, LLABRÉS I XAMENA F X, CORMA A. Gold(III) – metal organic framework bridges the gap between homogeneous and heterogeneous gold catalysts[J]. Journal of Catalysis, 2009, 265(2): 155-160.
[54] ERLEBACHER J, AZIZ M J, KARMA A, et al. Evolution of nanoporosity in dealloying[J]. Nature, 2001, 410(6827): 450-453.
[55] LIU L, CORMA A. Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles[J]. Chemical Reviews, 2018, 118(10): 4981-5079.
[56] DEY S, MEHTA N S. Automobile pollution control using catalysis[J]. Resources, Environment and Sustainability, 2020, 2(November): 100006.
[57] SATTLER J J H B, RUIZ-MARTINEZ J, SANTILLAN-JIMENEZ E, et al. Catalytic Dehydrogenation of Light Alkanes on Metals and Metal Oxides[J]. Chemical Reviews, 2014, 114(20): 10613-10653.
[58] SINGH N, LEE M S, AKHADE S A, et al. Impact of pH on Aqueous-Phase Phenol Hydrogenation Catalyzed by Carbon-Supported Pt and Rh[J]. ACS Catalysis, 2019, 9(2): 1120-1128.
[59] RAMOS R, TIŠLER Z, KIKHTYANIN O, et al. Solvent effects in hydrodeoxygenation of furfural-acetone aldol condensation products over Pt/TiO2 catalyst[J]. Applied Catalysis A: General, 2017, 530: 174-183.
[60] TOLEK W, KHRUECHAO K, PONGTHAWORNSAKUN B, et al. Flame spray-synthesized Pt-Co/TiO2 catalysts for the selective hydrogenation of furfural to furfuryl alcohol[J]. Catalysis Communications, 2021, 149(November 2020): 0-5.
[61] JIMÉNEZ-GÓMEZ C P, CECILIA J A, DURÁN-MARTÍN D, et al. Gas-phase hydrogenation of furfural to furfuryl alcohol over Cu/ZnO catalysts[J]. Journal of Catalysis, 2016, 336: 107-115.
[62] BI X, DU G, KALAM A, et al. Tuning oxygen vacancy content in TiO2 nanoparticles to enhance the photocatalytic performance[J]. Chemical Engineering Science, 2021, 234: 116440.
[63] WANG B, ZHANG M, CUI X, et al. Unconventional Route to Oxygen-Vacancy-Enabled Highly Efficient Electron Extraction and Transport in Perovskite Solar Cells[J]. Angewandte Chemie - International Edition, 2020, 59(4): 1611-1618.
[64] CAO H, XIA G J, CHEN J W, et al. Mechanistic Insight into the Oxygen Reduction Reaction on the Mn-N4/C Single-Atom Catalyst: The Role of the Solvent Environment[J]. Journal of Physical Chemistry C, 2020, 124(13): 7287-7294.
[65] HARUTA M. Size- and support-dependency in the catalysis of gold[J]. Catalysis Today, 1997, 36(1): 153-166.
[66] LIU L, DÍAZ U, ARENAL R, et al. Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D[J]. Nature Materials, 2017, 16(1): 132-138.
[67] YARDIMCI D, SERNA P, GATES B C. Tuning catalytic selectivity: Zeolite- and magnesium oxide-supported molecular rhodium catalysts for hydrogenation of 1,3-butadiene[J]. ACS Catalysis, 2012, 2(10): 2100-2113.
[68] LIU L, LOPEZ-HARO M, LOPES C W, et al. Regioselective generation and reactivity control of subnanometric platinum clusters in zeolites for high-temperature catalysis[J]. Nature Materials, 2019, 18(8): 866-873.
[69] KIM G, SHIN S, CHOI Y, et al. Gas-Permeable Iron-Doped Ceria Shell on Rh Nanoparticles with High Activity and Durability[J]. Journal of the American Chemical Society, 2022.
[70] PEI Q, HE T, YU Y, et al. Fabrication of oxygen vacancies through assembling an amorphous titanate overlayer on titanium oxide for a catalytic water-gas shift reaction[J]. Journal of Materials Chemistry A, 2021, 9(5): 2784-2791.
[71] GENG Z, JIN X, WANG R, et al. Low-Temperature Hydrogen Production via Water Conversion on Pt/TiO2[J]. Journal of Physical Chemistry C, 2018, 122(20): 10956-10962.
