中文版 | English
题名

低成本中熵合金时效强化研究

其他题名
STUDY OF AGE HARDENING OF A LOW-COST MEDIUM-ENTROPY ALLOY
姓名
姓名拼音
ZUO You
学号
12132327
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
何斌斌
导师单位
机械与能源工程系
外机构导师
梁志远
外机构导师单位
松山湖材料实验室
论文答辩日期
2023-05-15
论文提交日期
2023-06-27
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

自 2004 年研究发表以来,高/中熵合金作为“多主元”合金设计新理念 的载体一直受到广泛关注,在力学性能方面也展现出巨大的潜力。早期开发 的面心立方(FCC)结构高/中熵合金,具有较好的延展性,但其强度较低。 另外,贵重金属元素(如 Co 等)的大量使用也导致了合金成本较高的问题, 严重阻碍了其应用。针对上述问题,本文开发了 Fe45Cr25Ni10Mn15Al4C(1 at.%) 的低成本中熵合金,并探索了其时效强化的潜力。结果表明,该合金时效前 具有 FCC/体心立方(BCC)双相组织,强塑性较好(抗拉强度:940 MPa, 总延伸率:20.2%;极限抗压强度:1123.08 MPa,真实应变:41%)。当时 效温度在 600 ℃以下时,材料强度随时效温度逐渐升高(抗拉强度:940→ 1065 MPa),但塑性逐渐降低(总延伸率:20.2→6.6%)。特别是经过 700 和 800 ℃时效处理后时,材料出现显著脆化现象,在屈服前就发生断裂。对 800 ℃时效后的微观组织进行表征后发现,在 BCC 基体中形成了大量微米 尺寸树枝晶状 σ 相。σ 相具有本征脆性,同时树枝状的形态容易引起应力集 中并提供裂纹扩展路径,因此导致了材料的显著脆化。为了克服 σ 相的脆化 作用,本文提出通过快速凝固后再进行时效处理的方法,以获得纳米尺寸弥 散分布的 σ 相。结果表明,通过快速凝固(冷却速率:2x103 ℃/s)制备的样 品同样具有 FCC/BCC 双相组织,但两相的合金成分与热轧态不同,另外晶 粒得到细化,并具有一定的织构。快速凝固的样品表现良好,抗压强度达到 1304 MPa,真实应变为 58%。经过 700 ℃时效处理后,材料强度稍微下降到 1095 MPa,但塑性几乎不变。微观组织表征显示,700 ℃时效处理后并未形 成大量 σ 相,这主要是由于快速凝固控制了元素的扩散,提高了 BCC→σ 相 变的阻力,从而控制了相变动力学。

其他摘要

High/medium entropy alloys (HEAs/MEAs) have been receiving extensive attention as carriers for the new concept of "multi-principal element" alloy design, and have shown great potential in terms of mechanical properties since its publication in 2004. The previously developed HEAs/MEAs have good ductility but low strength with face-centered cubic (FCC). In addition, the extensive use of precious metal elements (such as Co) also leads to the high cost of alloys, which seriously hinders their application. To solve these problems, a low-cost Fe45Cr25Ni10Mn15Al4C1 (at.%) MEA was developed and its potential for aging strengthening was explored. The present work shows that the alloy has a FCC/body-centered cubic (BCC) dual-phase structure before aging, and has good combination of strength and ductility (tensile strength: 940 MPa, total elongation: 20.2%; ultimate compressive strength: 1123.08 MPa, true strain: 41%). The strength of the material increases gradually with the aging temperature (tensile strength: 940→1065 MPa) when the aging temperature is below 600 ℃, but the plasticity decreases gradually (total elongation: 20.2→6.6%). Significant embrittlement occurred and fracture occurred before yield, especially after aging treatment at 700 and 800 ℃. The microstructure after aging at 800 ℃ was thoroughly characterized. It was found that a large number of micron-sized dendritic σ phases were formed in the BCC matrix. σ phase is intrinsically brittle. Moreover, its dendritic morphology tends to cause stress concentration and provide crack propagation paths. Consequently, the presence of σ phase with dendritic morphology leads to significant embrittlement of the present MEA. To overcome the embrittlement of σ phase, a method of rapid solidification followed by aging treatment is proposed in this thesis to obtain nano-sized dispersed σ phase. The results show that the sample prepared by rapid solidification (cooling rate: 2x103 ℃/s) also has FCC/BCC dual-phase structure, but the alloy composition of the two phases is different from that of the hot rolled state. In addition, the grain is refined and has a certain texture. The rapidly solidified sample showed better compressive strength of 1304 MPa and true strain of 58%. The strength of the material decreased slightly to 1095 MPa, without noticeable change of the plasticity after aging treatment at 700 ℃. Microstructure characterization showed that a large number of σ phases did not form after aging treatment at 700 ℃, which was mainly due to the fact that rapid solidification controls the diffusion of elements and increased the resistance of BCC → σ phase transition, thus controlling the dynamics of phase transition.

