[1] RAIBERT M, BLANKESPOOR K, NELSON G, et al. Bigdog, the rough-terrain quadruped robot[J]. IFAC Proceedings Volumes, 2008, 41(2): 10822-10825.
[2] DI CARLO J, WENSING P M, KATZ B, et al. Dynamic locomotion in the mit cheetah 3 through convex model-predictive control[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018: 1-9.
[3] HUTTER M, GEHRING C, JUD D, et al. Anymal-a highly mobile and dynamic quadrupedal robot[C]//2016 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE, 2016: 38-44.
[4] LEE J, HWANGBO J, WELLHAUSEN L, et al. Learning quadrupedal locomotion over challenging terrain[J]. Science robotics, 2020, 5(47): eabc5986.
[5] The Air Force Just Tested ”Robot Dogs” For Use In Base Security[EB/OL]. 2023. https://www.thedrive.com/the-war-zone/36229/the-air-force-just-tested-robot-dogs-for-use-in-base-security.
[6] Robotic Industrial Inspection[EB/OL]. 2023. https://www.anybotics.com/robotic-industrial-inspection/.
[7] RÖNNAU A, HEPPNER G, NOWICKI M, et al. LAURON V: A versatile six-legged walking robot with advanced maneuverability[C]//2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. IEEE, 2014: 82-87.
[8] XIAO A, TONG W, YANG L, et al. Robotic guide dog: Leading a human with leash-guided hybrid physical interaction[C]//2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2021: 11470-11476.
[9] ARM P, ZENKL R, BARTON P, et al. Spacebok: A dynamic legged robot for space exploration[C]//2019 international conference on robotics and automation (ICRA). IEEE, 2019: 6288-6294.
[10] HYUN D J, SEOK S, LEE J, et al. High speed trot-running: Implementation of a hierarchical controller using proprioceptive impedance control on the MIT Cheetah[J]. The International Journal of Robotics Research, 2014, 33(11): 1417-1445.
[11] KATZ B G. A low cost modular actuator for dynamic robots[D]. Massachusetts Institute of Technology, 2018.
[12] Legacy Robots[EB/OL]. 2023. https://www.bostondynamics.com/legacy.
[13] Spot[EB/OL]. 2023. https://www.bostondynamics.com/products/spot.
[14] HUTTER M. StarlETH & Co.: Design and control of legged robots with compliant actuation[D]. ETH Zurich, 2013.
[15] FANKHAUSER P, BELLICOSO C D, GEHRING C, et al. Free gait—an architecture for the versatile control of legged robots[C]//2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids). IEEE, 2016: 1052-1058.
[16] KOLVENBACH H, HAMPP E, BARTON P, et al. Towards jumping locomotion for quadruped robots on the moon[C]//2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2019: 5459-5466.
[17] SEOK S, WANG A, CHUAH M Y, et al. Design principles for energy-efficient legged locomotion and implementation on the MIT cheetah robot[J]. Ieee/asme transactions on mechatronics, 2014, 20(3): 1117-1129.
[18] ANANTHANARAYANAN A, AZADI M, KIM S. Towards a bio-inspired leg design for highspeed running[J]. Bioinspiration & biomimetics, 2012, 7(4): 046005.
[19] PARK H W, WENSING P M, KIM S. High-speed bounding with the MIT Cheetah 2: Control design and experiments[J]. The International Journal of Robotics Research, 2017, 36(2): 167-192.
[20] PARK H W, PARK S, KIM S. Variable-speed quadrupedal bounding using impulse planning: Untethered high-speed 3d running of mit cheetah 2[C]//2015 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2015: 5163-5170.
[21] BLEDT G, POWELL M J, KATZ B, et al. MIT Cheetah 3: Design and control of a robust, dynamic quadruped robot[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018: 2245-2252.
[22] KIM D, DI CARLO J, KATZ B, et al. Highly dynamic quadruped locomotion via whole-body impulse control and model predictive control[A]. 2019.