[72] RODRÍGUEZ J A, EVANS J, GRACIANI J, et al. High water-gas shift activity in TiO 2(110) supported Cu and Au nanoparticles: role of the oxide and metal particle size[J]. Journal of Physical Chemistry C, 2009, 113(17): 7364-7370.
[73] ZHANG Z, LI H. Water-mediated catalytic hydrodeoxygenation of biomass[J]. Fuel, 2022, 310(PA): 122242.
[74] CATTANEO S, CAPELLI S, STUCCHI M, et al. Discovering the role of substrate in aldehyde hydrogenation[J]. Journal of Catalysis, 2021, 399: 162-169.
[75] PROCHÁZKOVÁ D, ZÁMOSTNÝ P, BEJBLOVÁ M, et al. Hydrodeoxygenation of aldehydes catalyzed by supported palladium catalysts[J]. Applied Catalysis A: General, 2007, 332(1): 56-64.
[76] SINGH U K, VANNICE M A. Kinetics of liquid-phase hydrogenation reactions over supported metal catalysts - A review[J]. Applied Catalysis A: General, 2001, 213(1): 1-24.
[77] POROSOFF M D, YANG X, BOSCOBOINIK J A, et al. Molybdenum carbide as alternative catalysts to precious metals for highly selective reduction of CO2 to CO[J]. Angewandte Chemie - International Edition, 2014, 53(26): 6705-6709.
[78] CAO H, ZHANG Z, CHEN J W, et al. Potential-Dependent Free Energy Relationship in Interpreting the Electrochemical Performance of CO2 Reduction on Single Atom Catalysts[J]. ACS Catalysis, 2022, 12(11): 6606-6617.
[79] VASILEFF A, XU C, JIAO Y, et al. Surface and Interface Engineering in Copper-Based Bimetallic Materials for Selective CO2 Electroreduction[J]. Chem, 2018, 4(8): 1809-1831.
[80] KIM S K, ZHANG Y J, BERGSTROM H, et al. Understanding the Low-Overpotential Production of CH4 from CO2 on Mo2C Catalysts[J]. ACS Catalysis, 2016, 6(3): 2003-2013.
[81] POSADA-PÉREZ S, RAMÍREZ P J, EVANS J, et al. Highly Active Au/δ-MoC and Cu/δ-MoC Catalysts for the Conversion of CO2: The Metal/C Ratio as a Key Factor Defining Activity, Selectivity, and Stability[J]. Journal of the American Chemical Society, 2016, 138(26): 8269-8278.
[82] DESSAL C, MARTÍNEZ L, MAHEU C, et al. Influence of Pt particle size and reaction phase on the photocatalytic performances of ultradispersed Pt/TiO2 catalysts for hydrogen evolution[J]. Journal of Catalysis, 2019, 375: 155-163.
[83] FAN Q Y, WANG Y, CHENG J. Size-Sensitive Dynamic Catalysis of Subnanometer Cu Clusters in CO2Dissociation[J]. Journal of Physical Chemistry Letters, 2021, 12(16): 3891-3897.
[84] KIM S S, LEE H H, HONG S C. A study on the effect of support’s reducibility on the reverse water-gas shift reaction over Pt catalysts[J]. Applied Catalysis A: General, 2012, 423-424: 100-107.
[85] DONG H, ZHENG Y, HU P. DFT study of furfural conversion on a Re/Pt bimetallic surface: Synergetic effect on the promotion of hydrodeoxygenation[J]. Physical Chemistry Chemical Physics, 2019, 21(16): 8384-8393.
[86] GRABOW L C, MAVRIKAKIS M. Mechanism of methanol synthesis on cu through CO2 and CO hydrogenation[J]. ACS Catalysis, 2011, 1(4): 365-384.
[87] BAILÓN-GARCÍA E, CARRASCO-MARÍN F, PÉREZ-CADENAS A F, et al. Influence of the pretreatment conditions on the development and performance of active sites of Pt/TiO2 catalysts used for the selective citral hydrogenation[J]. Journal of Catalysis, 2015, 327: 86-95.
[88] NEWMAN C, ZHOU X, GOUNDIE B, et al. Effects of support identity and metal dispersion in supported ruthenium hydrodeoxygenation catalysts[J]. Applied Catalysis A: General, 2014, 477: 64-74.