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2023-06
参考文献列表

[1] ZHANG W, LIAW P K, ZHANG Y. Science and technology in high-entropy alloys[J]. Science China Materials, 2018, 61(1): 2-22.
[2] GORSSE S, MIRACLE D B, SENKOV O N. Mapping the world of complex concentrated alloys[J]. Acta Materialia, 2017, 135: 177-187.
[3] MIRACLE D B, SENKOV O N. A critical review of high entropy alloys and related concepts[J]. Acta Materialia, 2017, 122: 448-511.
[4] LI Z, ZHAO S, RITCHIE R O, et al. Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys[J]. Progress in Materials Science, 2019, 102: 296-345.
[5] CANTOR B, CHANG I T H, KNIGHT P, et al. Microstructural development in equiatomic multicomponent alloys[J]. Materials Science and Engineering: A, 2004, 375-377: 213-218.
[6] YEH J-W, CHEN S-K, LIN S-J, et al. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes[J]. Advanced Engineering Materials, 2004, 6(5): 299-303.
[7] MIRACLE D, SENKOV O, WILKS G, et al. Refractory High-Entropy Alloys (Postprint)[R]: AIR FORCE RESEARCH LAB WRIGHT-PATTERSON AFB OH MATERIALS AND MANUFACTURING …, 2010.
[8] 张勇. 先进高熵合金技术[M]. 化学工业出版社, 2019.
[9] GLUDOVATZ B, HOHENWARTER A, THURSTON K V, et al. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures[J]. Nature communications, 2016, 7(1): 1-8.
[10] GEORGE E P, RAABE D, RITCHIE R O. High-entropy alloys[J]. Nature reviews Materials, 2019, 4(8): 515-534.
[11] WANG X, GUO W, FU Y. High-entropy alloys: emerging materials for advanced functional applications[J]. Journal of Materials Chemistry A, 2021, 9(2): 663-701.
[12] 庞宝林, 王曼, 席晓丽. Cantor 合金力学性能及其组织稳定性研究进展[J]. 材料导报, 2022, 36(2): 20080242-20080245.
[13] MIRACLE D B. High-entropy alloys: A current evaluation of founding ideas and core effects and exploring “nonlinear alloys”[J]. Jom, 2017, 69(11): 2130-2136.
[14] LI W, XIE D, LI D, et al. Mechanical behavior of high-entropy alloys[J]. Progress in Materials Science, 2021, 118: 100777.
[15] TSAI K-Y, TSAI M-H, YEH J-W. Sluggish diffusion in co–cr–fe–mn–ni high-entropy alloys[J]. Acta Materialia, 2013, 61(13): 4887-4897.
[16] LU Y, HUANG H, GAO X, et al. A promising new class of irradiation tolerant materials: Ti2ZrHfV0. 5Mo0. 2 high-entropy alloy[J]. Journal of Materials Science & Technology, 2019, 35(3): 369-373.
[17] SENKOV O, RAO S, CHAPUT K, et al. Compositional effect on microstructure and properties of NbTiZr-based complex concentrated alloys[J]. Acta Materialia, 2018, 151: 201-215.
[18] ZHAO Y, LEI Z, LU Z, et al. A simplified model connecting lattice distortion with friction stress of Nb-based equiatomic high-entropy alloys[J]. Materials Research Letters, 2019, 7(8): 340-346.
[19] BASU I, DE HOSSON J T M. Strengthening mechanisms in high entropy alloys: fundamental issues[J]. Scripta Materialia, 2020, 187: 148-156.
[20] ZHAO Y, YANG T, TONG Y, et al. Heterogeneous precipitation behavior and stacking-fault-mediated deformation in a CoCrNi-based medium-entropy alloy[J]. Acta Materialia, 2017, 138: 72-82.
[21] KAO Y-F, CHEN T-J, CHEN S-K, et al. Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlxCoCrFeNi (0≤x≤2) high-entropy alloys[J]. Journal of Alloys and Compounds, 2009, 488(1): 57-64.
[22] ALI N, ZHANG L, LIU D, et al. Strengthening mechanisms in high entropy alloys: A review[J]. Materials Today Communications, 2022: 104686.
[23] LUO H, LI Z, RAABE D. Hydrogen enhances strength and ductility of an equiatomic high-entropy alloy[J]. Scientific reports, 2017, 7(1): 9892.