[23] SEMINI C, BARASUOL V, BOAVENTURA T, et al. Towards versatile legged robots through active impedance control[J]. The International Journal of Robotics Research, 2015, 34(7): 1003-1020.
[24] WINKLER A, HAVOUTIS I, BAZEILLE S, et al. Path planning with force-based foothold adaptation and virtual model control for torque controlled quadruped robots[C]//2014 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2014: 6476-6482.
[25] SEMINI C, BARASUOL V, GOLDSMITH J, et al. Design of the hydraulically actuated, torquecontrolled quadruped robot HyQ2Max[J]. IEEE/Asme Transactions on Mechatronics, 2016, 22(2): 635-646.
[26] HyQReal[EB/OL]. 2023. https://www.iit.it/web/dynamic-legged-systems/hyqreal.
[27] 荣学文. SCalf 液压驱动四足机器人的机构设计与运动分析[D]. 济南: 山东大学, 2013.
[28] 柴汇, 孟健, 荣学文, 等. 高性能液压驱动四足机器人SCalf 的设计与实现[J]. 机器人, 2014, 36(4): 7.
[29] 杨琨. 液压驱动四足机器人能耗分析、优化及动力系统研究[D]. 山东大学, 2020.
[30] 蒋振宇. 基于SLIP 模型的四足机器人对角小跑步态控制研究[D]. 哈尔滨工业大学, 2014.
[31] 李满天, 蒋振宇, 郭伟, 等. 四足仿生机器人单腿系统[J]. 机器人, 2014, 36(1): 8.
[32] HU N, LI S, GAO F. Multi-objective hierarchical optimal control for quadruped rescue robot [J]. International Journal of Control, Automation and Systems, 2018, 16(4): 1866-1877.
[33] 邓黎明. 四足小象机器人实时控制系统的设计与研究[D]. 上海交通大学, 2014.
[34] 田兴华, 高峰, 陈先宝, 等. 四足仿生机器人混联腿构型设计及比较[J]. 机械工程学报,2013, 49(6): 8.
[35] Vision60[EB/OL]. 2023. https://www.ghostrobotics.io/latest.
[36] Jueying X20[EB/OL]. 2023. https://www.deeprobotics.cn/en/products_jy_303.html.
[37] Unitree B1[EB/OL]. 2023. https://www.unitree.com/cn/products/B1.
[38] SARANLI U, BUEHLER M, KODITSCHEK D E. RHex: A simple and highly mobile hexapod robot[J]. The International Journal of Robotics Research, 2001, 20(7): 616-631.
[39] POULAKAKIS I, PAPADOPOULOS E, BUEHLER M. On the stability of the passive dynamics of quadrupedal running with a bounding gait[J]. The International Journal of Robotics Research, 2006, 25(7): 669-687.
[40] BLACKMAN D J, NICHOLSON J V, ORDONEZ C, et al. Gait development on minitaur, a direct drive quadrupedal robot[C]//Unmanned Systems Technology XVIII: volume 9837. SPIE, 2016: 141-155.
[41] KALOUCHE S. Design for 3d agility and virtual compliance using proprioceptive force control in dynamic legged robots[D]. School of Computer Science., Carnegie Mellon Univ. Pittsburgh, PA, 2016.
[42] PRATT G A, WILLIAMSON M M. Series elastic actuators[C]//Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots: volume 1. IEEE, 1995: 399-406.
[43] HUTTER M, GEHRING C, HÖPFLINGER M A, et al. Toward combining speed, efficiency, versatility, and robustness in an autonomous quadruped[J]. IEEE Transactions on Robotics, 2014, 30(6): 1427-1440.
[44] KENNEALLY G, DE A, KODITSCHEK D E. Design principles for a family of direct-drive legged robots[J]. IEEE Robotics and Automation Letters, 2016, 1(2): 900-907.
[45] KAU N, SCHULTZ A, FERRANTE N, et al. Stanford doggo: An open-source, quasi-directdrive quadruped[C]//2019 International conference on robotics and automation (ICRA). IEEE, 2019: 6309-6315.