[89] FU J, ZHANG X, LI H, et al. Enhancing electronic metal support interaction (EMSI) over Pt/TiO2 for efficient catalytic wet air oxidation of phenol in wastewater[J]. Journal of Hazardous Materials, 2022, 426: 128088.
[90] XIA G J, LEE M S, GLEZAKOU V A, et al. Diffusion and Surface Segregation of Interstitial Ti Defects Induced by Electronic Metal–Support Interactions on a Au/TiO2 Nanocatalyst[J]. ACS Catalysis, 2022: 4455-4464.
[91] VAN DEELEN T W, HERNÁNDEZ MEJÍA C, DE JONG K P. Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity[J]. Nature Catalysis, 2019, 2(11): 955-970.
[92] HU S, LI W X. Sabatier principle of metal-support interaction for design of ultrastable metal nanocatalysts[J]. Science, 2021, 374(6573): 1360-1365.
[93] ZHAO W, ZHOU D, HAN S, et al. Metal-Support Interaction in Pt/TiO2: Formation of Surface Pt-Ti Alloy[J]. Journal of Physical Chemistry C, 2021, 125(19): 10386-10396.
[94] GATES B C. Supported Metal Clusters: Synthesis, Structure, and Catalysis[J]. Chemical Reviews, 1995, 95(3): 511-522.
[95] YE R, ZHUKHOVITSKIY A V, DERAEDT C V, et al. Supported Dendrimer-Encapsulated Metal Clusters: Toward Heterogenizing Homogeneous Catalysts[J]. Accounts of Chemical Research, 2017, 50(8): 1894-1901.
[96] YAMAZOE S, KOYASU K, TSUKUDA T. Nonscalable Oxidation Catalysis of Gold Clusters[J]. Accounts of Chemical Research, 2014, 47(3): 816-824.
[97] CHE M, BENNETT C O. The Influence of Particle Size on the Catalytic Properties of Supported Metals[J]. Advances in Catalysis, 1989, 36(C): 55-172.
[98] CHEN W, JI J, FENG X, et al. Mechanistic insight into size-dependent activity and durability in Pt/CNT catalyzed hydrolytic dehydrogenation of ammonia borane[J]. Journal of the American Chemical Society, 2014, 136(48): 16736-16739.
[99] CRESPO-QUESADA M, YARULIN A, JIN M, et al. Structure sensitivity of alkynol hydrogenation on shape- and size-controlled palladium nanocrystals: Which sites are most active and selective?[J]. Journal of the American Chemical Society, 2011, 133(32): 12787-12794.
[100] GAO D, ZHOU H, WANG J, et al. Size-Dependent Electrocatalytic Reduction of CO2 over Pd Nanoparticles[J]. Journal of the American Chemical Society, 2015, 137(13): 4288-4291.
[101] KENT J, GREEN R E, MADDEN J, et al. Ammonia Synthesis from First-Principles Calculations[J]. Science, 2005, 4963(January): 2003-2006.
[102] BEZEMER G L, BITTER J H, KUIPERS H P C E, et al. Cobalt Particle Size Effects in the Fischer−Tropsch Reaction Studied with Carbon Nanofiber Supported Catalysts[J]. Journal of the American Chemical Society, 2006, 128(12): 3956-3964.
[103] VAJDA S, PELLIN M J, GREELEY J P, et al. Subnanometre platinum clusters as highly active and selective catalysts for the oxidative dehydrogenation of propane[J]. Nature Materials, 2009, 8(3): 213-216.
[104] CLARY D C, NEUMARK D M, POLANYI J C, et al. Increased Silver Activity for Direct[J]. Science, 2010, 328(April): 224.
[105] QIAO B, WANG A, YANG X, et al. Single-atom catalysis of CO oxidation using Pt1/FeOx[J]. Nature Chemistry, 2011, 3(8): 634-641.
[106] FEI H, DONG J, CHEN D, et al. Single atom electrocatalysts supported on graphene or graphene-like carbons[J]. Chemical Society Reviews, 2019, 48(20): 5207-5241.
[107] PENG Y, LU B, CHEN S. Carbon-Supported Single Atom Catalysts for Electrochemical Energy Conversion and Storage[J]. Advanced Materials, 2018, 30(48): 1-25.
[108] KUAI L, CHEN Z, LIU S, et al. Titania supported synergistic palladium single atoms and nanoparticles for room temperature ketone and aldehydes hydrogenation[J]. Nature Communications, 2020, 11(1): 1-9.
