[1] ADE P A, AGHANIM N, ALVES M, et al. Planck 2013 results. I. Overview of products andscientific results[J]. Astronomy & Astrophysics, 2014, 571: A1.
[2] ADE P A, AGHANIM N, ARNAUD M, et al. Planck 2015 results-xiii. cosmological parameters[J]. Astronomy & Astrophysics, 2016, 594: A13.
[3] AGHANIM N, AKRAMI Y, ASHDOWN M, et al. Planck 2018 results-VI. Cosmological parameters[J]. Astronomy & Astrophysics, 2020, 641: A6.
[4] FALK D. Is dark matter made of axions?[EB/OL]. 2020[April 1, 2023]. https://www.scientificamerican.com/article/is-dark-matter-made-of-axions/.
[5] WILCZEK F. Problem of Strong 𝑃 and 𝑇 Invariance in the Presence of Instantons[J/OL]. Phys.Rev. Lett., 1978, 40: 279-282. https://link.aps.org/doi/10.1103/PhysRevLett.40.279.
[6] CHRISTENSON J H, CRONIN J W, FITCH V L, et al. Evidence for the 2𝜋 Decay of the 𝐾02Meson[J/OL]. Phys. Rev. Lett., 1964, 13: 138-140. https://link.aps.org/doi/10.1103/PhysRevLett.13.138.
[7] PECCEI R D, QUINN H R. CP Conservation in the Presence of Pseudoparticles[J/OL]. Phys.Rev. Lett., 1977, 38: 1440-1443. https://link.aps.org/doi/10.1103/PhysRevLett.38.1440.
[8] PECCEI R D, QUINN H R. Constraints imposed by CP conservation in the presence of pseudoparticles[J/OL]. Phys. Rev. D, 1977, 16: 1791-1797. https://link.aps.org/doi/10.1103/PhysRevD.16.1791.
[9] WEINBERG S. A New Light Boson?[J/OL]. Phys. Rev. Lett., 1978, 40: 223-226. https://link.aps.org/doi/10.1103/PhysRevLett.40.223.
[10] EINSTEIN A. The field equations of gravitation[J]. Sitzungsber. Preuss. Akad. Wiss. Berlin(Math. Phys.), 1915, 1915: 844-847.
[11] EINSTEIN A. Approximative Integration of the Field Equations of Gravitation[J]. Sitzungsber.Preuss. Akad. Wiss. Berlin (Math. Phys. ), 1916, 1916: 688-696.
[12] BONDI H, PIRANI F A, ROBINSON I. Gravitational waves in general relativity III. Exact planewaves[J]. Proceedings of the Royal Society of London. Series A. Mathematical and PhysicalSciences, 1959, 251(1267): 519-533.
[13] THORNE K S. Multipole expansions of gravitational radiation[J]. Reviews of Modern Physics,1980, 52(2): 299.
[14] HULSE R A, TAYLOR J H. Discovery of a pulsar in a binary system[J]. The AstrophysicalJournal, 1975, 195: L51-L53.
[15] ABBOTT B P, et al. Observation of Gravitational Waves from a Binary Black Hole Merger[J/OL]. Phys. Rev. Lett., 2016, 116: 061102. https://link.aps.org/doi/10.1103/PhysRevLett.116.061102.
[16] ABBOTT B P, et al. GW170814: A Three-Detector Observation of Gravitational Waves froma Binary Black Hole Coalescence[J/OL]. Phys. Rev. Lett., 2017, 119: 141101. https://link.aps.org/doi/10.1103/PhysRevLett.119.141101.
[17] ABBOTT B P, et al. GW170817: Observation of Gravitational Waves from a Binary NeutronStar Inspiral[J/OL]. Phys. Rev. Lett., 2017, 119: 161101. https://link.aps.org/doi/10.1103/PhysRevLett.119.161101.
[18] ABBOTT B P, et al. GW170814: A Three-Detector Observation of Gravitational Waves froma Binary Black Hole Coalescence[J/OL]. Phys. Rev. Lett., 2017, 119: 141101. https://link.aps.org/doi/10.1103/PhysRevLett.119.141101.