[46] RAIBERT M H. Legged robots that balance[M]. MIT press, 1986.
[47] DE A, KODITSCHEK D E. Vertical hopper compositions for preflexive and feedback-stabilized quadrupedal bounding, pacing, pronking, and trotting[J]. The International Journal of Robotics Research, 2018, 37(7): 743-778.
[48] PRATT J, DILWORTH P, PRATT G. Virtual model control of a bipedal walking robot[C]//Proceedings of International Conference on Robotics and Automation: volume 1. IEEE, 1997:193-198.
[49] WANG Y, BOYD S. Fast model predictive control using online optimization[J]. IEEE Transactions on control systems technology, 2009, 18(2): 267-278.
[50] CHEN H, HONG Z, YANG S, et al. Quadruped Capturability and Push Recovery via a Switched-Systems Characterization of Dynamic Balance[A]. 2022.
[51] NAKAMURA Y, HANAFUSA H, YOSHIKAWA T. Task-priority based redundancy control of robot manipulators[J]. The International Journal of Robotics Research, 1987, 6(2): 3-15.
[52] MISTRY M, BUCHLI J, SCHAAL S. Inverse dynamics control of floating base systems using orthogonal decomposition[C]//2010 IEEE international conference on robotics and automation. IEEE, 2010: 3406-3412.
[53] NEUNERT M, STÄUBLE M, GIFTTHALER M, et al. Whole-body nonlinear model predictive control through contacts for quadrupeds[J]. IEEE Robotics and Automation Letters, 2018, 3(3): 1458-1465.
[54] MASTALLI C, HAVOUTIS I, FOCCHI M, et al. Motion planning for quadrupedal locomotion: Coupled planning, terrain mapping, and whole-body control[J]. IEEE Transactions on Robotics, 2020, 36(6): 1635-1648.
[55] FARSHIDIAN F, JELAVIĆ E, WINKLER A W, et al. Robust whole-body motion control of legged robots[C]//2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2017: 4589-4596.
[56] CAVAGNA G, HEGLUND N, TAYLOR C. Walking, running and galloping: mechanical similarities between different animals[M]. Academic Press, 1976.
[57] FOCCHI M, DEL PRETE A, HAVOUTIS I, et al. High-slope terrain locomotion for torquecontrolled quadruped robots[J]. Autonomous Robots, 2017, 41: 259-272.
[58] DING Y, PANDALA A, PARK H W. Real-time model predictive control for versatile dynamic motions in quadrupedal robots[C]//2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019: 8484-8490.
[59] Overconstrained mechanism[EB/OL]. 2023. https://en.wikipedia.org/wiki/Overconstrained_mechanism.
[60] BENNETT G T. A New Mechanism[J]. Engineering, 1903, 76: 777-778.
[61] Chebychev–Grübler–Kutzbach criterion[EB/OL]. 2023. https://en.wikipedia.org/wiki/Chebychev%E2%80%93Gr%C3%BCbler%E2%80%93Kutzbach_criterion.
[62] SONG C, CHEN Y, CHEN I M. A 6R linkage reconfigurable between the line-symmetric Bricard linkage and the Bennett linkage[J]. Mechanism and Machine Theory, 2013, 70: 278-292.
[63] LYNCH K M, PARK F C. Modern robotics[M]. Cambridge University Press, 2017.
[64] Quartic function[EB/OL]. 2023. https://en.wikipedia.org/wiki/Quartic_function.
[65] FEATHERSTONE R. Rigid body dynamics algorithms[M]. Springer, 2014.
[66] FELIS M L. RBDL: an efficient rigid-body dynamics library using recursive algorithms[J/OL]. Autonomous Robots, 2016: 1-17. http://dx.doi.org/10.1007/s10514-016-9574-0.
[67] CARPENTIER J, VALENZA F, MANSARD N, et al. Pinocchio: fast forward and inverse dynamics for poly-articulated systems[Z]. 2015–2021.