[109] SUN T, XU L, WANG D, et al. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion[J]. Nano Research, 2019, 12(9): 2067-2080.
[110] CUI X, LI W, RYABCHUK P, et al. Bridging homogeneous and heterogeneous catalysis by heterogeneous single-metal-site catalysts[J]. Nature Catalysis, 1(6): 385-397.
[111] JIANG F, WANG S, LIU B, et al. Insights into the Influence of CeO2Crystal Facet on CO2Hydrogenation to Methanol over Pd/CeO2Catalysts[J]. ACS Catalysis, 2020, 10(19): 11493-11509.
[112] MITCHELL S, PÉREZ-RAMÍREZ J. Single atom catalysis: a decade of stunning progress and the promise for a bright future[J]. Nature Communications, 2020, 11(1): 10-12.
[113] YAN H, SU C, HE J, et al. Single-atom catalysts and their applications in organic chemistry[J]. Journal of Materials Chemistry A, 2018, 6(19): 8793-8814.
[114] SALAEH R, FAUNGNAWAKIJ K, KUNGWAN N, et al. The Role of Metal Species on Aldehyde Hydrogenation over Co13 and Ni13 Supported on γ-Al2O3(110) Surfaces: A Theoretical Study[J]. ChemistrySelect, 2020, 5(13): 4058-4068.
[115] FARNESI CAMELLONE M, NEGREIROS RIBEIRO F, SZABOVÁ L, et al. Catalytic Proton Dynamics at the Water/Solid Interface of Ceria-Supported Pt Clusters[J]. Journal of the American Chemical Society, 2016, 138(36): 11560-11567.
[116] LIU Y, TSUNOYAMA H, AKITA T, et al. Efficient and selective epoxidation of styrene with TBHP catalyzed by Au25 clusters on hydroxyapatite[J]. Chemical Communications, 2010, 46(4): 550-552.
[117] LAM E, CORRAL-PÉREZ J J, LARMIER K, et al. CO2 Hydrogenation on Cu/Al2O3: Role of the Metal/Support Interface in Driving Activity and Selectivity of a Bifunctional Catalyst[J]. Angewandte Chemie - International Edition, 2019, 58(39): 13989-13996.
[118] LV Y, HAN M, GONG W, et al. Fe-Co Alloyed Nanoparticles Catalyzing Efficient Hydrogenation of Cinnamaldehyde to Cinnamyl Alcohol in Water[J]. Angewandte Chemie - International Edition, 2020, 59(52): 23521-23526.
[119] CHEN J W, ZHANG Z, YAN H M, et al. Pseudo-adsorption and long-range redox coupling during oxygen reduction reaction on single atom electrocatalyst[J]. Nature Communications, 2022, 13(1): 1-13.
[120] LANGE J P. Renewable Feedstocks: The Problem of Catalyst Deactivation and its Mitigation[J]. Angewandte Chemie - International Edition, 2015, 54(45): 13187-13197.
[121] MOLINER M, GABAY J E, KLIEWER C E, et al. Reversible Transformation of Pt Nanoparticles into Single Atoms inside High-Silica Chabazite Zeolite[J]. Journal of the American Chemical Society, 2016, 138(48): 15743-15750.
[122] WANG N, SUN Q, BAI R, et al. In Situ Confinement of Ultrasmall Pd Clusters within Nanosized Silicalite-1 Zeolite for Highly Efficient Catalysis of Hydrogen Generation[J]. Journal of the American Chemical Society, 2016, 138(24): 7484-7487.
[123] ZHANG F, PAN X, HU Y, et al. Tuning the redox activity of encapsulated metal clusters via the metallic and semiconducting character of carbon nanotubes[J]. Proceedings of the National Academy of Sciences, 2013, 110(37): 14861-14866.
[124] WANG Y G, YOON Y, GLEZAKOU V A, et al. The role of reducible oxide-metal cluster charge transfer in catalytic processes: New insights on the catalytic mechanism of CO oxidation on Au/TiO2 from ab initio molecular dynamics[J]. Journal of the American Chemical Society, 2013, 135(29): 10673-10683.
[125] WANG Y G, CANTU D C, LEE M S, et al. CO Oxidation on Au/TiO2: Condition-Dependent Active Sites and Mechanistic Pathways[J]. Journal of the American Chemical Society, 2016, 138(33): 10467-10476.
