[1] ZHANG W, LIAW P K, ZHANG Y. Science and technology in high-entropy alloys[J]. Science China Materials, 2018, 61(1): 2-22.
[2] GORSSE S, MIRACLE D B, SENKOV O N. Mapping the world of complex concentrated alloys[J]. Acta Materialia, 2017, 135: 177-187.
[3] MIRACLE D B, SENKOV O N. A critical review of high entropy alloys and related concepts[J]. Acta Materialia, 2017, 122: 448-511.
[4] LI Z, ZHAO S, RITCHIE R O, et al. Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys[J]. Progress in Materials Science, 2019, 102: 296-345.
[5] CANTOR B, CHANG I T H, KNIGHT P, et al. Microstructural development in equiatomic multicomponent alloys[J]. Materials Science and Engineering: A, 2004, 375-377: 213-218.
[6] YEH J-W, CHEN S-K, LIN S-J, et al. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes[J]. Advanced Engineering Materials, 2004, 6(5): 299-303.
[7] MIRACLE D, SENKOV O, WILKS G, et al. Refractory High-Entropy Alloys (Postprint)[R]: AIR FORCE RESEARCH LAB WRIGHT-PATTERSON AFB OH MATERIALS AND MANUFACTURING …, 2010.
[8] 张勇. 先进高熵合金技术[M]. 化学工业出版社, 2019.
[9] GLUDOVATZ B, HOHENWARTER A, THURSTON K V, et al. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures[J]. Nature communications, 2016, 7(1): 1-8.
[10] GEORGE E P, RAABE D, RITCHIE R O. High-entropy alloys[J]. Nature reviews Materials, 2019, 4(8): 515-534.
[11] WANG X, GUO W, FU Y. High-entropy alloys: emerging materials for advanced functional applications[J]. Journal of Materials Chemistry A, 2021, 9(2): 663-701.
[12] 庞宝林, 王曼, 席晓丽. Cantor 合金力学性能及其组织稳定性研究进展[J]. 材料导报, 2022, 36(2): 20080242-20080245.
[13] MIRACLE D B. High-entropy alloys: A current evaluation of founding ideas and core effects and exploring “nonlinear alloys”[J]. Jom, 2017, 69(11): 2130-2136.
[14] LI W, XIE D, LI D, et al. Mechanical behavior of high-entropy alloys[J]. Progress in Materials Science, 2021, 118: 100777.
[15] TSAI K-Y, TSAI M-H, YEH J-W. Sluggish diffusion in co–cr–fe–mn–ni high-entropy alloys[J]. Acta Materialia, 2013, 61(13): 4887-4897.
[16] LU Y, HUANG H, GAO X, et al. A promising new class of irradiation tolerant materials: Ti2ZrHfV0. 5Mo0. 2 high-entropy alloy[J]. Journal of Materials Science & Technology, 2019, 35(3): 369-373.
[17] SENKOV O, RAO S, CHAPUT K, et al. Compositional effect on microstructure and properties of NbTiZr-based complex concentrated alloys[J]. Acta Materialia, 2018, 151: 201-215.
[18] ZHAO Y, LEI Z, LU Z, et al. A simplified model connecting lattice distortion with friction stress of Nb-based equiatomic high-entropy alloys[J]. Materials Research Letters, 2019, 7(8): 340-346.
[19] BASU I, DE HOSSON J T M. Strengthening mechanisms in high entropy alloys: fundamental issues[J]. Scripta Materialia, 2020, 187: 148-156.
[20] ZHAO Y, YANG T, TONG Y, et al. Heterogeneous precipitation behavior and stacking-fault-mediated deformation in a CoCrNi-based medium-entropy alloy[J]. Acta Materialia, 2017, 138: 72-82.
[21] KAO Y-F, CHEN T-J, CHEN S-K, et al. Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlxCoCrFeNi (0≤x≤2) high-entropy alloys[J]. Journal of Alloys and Compounds, 2009, 488(1): 57-64.
[22] ALI N, ZHANG L, LIU D, et al. Strengthening mechanisms in high entropy alloys: A review[J]. Materials Today Communications, 2022: 104686.
