中文版 | English
题名

About Analogous Gravitational Atoms

其他题名
论引力原子
姓名
姓名拼音
JIA Nayun
学号
12032037
学位类型
硕士
学位专业
0702 物理学
学科门类/专业学位类别
07 理学
导师
Leonardo Modesto
导师单位
物理系
论文答辩日期
2023-05-26
论文提交日期
2023-06-27
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

Axions, along with other ultra-light bosons, have been the focus of theoretical research in recent years as potential candidates for dark matter. Unraveling the composition of dark matter is of great significance for understanding the evolution of the universe and completing the Standard Model. Considering the ultra-light bosons bound by the gravitational potential of a black hole, they form a long-lasting "boson cloud". This system, due to its high analogy with atomic nuclei and their electron clouds, is also referred to as the "gravitational atom". This paper primarily investigates the energy level structure of various gravitational atom systems. This paper will outline the solutions to two stable black holes under general relativity: the Schwarzschild black hole (with mass as its key physical quantity) and the Kerr black hole (with mass and spin as its key physical quantities). These two black holes will be the central object of the gravitational atom model in this paper. Starting from the basic Schwarzschild black hole and scalar ultra-light boson, through this simple example, this paper will elaborate on the process of constructing the gravitational atom model, provide a general method for more complex models in the following text of this paper, and derive the general properties of gravitational atoms. In this process, we will find that the gravitational atom is highly analogous to the hydrogen-like atom system in terms of energy spectrum structure. The paper will explore methods to construct the spectra of more complex gravitational atom systems for scalar and vector bosons. During the process, this paper will, through appropriate approximation, analytically derive the solutions to the field equations of gravitational atoms for scalar and vector fields. The solution process will use the method of matched asymptotic expansion to ensure the consistency of solutions between different regions. Solutions for scalar and vector fields have similarities and differences, and the gravitational atom spectra from these solutions will determine the superradiant instability of the gravitational atom system. This paper will also outline possible future research preferences and provide a brief update on the latest research status of gravitational atoms.