[126] WANG Y G, YOON Y, GLEZAKOU V A, et al. The role of reducible oxide-metal cluster charge transfer in catalytic processes: New insights on the catalytic mechanism of CO oxidation on Au/TiO2 from ab initio molecular dynamics[J]. Journal of the American Chemical Society, 2013, 135(29): 10673-10683.
[127] TAUSTER S J. Strong Metal-Support Interactions[J]. Accounts of Chemical Research, 1987, 20(11): 389-394.
[128] BRUMBERGER H, DELAGLIO F, GOODISMAN J, et al. Investigation of the SMSI catalyst Pt TiO2 by small-angle X-ray scattering[J]. Journal of Catalysis, 1985, 92(2): 199-210.
[129] FU Q, WAGNER T, OLLIGES S, et al. Metal-oxide interfacial reactions: Encapsulation of Pd on TiO2 (110)[J]. Journal of Physical Chemistry B, 2005, 109(2): 944-951.
[130] TANG Y, ZHAO S, LONG B, et al. On the Nature of Support Effects of Metal Dioxides MO2 (M = Ti, Zr, Hf, Ce, Th) in Single-Atom Gold Catalysts: Importance of Quantum Primogenic Effect[J]. Journal of Physical Chemistry C, 2016, 120(31): 17514-17526.
[131] LIU J C, WANG Y G, LI J. Toward Rational Design of Oxide-Supported Single-Atom Catalysts: Atomic Dispersion of Gold on Ceria[J]. Journal of the American Chemical Society, 2017, 139(17): 6190-6199.
[132] SAQLAIN M A, HUSSAIN A, SIDDIQ M, et al. Thermally activated surface oxygen defects at the perimeter of Au/TiO2: A DFT+U study[J]. Physical Chemistry Chemical Physics, 2015, 17(38): 25403-25410.
[133] FINAZZI E, DI VALENTIN C, PACCHIONI G. Nature of Ti Interstitials in Reduced Bulk Anatase and Rutile TiO2[J]. The Journal of Physical Chemistry C, 2009, 113(9): 3382-3385.
[134] HENDERSON M A. An HREELS and TPD study of water on TiO2(110): The extent of molecular versus dissociative adsorption[J]. Surface Science, 1996, 355(1-3): 151-166.
[135] PAN J ‐M., MASCHHOFF B L, DIEBOLD U, et al. Interaction of water, oxygen, and hydrogen with TiO 2 (110) surfaces having different defect densities [J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1992, 10(4): 2470-2476.
[136] PAN X, YANG M Q, FU X, et al. Defective TiO2 with oxygen vacancies: Synthesis, properties and photocatalytic applications[J]. Nanoscale, 2013, 5(9): 3601-3614.
[137] AHMADI M, TIMOSHENKO J, BEHAFARID F, et al. Tuning the Structure of Pt Nanoparticles through Support Interactions: An in Situ Polarized X-ray Absorption Study Coupled with Atomistic Simulations[J]. Journal of Physical Chemistry C, 2019, 123(16): 10666-10676.
[138] ASO R, HOJO H, TAKAHASHI Y, et al. Direct identification of the charge state in a single platinum nanoparticle on titanium oxide[J]. Science (New York, N.Y.), 2022, 378(6616): 202-206.
[139] KALAMARAS C M, PANAGIOTOPOULOU P, KONDARIDES D I, et al. Kinetic and mechanistic studies of the water-gas shift reaction on Pt/TiO2 catalyst[J]. Journal of Catalysis, 2009, 264(2): 117-129.
[140] KENNEDY G, BAKER L R, SOMORJAI G A. Selective amplification of C=O bond hydrogenation on Pt/TiO2: Catalytic reaction and sum-frequency generation vibrational spectroscopy studies of crotonaldehyde hydrogenation[J]. Angewandte Chemie - International Edition, 2014, 53(13): 3405-3408.
[141] DOHNÁLEK Z, LYUBINETSKY I, ROUSSEAU R. Thermally-driven processes on rutile TiO2(1 1 0)-(1 × 1): A direct view at the atomic scale[J]. Progress in Surface Science, 2010, 85(5-8): 161-205.
[142] ZHAO S, JIN R, ABROSHAN H, et al. Gold Nanoclusters Promote Electrocatalytic Water Oxidation at the Nanocluster/CoSe 2 Interface [J]. Journal of the American Chemical Society, 2017, 139(3): 1077-1080.