[23] LUO H, LI Z, RAABE D. Hydrogen enhances strength and ductility of an equiatomic high-entropy alloy[J]. Scientific reports, 2017, 7(1): 9892.
[24] LI Z. Interstitial equiatomic CoCrFeMnNi high-entropy alloys: carbon content, microstructure, and compositional homogeneity effects on deformation behavior[J]. Acta Materialia, 2019, 164: 400-412.
[25] KO J Y, HONG S I. Microstructural evolution and mechanical performance of carbon-containing CoCrFeMnNi-C high entropy alloys[J]. Journal of Alloys and Compounds, 2018, 743: 115-125.
[26] CALLISTER W D. Fundamentals of materials science and engineering[M]. Wiley London, 2000.
[27] OTTO F, DLOUHý A, SOMSEN C, et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy[J]. Acta Materialia, 2013, 61(15): 5743-5755.
[28] SUN S, TIAN Y, LIN H, et al. Temperature dependence of the Hall–Petch relationship in CoCrFeMnNi high-entropy alloy[J]. Journal of Alloys and Compounds, 2019, 806: 992-998.
[29] GLUDOVATZ B, HOHENWARTER A, CATOOR D, et al. A fracture-resistant high-entropy alloy for cryogenic applications[J]. Science, 2014, 345(6201): 1153-1158.
[30] LI Z, PRADEEP K G, DENG Y, et al. Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off[J]. Nature, 2016, 534(7606): 227-230.
[31] YANG T, ZHAO Y, TONG Y, et al. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys[J]. Science, 2018, 362(6417): 933-937.
[32] DU X, LI W, CHANG H, et al. Dual heterogeneous structures lead to ultrahigh strength and uniform ductility in a Co-Cr-Ni medium-entropy alloy[J]. Nature communications, 2020, 11(1): 1-7.
[33] FAN L, YANG T, ZHAO Y, et al. Ultrahigh strength and ductility in newly developed materials with coherent nanolamellar architectures[J]. Nature communications, 2020, 11(1): 1-8.
[34] KONG H, YANG T, ZHANG T, et al. Nanostructured steels for advanced structural applications[J]. Materials Futures, 2022, 1(1): 013501.
[35] YOU D, YANG G, CHOA Y-H, et al. Crack-resistant σ/FCC interfaces in the Fe40Mn40Co10Cr10 high entropy alloy with the dispersed σ-phase[J]. Materials Science and Engineering: A, 2022, 831: 142039.
[36] ZHANG D, ZHANG J, KUANG J, et al. The B2 phase-driven microstructural heterogeneities and twinning enable ultrahigh cryogenic strength and large ductility in NiCoCr-based medium-entropy alloy[J]. Acta Materialia, 2022, 233: 117981.
[37] ZHANG L, HUO X, WANG A, et al. A ductile high entropy alloy strengthened by nano sigma phase[J]. Intermetallics, 2020, 122: 106813.
[38] SONI V, GWALANI B, ALAM T, et al. Phase inversion in a two-phase, BCC+ B2, refractory high entropy alloy[J]. Acta Materialia, 2020, 185: 89-97.
[39] HE J Y, WANG H, HUANG H L, et al. A precipitation-hardened high-entropy alloy with outstanding tensile properties[J]. Acta Materialia, 2016, 102: 187-196.
[40] BHATTACHARJEE T, WANI I S, SHEIKH S, et al. Simultaneous Strength-Ductility Enhancement of a Nano-Lamellar AlCoCrFeNi2.1 Eutectic High Entropy Alloy by Cryo-Rolling and Annealing[J]. Sci Rep, 2018, 8(1): 3276.
[41] JUNG Y, LEE K, HONG S J, et al. Investigation of phase-transformation path in TiZrHf (VNbTa) x refractory high-entropy alloys and its effect on mechanical property[J]. Journal of Alloys and Compounds, 2021, 886: 161187.
[42] SU J, RAABE D, LI Z. Hierarchical microstructure design to tune the mechanical behavior of an interstitial TRIP-TWIP high-entropy alloy[J]. Acta Materialia, 2019, 163: 40-54.