[24] LI Z. Interstitial equiatomic CoCrFeMnNi high-entropy alloys: carbon content, microstructure, and compositional homogeneity effects on deformation behavior[J]. Acta Materialia, 2019, 164: 400-412.
[25] KO J Y, HONG S I. Microstructural evolution and mechanical performance of carbon-containing CoCrFeMnNi-C high entropy alloys[J]. Journal of Alloys and Compounds, 2018, 743: 115-125.
[26] CALLISTER W D. Fundamentals of materials science and engineering[M]. Wiley London, 2000.
[27] OTTO F, DLOUHý A, SOMSEN C, et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy[J]. Acta Materialia, 2013, 61(15): 5743-5755.
[28] SUN S, TIAN Y, LIN H, et al. Temperature dependence of the Hall–Petch relationship in CoCrFeMnNi high-entropy alloy[J]. Journal of Alloys and Compounds, 2019, 806: 992-998.
[29] GLUDOVATZ B, HOHENWARTER A, CATOOR D, et al. A fracture-resistant high-entropy alloy for cryogenic applications[J]. Science, 2014, 345(6201): 1153-1158.
[30] LI Z, PRADEEP K G, DENG Y, et al. Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off[J]. Nature, 2016, 534(7606): 227-230.
[31] YANG T, ZHAO Y, TONG Y, et al. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys[J]. Science, 2018, 362(6417): 933-937.
[32] DU X, LI W, CHANG H, et al. Dual heterogeneous structures lead to ultrahigh strength and uniform ductility in a Co-Cr-Ni medium-entropy alloy[J]. Nature communications, 2020, 11(1): 1-7.
[33] FAN L, YANG T, ZHAO Y, et al. Ultrahigh strength and ductility in newly developed materials with coherent nanolamellar architectures[J]. Nature communications, 2020, 11(1): 1-8.
[34] KONG H, YANG T, ZHANG T, et al. Nanostructured steels for advanced structural applications[J]. Materials Futures, 2022, 1(1): 013501.
[35] YOU D, YANG G, CHOA Y-H, et al. Crack-resistant σ/FCC interfaces in the Fe40Mn40Co10Cr10 high entropy alloy with the dispersed σ-phase[J]. Materials Science and Engineering: A, 2022, 831: 142039.
[36] ZHANG D, ZHANG J, KUANG J, et al. The B2 phase-driven microstructural heterogeneities and twinning enable ultrahigh cryogenic strength and large ductility in NiCoCr-based medium-entropy alloy[J]. Acta Materialia, 2022, 233: 117981.
[37] ZHANG L, HUO X, WANG A, et al. A ductile high entropy alloy strengthened by nano sigma phase[J]. Intermetallics, 2020, 122: 106813.
[38] SONI V, GWALANI B, ALAM T, et al. Phase inversion in a two-phase, BCC+ B2, refractory high entropy alloy[J]. Acta Materialia, 2020, 185: 89-97.
[39] HE J Y, WANG H, HUANG H L, et al. A precipitation-hardened high-entropy alloy with outstanding tensile properties[J]. Acta Materialia, 2016, 102: 187-196.
[40] BHATTACHARJEE T, WANI I S, SHEIKH S, et al. Simultaneous Strength-Ductility Enhancement of a Nano-Lamellar AlCoCrFeNi2.1 Eutectic High Entropy Alloy by Cryo-Rolling and Annealing[J]. Sci Rep, 2018, 8(1): 3276.
[41] JUNG Y, LEE K, HONG S J, et al. Investigation of phase-transformation path in TiZrHf (VNbTa) x refractory high-entropy alloys and its effect on mechanical property[J]. Journal of Alloys and Compounds, 2021, 886: 161187.
[42] SU J, RAABE D, LI Z. Hierarchical microstructure design to tune the mechanical behavior of an interstitial TRIP-TWIP high-entropy alloy[J]. Acta Materialia, 2019, 163: 40-54.
[43] LU W, LIEBSCHER C H, DEHM G, et al. Bidirectional transformation enables hierarchical nanolaminate dual‐phase high‐entropy alloys[J]. Advanced Materials, 2018, 30(44): 1804727.