[143] MENARD L D, XU F, NUZZO R G, et al. Preparation of TiO2-supported Au nanoparticle catalysts from a Au13 cluster precursor: Ligand removal using ozone exposure versus a rapid thermal treatment[J]. Journal of Catalysis, 2006, 243(1): 64-73.
[144] CHUANG I L, COMPUTATION Q, SHOR P W, et al. on TiO 2 Surfaces[J]. 2009(November): 826-830.
[145] CHENG N, STAMBULA S, WANG D, et al. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction[J]. Nature Communications, 2016, 7(1): 13638.
[146] LU J, ELAM J W, STAIR P C. Synthesis and Stabilization of Supported Metal Catalysts by Atomic Layer Deposition[J]. Accounts of Chemical Research, 2013, 46(8): 1806-1815.
[147] KULKARNI A, LOBO-LAPIDUS R J, GATES B C. Metal clusters on supports: Synthesis, structure, reactivity, and catalytic properties[J]. Chemical Communications, 2010, 46(33): 5997-6015.
[148] SAMAD J E, BLANCHARD J, SAYAG C, et al. The controlled synthesis of metal-acid bifunctional catalysts: Selective Pt deposition and nanoparticle synthesis on amorphous aluminosilicates[J]. Journal of Catalysis, 2016, 342: 213-225.
[149] HENKELMAN G, UBERUAGA B P, JÓNSSON H. Climbing image nudged elastic band method for finding saddle points and minimum energy paths[J]. Journal of Chemical Physics, 2000, 113(22): 9901-9904.
[150] HOOVER W G. Canonical dynamics: Equilibrium phase-space distributions[J]. Physical Review A, 1985, 31(3): 1695-1697.
[151] NOSÉ S. A unified formulation of the constant temperature molecular dynamics methods[J]. The Journal of Chemical Physics, 1984, 81(1): 511-519.
[152] KÜHNE T D, IANNUZZI M, DEL BEN M, et al. CP2K: An electronic structure and molecular dynamics software package -Quickstep: Efficient and accurate electronic structure calculations[J]. Journal of Chemical Physics, 2020, 152(19).
[153] PARRINELLO R C and M. Unified Approach for Molecular Dynamics and Density-Functional Theory[J]. PHYSICAL REVIEW LETTERS, 1985, 55: 2471.
[154] KÜHNE T D, KRACK M, MOHAMED F R, et al. Efficient and accurate car-parrinello-like approach to born-oppenheimer molecular dynamics[J]. Physical Review Letters, 2007, 98(6): 1-4.
[155] CARTER E A, CICCOTTI G, HYNES J T, et al. Constrained reaction coordinate dynamics for the simulation of rare events[J]. Chemical Physics Letters, 1989, 156(5): 472-477.
[156] SPRIK M, CICCOTTI G. Free energy from constrained molecular dynamics[J]. Journal of Chemical Physics, 1998, 109(18): 7737-7744.
[157] BASH P A, SINGH U C, BROWN F K, et al. Calculation of the Relative Change in Binding Free Energy of a Protein-Inhibitor Complex[J]. Science, 1987, 235(4788): 574-576.
[158] PATEY G N, VALLEAU J P. A Monte Carlo method for obtaining the interionic potential of mean force in ionic solution[J]. The Journal of Chemical Physics, 1975, 63(6): 2334-2339.
[159] LAIO A, PARRINELLO M. Escaping free-energy minima[J]. PNAS, 2002, 99(20): 12562-12566.
[160] LAIO A, GERVASIO F L. Metadynamics: A method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science[J]. Reports on Progress in Physics, 2008, 71(12).
[161] BARDUCCI A, BUSSI G, PARRINELLO M. Well-Tempered Metadynamics: A Smoothly Converging and Tunable Free-Energy Method[J]. Physical Review Letters, 2008, 100(2): 20603.
[162] DOMENE C, BARBINI P, FURINI S. Bias-exchange metadynamics simulations: An efficient strategy for the analysis of conduction and selectivity in ion channels[J]. Journal of Chemical Theory and Computation, 2015, 11(4): 1896-1906.
[163] CICCOTTI G, KAPRAL R, VANDEN-EIJNDEN E. Blue Moon sampling, vectorial reaction coordinates, and unbiased constrained dynamics[J]. ChemPhysChem, 2005, 6(9): 1809-1814.