[68] 潘阳. P-P 结构六足机器人性能设计与控制实验研究[D]. 上海交通大学, 2014.
[69] OLDS K C. Global indices for kinematic and force transmission performance in parallel robots [J]. IEEE Transactions on Robotics, 2015, 31(2): 494-500.
[70] KITANO S, HIROSE S, HORIGOME A, et al. TITAN-XIII: sprawling-type quadruped robot with ability of fast and energy-efficient walking[J]. Robomech Journal, 2016, 3: 1-16.
[71] BLEDT G, WENSING P M, INGERSOLL S, et al. Contact model fusion for event-based locomotion in unstructured terrains[C]//2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2018: 4399-4406.
[72] CARIGNAN C R, CLEARY K R. Closed-loop force control for haptic simulation of virtual environments[M]. Haptics-e, The electronic journal of haptics research, 2000.
[73] BLOESCH M, HUTTER M, HOEPFLINGER M A, et al. State estimation for legged robotsconsistent fusion of leg kinematics and IMU[J]. Robotics, 2013, 17: 17-24.
[74] GEHRING C, BELLICOSO C D, COROS S, et al. Dynamic trotting on slopes for quadrupedal robots[C]//2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2015: 5129-5135.
[75] Moving average[EB/OL]. 2023. https://en.wikipedia.org/wiki/Moving_average.
[76] Kahan summation algorithm[EB/OL]. 2023. https://en.wikipedia.org/wiki/Kahan_summation_algorithm#Further_enhancements.
[77] PRATT J, CARFF J, DRAKUNOV S, et al. Capture point: A step toward humanoid push recovery[C]//2006 6th IEEE-RAS international conference on humanoid robots. IEEE, 2006: 200-207.
[78] Derivatives of a Bézier Curve[EB/OL]. 2023. https://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/Bezier/bezier-der.html.
[79] KALAKRISHNAN M, BUCHLI J, PASTOR P, et al. Fast, robust quadruped locomotion over challenging terrain[C]//2010 IEEE International Conference on Robotics and Automation. IEEE, 2010: 2665-2670.
[80] CHEN L, YE S, SUN C, et al. Optimized foothold planning and posture searching for energyefficient quadruped locomotion over challenging terrains[C]//2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2020: 399-405.
[81] NGUYEN Q, POWELL M J, KATZ B, et al. Optimized jumping on the mit cheetah 3 robot[C]//2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019: 7448-7454.
[82] STELLATO B, BANJAC G, GOULART P, et al. OSQP: an operator splitting solver for quadratic programs[J/OL]. Mathematical Programming Computation, 2020, 12(4): 637-672. https://doi.org/10.1007/s12532-020-00179-2.
[83] FERREAU H J, KIRCHES C, POTSCHKA A, et al. qpOASES: A parametric active-set algorithm for quadratic programming[J]. Mathematical Programming Computation, 2014, 6: 327-363.
[84] WALTER R M, CARRIER D R. Ground forces applied by galloping dogs[J]. Journal of Experimental Biology, 2007, 210(2): 208-216.
[85] ROHMER E, SINGH S P, FREESE M. V-REP: A versatile and scalable robot simulation framework[C]//2013 IEEE/RSJ international conference on intelligent robots and systems. IEEE, 2013: 1321-1326.
[86] GARRIDO-JURADO S, MUÑOZ-SALINAS R, MADRID-CUEVAS F J, et al. Automatic generation and detection of highly reliable fiducial markers under occlusion[J]. Pattern Recognition, 2014, 47(6): 2280-2292.
[87] COUMANS E, BAI Y. PyBullet, a Python module for physics simulation for games, robotics and machine learning[EB/OL]. 2016–2021. http://pybullet.org.
[88] BHATIA A, JOHNSON A M, MASON M T. Direct drive hands: Force-motion transparency in gripper design[C]//Robotics: science and systems. 2019.
修改评论