[19] ABBOTT B P, et al. GWTC-1: A Gravitational-Wave Transient Catalog of Compact BinaryMergers Observed by LIGO and Virgo during the First and Second Observing Runs[J/OL].Phys. Rev. X, 2019, 9: 031040. https://link.aps.org/doi/10.1103/PhysRevX.9.031040.
[20] ABBOTT R, et al. GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgoduring the First Half of the Third Observing Run[J/OL]. Phys. Rev. X, 2021, 11: 021053.https://link.aps.org/doi/10.1103/PhysRevX.11.021053.
[21] MATHEWS JR W N, ESRICK M A, TEOH Z, et al. A physicist’s guide to the solution ofKummer’s equation and confluent hypergeometric functions[A]. 2021.
[22] ZOUROS T J, EARDLEY D M. Instabilities of massive scalar perturbations of a rotating blackhole[J]. Annals of physics, 1979, 118(1): 139-155.
[23] EAST W E, PRETORIUS F. Superradiant Instability and Backreaction of Massive Vector Fieldsaround Kerr Black Holes[J/OL]. Phys. Rev. Lett., 2017, 119: 041101. https://link.aps.org/doi/10.1103/PhysRevLett.119.041101.
[24] DICKE R H. Coherence in Spontaneous Radiation Processes[J/OL]. Phys. Rev., 1954, 93:99-110. https://link.aps.org/doi/10.1103/PhysRev.93.99.
[25] ZEL’DOVICH Y B. Generation of waves by a rotating body[J]. Soviet Journal of Experimentaland Theoretical Physics Letters, 1971, 14: 180.
[26] ZEL’DOVICH I. Amplification of cylindrical electromagnetic waves reflected from a rotatingbody[J]. Soviet Physics-JETP, 1972, 35: 1085-1087.
[27] PRESS W H, TEUKOLSKY S A. Floating orbits, superradiant scattering and the black-holebomb[J]. Nature, 1972, 238: 211-212.
[28] TEUKOLSKY S A, PRESS W H. Perturbations of a rotating black hole. III-Interaction of thehole with gravitational and electromagnetic radiation[J]. The Astrophysical Journal, 1974, 193:443-461.
[29] TORRES T, PATRICK S, COUTANT A, et al. Rotational superradiant scattering in a vortexflow[J]. Nature Physics, 2017, 13(9): 833-836.
[30] UNRUH W G. Experimental Black-Hole Evaporation?[J/OL]. Phys. Rev. Lett., 1981, 46: 1351-1353. https://link.aps.org/doi/10.1103/PhysRevLett.46.1351.
[31] VISSER M. Acoustic black holes: horizons, ergospheres and Hawking radiation[J]. Classicaland Quantum Gravity, 1998, 15(6): 1767.
[32] SCHÜTZHOLD R, UNRUH W G. Gravity wave analogues of black holes[J/OL]. Phys. Rev.D, 2002, 66: 044019. https://link.aps.org/doi/10.1103/PhysRevD.66.044019.
[33] WEINFURTNER S, TEDFORD E W, PENRICE M C J, et al. Measurement of StimulatedHawking Emission in an Analogue System[J/OL]. Phys. Rev. Lett., 2011, 106: 021302. https://link.aps.org/doi/10.1103/PhysRevLett.106.021302.
[34] STEINHAUER J. Observation of quantum Hawking radiation and its entanglement in an analogue black hole[J]. Nature Physics, 2016, 12(10): 959-965.
[35] ACHESON D. On over-reflexion[J]. Journal of Fluid Mechanics, 1976, 77(3): 433-472.
[36] KELLEY D H, TRIANA S A, ZIMMERMAN D S, et al. Inertial waves driven by differentialrotation in a planetary geometry[J]. Geophysical and Astrophysical Fluid Dynamics, 2007, 101(5-6): 469-487.
[37] FRIDMAN A, SNEZHKIN E, CHERNIKOV G, et al. Over-reflection of waves and overreflection instability of flows revealed in experiments with rotating shallow water[J]. PhysicsLetters A, 2008, 372(27-28): 4822-4826.