[164] BOUDART M. From the century of the rate equation to the century of the rate constants: A revolution in catalytic kinetics and assisted catalyst design[J]. Catalysis Letters, 2000, 65(1-3): 1-3.
[165] MOTAGAMWALA A H, DUMESIC J A. Microkinetic Modeling: A Tool for Rational Catalyst Design[J]. Chemical Reviews, 2021, 121(2): 1049-1076.
[166] FAHEEM M, SALEHEEN M, LU J, et al. Ethylene glycol reforming on Pt(111): First-principles microkinetic modeling in vapor and aqueous phases[J]. Catalysis Science and Technology, 2016, 6(23): 8242-8256.
[167] FILOT I A W, BROOS R J P, VAN RIJN J P M, et al. First-Principles-Based Microkinetics Simulations of Synthesis Gas Conversion on a Stepped Rhodium Surface[J]. ACS Catalysis, 2015, 5(9): 5453-5467.
[168] LIN F, HOANG D T, TSUNG C K, et al. Catalytic properties of Pt cluster-decorated CeO2 nanostructures[J]. Nano Research, 2011, 4(1): 61-71.
[169] SHANGGUAN J, OLARTE M V., CHIN Y H. Mechanistic insights on C-O and C-C bond activation and hydrogen insertion during acetic acid hydrogenation catalyzed by ruthenium clusters in aqueous medium[J]. Journal of Catalysis, 2016, 340: 107-121.
[170] KUO C Te, LU Y, KOVARIK L, et al. Structure Sensitivity of Acetylene Semi-Hydrogenation on Pt Single Atoms and Subnanometer Clusters[J]. ACS Catalysis, 2019: 11030-11041.
[171] MA X L, LIU J C, XIAO H, et al. Surface Single-Cluster Catalyst for N 2 -to-NH 3 Thermal Conversion[J]. Journal of the American Chemical Society, 2018, 140(1): 46-49.
[172] SANCHEZ M G, GAZQUEZ J L. Oxygen vacancy model in strong metal-support interaction[J]. Journal of Catalysis, 1987, 104(1): 120-135.
[173] AMMAL S C, HEYDEN A. Modeling the noble metal/TiO2 (110) interface with hybrid DFT functionals: A periodic electrostatic embedded cluster model study[J]. Journal of Chemical Physics, 2010, 133(16): 164703.
[174] QIU H, MA X, SUN C, et al. Surface oxygen vacancies enriched Pt/TiO2 synthesized with a defect migration strategy for superior photocatalytic activity[J]. Applied Surface Science, 2020, 506: 145021.
[175] OYEKAN K A, VAN DE PUT M, TIWARI S, et al. Re-examining the role of subsurface oxygen vacancies in the dissociation of H2O molecules on anatase TiO2[J]. Applied Surface Science, 2022, 594(April): 153452.
[176] HARTKE B, CARTER E A. Ab initio molecular dynamics simulated annealing at the generalized valence bond level. Application to a small nickel cluster[J]. Chemical Physics Letters, 1993, 216(3-6): 324-328.
[177] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868.
[178] GRIMME S, ANTONY J, EHRLICH S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu[J]. Journal of Chemical Physics, 2010, 132(15).
[179] ARROYO-DE DOMPABLO M E, MORALES-GARCA A, TARAVILLO M. DFTU calculations of crystal lattice, electronic structure, and phase stability under pressure of TiO2 polymorphs[J]. Journal of Chemical Physics, 2011, 135: 054503.
[180] KOWALSKI P M, CAMELLONE M F, NAIR N N, et al. Charge localization dynamics induced by oxygen vacancies on the TiO 2(110) surface[J]. Physical Review Letters, 2010, 105: 146405.
[181] TANG W, SANVILLE E, HENKELMAN G. A grid-based Bader analysis algorithm without lattice bias[J]. Journal of Physics Condensed Matter, 2009, 21(8): 084204.
[182] BUSSI G, LAIO A. Using metadynamics to explore complex free-energy landscapes[J]. Nature Reviews Physics, 2020, 2(4): 200-212.
[183] GERVASIO F L, LAIO A, PARRINELLO M. Flexible docking in solution using metadynamics[J]. Journal of the American Chemical Society, 2005, 127(8): 2600-2607.
[184] BUCKO T. Ab initio calculations of free-energy reaction barriers[J]. Journal of Physics Condensed Matter, 2008, 20(6): 064211.