关键词
语种
英语
培养类别
独立培养
入学年份
2020
学位授予年份
2023-06
参考文献列表

[1] ADE P A, AGHANIM N, ALVES M, et al. Planck 2013 results. I. Overview of products andscientific results[J]. Astronomy & Astrophysics, 2014, 571: A1.
[2] ADE P A, AGHANIM N, ARNAUD M, et al. Planck 2015 results-xiii. cosmological parameters[J]. Astronomy & Astrophysics, 2016, 594: A13.
[3] AGHANIM N, AKRAMI Y, ASHDOWN M, et al. Planck 2018 results-VI. Cosmological parameters[J]. Astronomy & Astrophysics, 2020, 641: A6.
[4] FALK D. Is dark matter made of axions?[EB/OL]. 2020[April 1, 2023]. https://www.scientificamerican.com/article/is-dark-matter-made-of-axions/.
[5] WILCZEK F. Problem of Strong 𝑃 and 𝑇 Invariance in the Presence of Instantons[J/OL]. Phys.Rev. Lett., 1978, 40: 279-282. https://link.aps.org/doi/10.1103/PhysRevLett.40.279.
[6] CHRISTENSON J H, CRONIN J W, FITCH V L, et al. Evidence for the 2𝜋 Decay of the 𝐾02Meson[J/OL]. Phys. Rev. Lett., 1964, 13: 138-140. https://link.aps.org/doi/10.1103/PhysRevLett.13.138.
[7] PECCEI R D, QUINN H R. CP Conservation in the Presence of Pseudoparticles[J/OL]. Phys.Rev. Lett., 1977, 38: 1440-1443. https://link.aps.org/doi/10.1103/PhysRevLett.38.1440.
[8] PECCEI R D, QUINN H R. Constraints imposed by CP conservation in the presence of pseudoparticles[J/OL]. Phys. Rev. D, 1977, 16: 1791-1797. https://link.aps.org/doi/10.1103/PhysRevD.16.1791.
[9] WEINBERG S. A New Light Boson?[J/OL]. Phys. Rev. Lett., 1978, 40: 223-226. https://link.aps.org/doi/10.1103/PhysRevLett.40.223.
[10] EINSTEIN A. The field equations of gravitation[J]. Sitzungsber. Preuss. Akad. Wiss. Berlin(Math. Phys.), 1915, 1915: 844-847.
[11] EINSTEIN A. Approximative Integration of the Field Equations of Gravitation[J]. Sitzungsber.Preuss. Akad. Wiss. Berlin (Math. Phys. ), 1916, 1916: 688-696.
[12] BONDI H, PIRANI F A, ROBINSON I. Gravitational waves in general relativity III. Exact planewaves[J]. Proceedings of the Royal Society of London. Series A. Mathematical and PhysicalSciences, 1959, 251(1267): 519-533.
[13] THORNE K S. Multipole expansions of gravitational radiation[J]. Reviews of Modern Physics,1980, 52(2): 299.
[14] HULSE R A, TAYLOR J H. Discovery of a pulsar in a binary system[J]. The AstrophysicalJournal, 1975, 195: L51-L53.
[15] ABBOTT B P, et al. Observation of Gravitational Waves from a Binary Black Hole Merger[J/OL]. Phys. Rev. Lett., 2016, 116: 061102. https://link.aps.org/doi/10.1103/PhysRevLett.116.061102.
[16] ABBOTT B P, et al. GW170814: A Three-Detector Observation of Gravitational Waves froma Binary Black Hole Coalescence[J/OL]. Phys. Rev. Lett., 2017, 119: 141101. https://link.aps.org/doi/10.1103/PhysRevLett.119.141101.
[17] ABBOTT B P, et al. GW170817: Observation of Gravitational Waves from a Binary NeutronStar Inspiral[J/OL]. Phys. Rev. Lett., 2017, 119: 161101. https://link.aps.org/doi/10.1103/PhysRevLett.119.161101.
[18] ABBOTT B P, et al. GW170814: A Three-Detector Observation of Gravitational Waves froma Binary Black Hole Coalescence[J/OL]. Phys. Rev. Lett., 2017, 119: 141101. https://link.aps.org/doi/10.1103/PhysRevLett.119.141101.
[19] ABBOTT B P, et al. GWTC-1: A Gravitational-Wave Transient Catalog of Compact BinaryMergers Observed by LIGO and Virgo during the First and Second Observing Runs[J/OL].Phys. Rev. X, 2019, 9: 031040. https://link.aps.org/doi/10.1103/PhysRevX.9.031040.
[20] ABBOTT R, et al. GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgoduring the First Half of the Third Observing Run[J/OL]. Phys. Rev. X, 2021, 11: 021053.https://link.aps.org/doi/10.1103/PhysRevX.11.021053.
[21] MATHEWS JR W N, ESRICK M A, TEOH Z, et al. A physicist’s guide to the solution ofKummer’s equation and confluent hypergeometric functions[A]. 2021.
[22] ZOUROS T J, EARDLEY D M. Instabilities of massive scalar perturbations of a rotating blackhole[J]. Annals of physics, 1979, 118(1): 139-155.
[23] EAST W E, PRETORIUS F. Superradiant Instability and Backreaction of Massive Vector Fieldsaround Kerr Black Holes[J/OL]. Phys. Rev. Lett., 2017, 119: 041101. https://link.aps.org/doi/10.1103/PhysRevLett.119.041101.
[24] DICKE R H. Coherence in Spontaneous Radiation Processes[J/OL]. Phys. Rev., 1954, 93:99-110. https://link.aps.org/doi/10.1103/PhysRev.93.99.
[25] ZEL’DOVICH Y B. Generation of waves by a rotating body[J]. Soviet Journal of Experimentaland Theoretical Physics Letters, 1971, 14: 180.
[26] ZEL’DOVICH I. Amplification of cylindrical electromagnetic waves reflected from a rotatingbody[J]. Soviet Physics-JETP, 1972, 35: 1085-1087.
[27] PRESS W H, TEUKOLSKY S A. Floating orbits, superradiant scattering and the black-holebomb[J]. Nature, 1972, 238: 211-212.
[28] TEUKOLSKY S A, PRESS W H. Perturbations of a rotating black hole. III-Interaction of thehole with gravitational and electromagnetic radiation[J]. The Astrophysical Journal, 1974, 193:443-461.