[38] CROMB M, GIBSON G M, TONINELLI E, et al. Amplification of waves from a rotating body[J]. Nature Physics, 2020, 16(10): 1069-1073.
[39] BRITO R, CARDOSO V, PANI P. Superradiance: volume 10[M]. Springer.
[40] BAUMANN D, CHIA H S, STOUT J, et al. The spectra of gravitational atoms[J]. Journal ofCosmology and Astroparticle Physics, 2019, 2019(12): 006.
[41] BAUMANN D, BERTONE G, STOUT J, et al. Ionization of gravitational atoms[J/OL]. Phys.Rev. D, 2022, 105: 115036. https://link.aps.org/doi/10.1103/PhysRevD.105.115036.
[42] JIANG R, LIN R H, ZHAI X H. Superradiant instability of a Kerr-like black hole in Einsteinbumblebee gravity[J/OL]. Phys. Rev. D, 2021, 104: 124004. https://link.aps.org/doi/10.1103/PhysRevD.104.124004.
[43] ALEXANDER S, GABADADZE G, JENKS L, et al. Black hole superradiance in dynamicalChern-Simons gravity[J/OL]. Phys. Rev. D, 2023, 107: 084016. https://link.aps.org/doi/10.1103/PhysRevD.107.084016.
[44] BARYAKHTAR M, GALANIS M, LASENBY R, et al. Black hole superradiance of selfinteracting scalar fields[J/OL]. Phys. Rev. D, 2021, 103: 095019. https://link.aps.org/doi/10.1103/PhysRevD.103.095019.
[45] KRTOUŠ P, FROLOV V P, KUBIZŇÁK D. Separation of Maxwell equations in Kerr–NUT–(A) dS spacetimes[J]. Nuclear Physics B, 2018, 934: 7-38.
[46] FROLOV V P, et al. Massive Vector Fields in Rotating Black-Hole Spacetimes: Separabilityand Quasinormal Modes[J/OL]. Phys. Rev. Lett., 2018, 120: 231103. https://link.aps.org/doi/10.1103/PhysRevLett.120.231103.
[47] HAWKING S W. Black hole explosions?[J]. Nature, 1974, 248(5443): 30-31.
[48] PARIKH M K, WILCZEK F. Hawking Radiation As Tunneling[J/OL]. Phys. Rev. Lett., 2000,85: 5042-5045. https://link.aps.org/doi/10.1103/PhysRevLett.85.5042.
[49] GUO R Z, YUAN C, HUANG Q G. Near-horizon microstructure and superradiant instabilitiesof black holes[J/OL]. Phys. Rev. D, 2022, 105: 064029. https://link.aps.org/doi/10.1103/PhysRevD.105.064029.
[50] PANI P, CARDOSO V, GUALTIERI L, et al. Perturbations of slowly rotating black holes:Massive vector fields in the Kerr metric[J/OL]. Phys. Rev. D, 2012, 86: 104017. https://link.aps.org/doi/10.1103/PhysRevD.86.104017.
[51] YIN-DA G, SHOU-SHAN B, HONG Z. Subdominant Modes of Scalar Superradiant Instabilityand Gravitational Wave Beats[A]. 2023. arXiv: 2212.07186.
[52] BRANCO N P, FERREIRA R Z, ROSA J G. Superradiant axion clouds around asteroid-massprimordial black holes[A]. 2023.
[53] CANNIZZARO E, SBERNA L, CAPUTO A, et al. Dark photon superradiance quenched bydark matter[J/OL]. Phys. Rev. D, 2022, 106: 083019. https://link.aps.org/doi/10.1103/PhysRevD.106.083019.
[54] TONG X, WANG Y, ZHU H Y. Termination of superradiance from a binary companion[J/OL].Phys. Rev. D, 2022, 106: 043002. https://link.aps.org/doi/10.1103/PhysRevD.106.043002.
[55] TAKAHASHI T, OMIYA H, TANAKA T. Evolution of binary systems accompanying axionclouds in extreme mass ratio inspirals[J/OL]. Phys. Rev. D, 2023, 107: 103020. https://link.aps.org/doi/10.1103/PhysRevD.107.103020.
修改评论