[43] LU W, LIEBSCHER C H, DEHM G, et al. Bidirectional transformation enables hierarchical nanolaminate dual‐phase high‐entropy alloys[J]. Advanced Materials, 2018, 30(44): 1804727.
[44] HUANG X, MIAO J, LI S, et al. Co-free CuFeMnNi high-entropy alloy with tunable tensile properties by thermomechanical processing[J]. Journal of materials science, 2021, 56(12): 7670-7680.
[45] WU Y, JIN X, ZHANG M, et al. Yield strength-ductility trade-off breakthrough in Co-free Fe40Mn10Cr25Ni25 high-entropy alloys with partial recrystallization[J]. Materials Today Communications, 2021, 28: 102718.
[46] FAN J, FU L, SUN Y, et al. Unveiling the precipitation behavior and mechanical properties of Co-free Ni47-xFe30Cr12Mn8AlxTi3 high-entropy alloys[J]. Journal of Materials Science & Technology, 2022, 118: 25-34.
[47] GEORGE E P, RAABE D, RITCHIE R O. High-entropy alloys[J]. Nature Reviews Materials, 2019, 4(8): 515-534.
[48] SHI P, REN W, ZHENG T, et al. Enhanced strength–ductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting microstructural lamellae[J]. Nature communications, 2019, 10(1): 1-8.
[49] SOHN S S, KWIATKOWSKI DA SILVA A, IKEDA Y, et al. Ultrastrong medium‐entropy single‐phase alloys designed via severe lattice distortion[J]. Advanced Materials, 2019, 31(8): 1807142.
[50] HAN L, RAO Z, SOUZA FILHO I R, et al. Ultrastrong and Ductile Soft Magnetic High‐Entropy Alloys via Coherent Ordered Nanoprecipitates[J]. Advanced Materials, 2021, 33(37): 2102139.
[51] JANG T J, CHOI W S, KIM D W, et al. Shear band-driven precipitate dispersion for ultrastrong ductile medium-entropy alloys[J]. Nature communications, 2021, 12(1): 1-9.
[52] YAN X, ZOU Y, ZHANG Y. Properties and processing technologies of high-entropy alloys[J]. Materials Futures, 2022
[53] GORSSE S, NGUYEN M H, SENKOV O N, et al. Database on the mechanical properties of high entropy alloys and complex concentrated alloys[J]. Data Brief, 2018, 21: 2664-2678.
[54] TSAI M-H, TSAI K-Y, TSAI C-W, et al. Criterion for sigma phase formation in Cr-and V-containing high-entropy alloys[J]. Materials Research Letters, 2013, 1(4): 207-212.
[55] TSAI M-H, YUAN H, CHENG G, et al. Significant hardening due to the formation of a sigma phase matrix in a high entropy alloy[J]. Intermetallics, 2013, 33: 81-86.
[56] LIU D, JIN X, GUO N, et al. Non-equiatomic FeMnCrNiAl high-entropy alloys with heterogeneous structures for strength and ductility combination[J]. Materials Science and Engineering: A, 2021, 818
[57] DEBROY T, WEI H, ZUBACK J, et al. Additive manufacturing of metallic components–process, structure and properties[J]. Progress in Materials Science, 2018, 92: 112-224.
[58] PARK J M, CHOE J, KIM J G, et al. Superior tensile properties of 1% C-CoCrFeMnNi high-entropy alloy additively manufactured by selective laser melting[J]. Materials Research Letters, 2020, 8(1): 1-7.
[59] LI J, XIANG S, LUAN H, et al. Additive manufacturing of high-strength CrMnFeCoNi high-entropy alloys-based composites with WC addition[J]. Journal of Materials Science & Technology, 2019, 35(11): 2430-2434.
[60] ZHANG Y, CHEN X, JAYALAKSHMI S, et al. Factors determining solid solution phase formation and stability in CoCrFeNiX0. 4 (X= Al, Nb, Ta) high entropy alloys fabricated by powder plasma arc additive manufacturing[J]. Journal of Alloys and Compounds, 2021, 857: 157625.
修改评论