[185] XIE T, BODENSCHATZ C J, GETMAN R B. Insights into the roles of water on the aqueous phase reforming of glycerol[J]. Reaction Chemistry and Engineering, 2019, 4(2): 383-392.
[186] WANG D, SHENG T, CHEN J, et al. Identifying the key obstacle in photocatalytic oxygen evolution on rutile TiO2[J]. Nature Catalysis, 2018, 1(4): 291-299.
[187] SALEHEEN M, VERMA A M, MAMUN O, et al. Investigation of solvent effects on the hydrodeoxygenation of guaiacol over Ru catalysts[J]. Catalysis Science and Technology, 2019, 9(22): 6253-6273.
[188] ZHANG S, XIA Z, NI T, et al. Strong electronic metal-support interaction of Pt/CeO2 enables efficient and selective hydrogenation of quinolines at room temperature[J]. Journal of Catalysis, 2018, 359: 101-111.
[189] CALLE-VALLEJO F, LOFFREDA D, KOPER M T M, et al. Introducing structural sensitivity into adsorption-energy scaling relations by means of coordination numbers[J]. Nature Chemistry, 2015, 7(5): 403-410.
[190] LOPEZ N, JANSSENS T V W, CLAUSEN B S, et al. On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation[J]. Journal of Catalysis, 2004, 223(1): 232-235.
[191] ALLOUCHE A rahman. The Trans Effect in Square-Planar Platinum(II) Complexes—A Density Functional Study ZDENEK[J]. Journal of computational chemistry, 2012, 32(Ii): 174-182.
[192] KOZUCH S, SHAIK S. How to conceptualize catalytic cycles? the energetic Span model[J]. Accounts of Chemical Research, 2011, 44(2): 101-110.
[193] LI J, ZHOU H, ZHUO H, et al. Oxygen vacancies on TiO2 promoted the activity and stability of supported Pd nanoparticles for the oxygen reduction reaction[J]. Journal of Materials Chemistry A, 2018, 6(5): 2264-2272.
[194] LI G, WANG B, RESASCO D E. Water-Mediated Heterogeneously Catalyzed Reactions[J]. ACS Catalysis, 2020, 10(2): 1294-1309.
[195] CUKIERMAN S. Et tu, Grotthuss! and other unfinished stories[J]. Biochimica et Biophysica Acta - Bioenergetics, 2006, 1757(8): 876-885.
[196] MERTE L R, PENG G, BECHSTEIN R, et al. Water-mediated proton hopping on an iron oxide surface[J]. Science, 2012, 336(6083): 889-893.
[197] MIGLIORE A, POLIZZI N F, THERIEN M J, et al. Biochemistry and theory of proton-coupled electron transfer[J]. Chemical Reviews, 2014, 114(7): 3381-3465.
[198] MULKIDJANIAN A Y, CHEREPANOV D A, HEBERLE J, et al. Proton transfer dynamics at membrane/water interface and mechanism of biological energy conversion[J]. Biokhimiya, 2005, 70(2): 308-314.
[199] SERETIS A, DIAMANTOPOULOU P, THANOU I, et al. Recent Advances in Ruthenium-Catalyzed Hydrogenation Reactions of Renewable Biomass-Derived Levulinic Acid in Aqueous Media[J]. Frontiers in Chemistry, 2020, 8(April): 1-22.
[200] PAPADOGIANAKIS G, SHELDON R A, MURZIN D Y, et al. Editorial: Aqueous-Phase Catalytic Conversions of Renewable Feedstocks for Sustainable Biorefineries[J]. Frontiers in Chemistry, 2020, 8(December): 1-3.
[201] LIN F, LU Y, UNOCIC K A, et al. Deactivation by Potassium Accumulation on a Pt/TiO2 Bifunctional Catalyst for Biomass Catalytic Fast Pyrolysis[J]. ACS Catalysis, 2022, 12(1): 465-480.

所在学位评定分委会
化学
国内图书分类号
O643.38
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544065
专题理学院_化学系
推荐引用方式
GB/T 7714
曹伟. 水相中负载型金属催化剂催化醛基加氢的动态机理研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032091-曹伟-化学系.pdf(6857KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[曹伟]的文章
百度学术
百度学术中相似的文章
[曹伟]的文章
必应学术
必应学术中相似的文章
[曹伟]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。