[29] TORRES T, PATRICK S, COUTANT A, et al. Rotational superradiant scattering in a vortexflow[J]. Nature Physics, 2017, 13(9): 833-836.
[30] UNRUH W G. Experimental Black-Hole Evaporation?[J/OL]. Phys. Rev. Lett., 1981, 46: 1351-1353. https://link.aps.org/doi/10.1103/PhysRevLett.46.1351.
[31] VISSER M. Acoustic black holes: horizons, ergospheres and Hawking radiation[J]. Classicaland Quantum Gravity, 1998, 15(6): 1767.
[32] SCHÜTZHOLD R, UNRUH W G. Gravity wave analogues of black holes[J/OL]. Phys. Rev.D, 2002, 66: 044019. https://link.aps.org/doi/10.1103/PhysRevD.66.044019.
[33] WEINFURTNER S, TEDFORD E W, PENRICE M C J, et al. Measurement of StimulatedHawking Emission in an Analogue System[J/OL]. Phys. Rev. Lett., 2011, 106: 021302. https://link.aps.org/doi/10.1103/PhysRevLett.106.021302.
[34] STEINHAUER J. Observation of quantum Hawking radiation and its entanglement in an analogue black hole[J]. Nature Physics, 2016, 12(10): 959-965.
[35] ACHESON D. On over-reflexion[J]. Journal of Fluid Mechanics, 1976, 77(3): 433-472.
[36] KELLEY D H, TRIANA S A, ZIMMERMAN D S, et al. Inertial waves driven by differentialrotation in a planetary geometry[J]. Geophysical and Astrophysical Fluid Dynamics, 2007, 101(5-6): 469-487.
[37] FRIDMAN A, SNEZHKIN E, CHERNIKOV G, et al. Over-reflection of waves and overreflection instability of flows revealed in experiments with rotating shallow water[J]. PhysicsLetters A, 2008, 372(27-28): 4822-4826.
[38] CROMB M, GIBSON G M, TONINELLI E, et al. Amplification of waves from a rotating body[J]. Nature Physics, 2020, 16(10): 1069-1073.
[39] BRITO R, CARDOSO V, PANI P. Superradiance: volume 10[M]. Springer.
[40] BAUMANN D, CHIA H S, STOUT J, et al. The spectra of gravitational atoms[J]. Journal ofCosmology and Astroparticle Physics, 2019, 2019(12): 006.
[41] BAUMANN D, BERTONE G, STOUT J, et al. Ionization of gravitational atoms[J/OL]. Phys.Rev. D, 2022, 105: 115036. https://link.aps.org/doi/10.1103/PhysRevD.105.115036.
[42] JIANG R, LIN R H, ZHAI X H. Superradiant instability of a Kerr-like black hole in Einsteinbumblebee gravity[J/OL]. Phys. Rev. D, 2021, 104: 124004. https://link.aps.org/doi/10.1103/PhysRevD.104.124004.
[43] ALEXANDER S, GABADADZE G, JENKS L, et al. Black hole superradiance in dynamicalChern-Simons gravity[J/OL]. Phys. Rev. D, 2023, 107: 084016. https://link.aps.org/doi/10.1103/PhysRevD.107.084016.
[44] BARYAKHTAR M, GALANIS M, LASENBY R, et al. Black hole superradiance of selfinteracting scalar fields[J/OL]. Phys. Rev. D, 2021, 103: 095019. https://link.aps.org/doi/10.1103/PhysRevD.103.095019.
[45] KRTOUŠ P, FROLOV V P, KUBIZŇÁK D. Separation of Maxwell equations in Kerr–NUT–(A) dS spacetimes[J]. Nuclear Physics B, 2018, 934: 7-38.
[46] FROLOV V P, et al. Massive Vector Fields in Rotating Black-Hole Spacetimes: Separabilityand Quasinormal Modes[J/OL]. Phys. Rev. Lett., 2018, 120: 231103. https://link.aps.org/doi/10.1103/PhysRevLett.120.231103.
[47] HAWKING S W. Black hole explosions?[J]. Nature, 1974, 248(5443): 30-31.
[48] PARIKH M K, WILCZEK F. Hawking Radiation As Tunneling[J/OL]. Phys. Rev. Lett., 2000,85: 5042-5045. https://link.aps.org/doi/10.1103/PhysRevLett.85.5042.
[49] GUO R Z, YUAN C, HUANG Q G. Near-horizon microstructure and superradiant instabilitiesof black holes[J/OL]. Phys. Rev. D, 2022, 105: 064029. https://link.aps.org/doi/10.1103/PhysRevD.105.064029.
[50] PANI P, CARDOSO V, GUALTIERI L, et al. Perturbations of slowly rotating black holes:Massive vector fields in the Kerr metric[J/OL]. Phys. Rev. D, 2012, 86: 104017. https://link.aps.org/doi/10.1103/PhysRevD.86.104017.
[51] YIN-DA G, SHOU-SHAN B, HONG Z. Subdominant Modes of Scalar Superradiant Instabilityand Gravitational Wave Beats[A]. 2023. arXiv: 2212.07186.
[52] BRANCO N P, FERREIRA R Z, ROSA J G. Superradiant axion clouds around asteroid-massprimordial black holes[A]. 2023.
[53] CANNIZZARO E, SBERNA L, CAPUTO A, et al. Dark photon superradiance quenched bydark matter[J/OL]. Phys. Rev. D, 2022, 106: 083019. https://link.aps.org/doi/10.1103/PhysRevD.106.083019.
[54] TONG X, WANG Y, ZHU H Y. Termination of superradiance from a binary companion[J/OL].Phys. Rev. D, 2022, 106: 043002. https://link.aps.org/doi/10.1103/PhysRevD.106.043002.
[55] TAKAHASHI T, OMIYA H, TANAKA T. Evolution of binary systems accompanying axionclouds in extreme mass ratio inspirals[J/OL]. Phys. Rev. D, 2023, 107: 103020. https://link.aps.org/doi/10.1103/PhysRevD.107.103020.

所在学位评定分委会
物理学
国内图书分类号
O412.1
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544067
专题理学院_物理系
推荐引用方式
GB/T 7714
Jia NY. About Analogous Gravitational Atoms[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032037-贾拿云-物理系.pdf(1084KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[贾拿云]的文章
百度学术
百度学术中相似的文章
[贾拿云]的文章
必应学术
必应学术中相似的文章
[贾拿云]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。