[44] HUANG X, MIAO J, LI S, et al. Co-free CuFeMnNi high-entropy alloy with tunable tensile properties by thermomechanical processing[J]. Journal of materials science, 2021, 56(12): 7670-7680.
[45] WU Y, JIN X, ZHANG M, et al. Yield strength-ductility trade-off breakthrough in Co-free Fe40Mn10Cr25Ni25 high-entropy alloys with partial recrystallization[J]. Materials Today Communications, 2021, 28: 102718.
[46] FAN J, FU L, SUN Y, et al. Unveiling the precipitation behavior and mechanical properties of Co-free Ni47-xFe30Cr12Mn8AlxTi3 high-entropy alloys[J]. Journal of Materials Science & Technology, 2022, 118: 25-34.
[47] GEORGE E P, RAABE D, RITCHIE R O. High-entropy alloys[J]. Nature Reviews Materials, 2019, 4(8): 515-534.
[48] SHI P, REN W, ZHENG T, et al. Enhanced strength–ductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting microstructural lamellae[J]. Nature communications, 2019, 10(1): 1-8.
[49] SOHN S S, KWIATKOWSKI DA SILVA A, IKEDA Y, et al. Ultrastrong medium‐entropy single‐phase alloys designed via severe lattice distortion[J]. Advanced Materials, 2019, 31(8): 1807142.
[50] HAN L, RAO Z, SOUZA FILHO I R, et al. Ultrastrong and Ductile Soft Magnetic High‐Entropy Alloys via Coherent Ordered Nanoprecipitates[J]. Advanced Materials, 2021, 33(37): 2102139.
[51] JANG T J, CHOI W S, KIM D W, et al. Shear band-driven precipitate dispersion for ultrastrong ductile medium-entropy alloys[J]. Nature communications, 2021, 12(1): 1-9.
[52] YAN X, ZOU Y, ZHANG Y. Properties and processing technologies of high-entropy alloys[J]. Materials Futures, 2022
[53] GORSSE S, NGUYEN M H, SENKOV O N, et al. Database on the mechanical properties of high entropy alloys and complex concentrated alloys[J]. Data Brief, 2018, 21: 2664-2678.
[54] TSAI M-H, TSAI K-Y, TSAI C-W, et al. Criterion for sigma phase formation in Cr-and V-containing high-entropy alloys[J]. Materials Research Letters, 2013, 1(4): 207-212.
[55] TSAI M-H, YUAN H, CHENG G, et al. Significant hardening due to the formation of a sigma phase matrix in a high entropy alloy[J]. Intermetallics, 2013, 33: 81-86.
[56] LIU D, JIN X, GUO N, et al. Non-equiatomic FeMnCrNiAl high-entropy alloys with heterogeneous structures for strength and ductility combination[J]. Materials Science and Engineering: A, 2021, 818
[57] DEBROY T, WEI H, ZUBACK J, et al. Additive manufacturing of metallic components–process, structure and properties[J]. Progress in Materials Science, 2018, 92: 112-224.
[58] PARK J M, CHOE J, KIM J G, et al. Superior tensile properties of 1% C-CoCrFeMnNi high-entropy alloy additively manufactured by selective laser melting[J]. Materials Research Letters, 2020, 8(1): 1-7.
[59] LI J, XIANG S, LUAN H, et al. Additive manufacturing of high-strength CrMnFeCoNi high-entropy alloys-based composites with WC addition[J]. Journal of Materials Science & Technology, 2019, 35(11): 2430-2434.
[60] ZHANG Y, CHEN X, JAYALAKSHMI S, et al. Factors determining solid solution phase formation and stability in CoCrFeNiX0. 4 (X= Al, Nb, Ta) high entropy alloys fabricated by powder plasma arc additive manufacturing[J]. Journal of Alloys and Compounds, 2021, 857: 157625.

所在学位评定分委会
材料与化工
国内图书分类号
TG156.1
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544069
专题工学院_机械与能源工程系
推荐引用方式
GB/T 7714
左佑. 低成本中熵合金时效强化研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132327-左佑-机械与能源工程系(7429KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[左佑]的文章
百度学术
百度学术中相似的文章
[左佑]的文章
必应学术
必应学术中相似的文章
[左佑]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。