[1] 仝中飞. Curvelet阈值迭代法在地震数据去噪和插值中的应用研究[D]. 吉林大学, 2009.
[2] 丁超. 被动源转换波逆时偏移和角度域共成像点道集的提取[D/OL]. 中国科学技术大学, 2019.
[3] CHEN Y, BAI M, CHEN Y. Obtaining free USArray data by multi-dimensional seismic reconstruction[J/OL]. Nature Communications, 2019, 10(1): 4434. DOI:10.1038/s41467-019-12405-0.
[4] SHANG X, DE HOOP M V, VAN DER HILST R D. Common conversion point stacking of receiver functions versus passive-source reverse time migration and wavefield regularization[J/OL]. Geophysical Journal International, 2017, 209(2): 923-934. DOI:10.1093/gji/ggx069.
[5] NAGHIZADEH M, SACCHI M D. f-x adaptive seismic-trace interpolation[J/OL]. GEOPHYSICS, 2009, 74(1): V9-V16. DOI:10.1190/1.3008547.
[6] SPITZ S. Seismic trace interpolation in the F-X domain[J/OL]. GEOPHYSICS, 1991, 56(6): 785-794. DOI:10.1190/1.1443096.
[7] WANG Y. Seismic trace interpolation in the f‐x‐y domain[J/OL]. GEOPHYSICS, 2002, 67(4): 1232-1239. DOI:10.1190/1.1500385.
[8] LIU G, CHEN X. Seismic data interpolation using frequency-domain complex nonstationary autoregression: f-x RNA seismic interpolation[J/OL]. Geophysical Prospecting, 2018, 66(3): 478-497. DOI:10.1111/1365-2478.12499.
[9] FOMEL S. Seismic reflection data interpolation with differential offset and shot continuation[J/OL]. GEOPHYSICS, 2003, 68(2): 733-744. DOI:10.1190/1.1567243.
[10] RONEN J. Wave‐equation trace interpolation[J/OL]. GEOPHYSICS, 1987, 52(7): 973-984. DOI:10.1190/1.1442366.
[11] KAPLAN S T, NAGHIZADEH M, SACCHI M D. Data reconstruction with shot-profile least-squares migration[J/OL]. GEOPHYSICS, 2010, 75(6): WB121-WB136. DOI:10.1190/1.3478375.
[12] 张雪敏. 基于低秩补全的天然地震数据重建[D]. 中国地质大学, 2019.
[13] CHEN Y, HUANG W, ZHANG D, 等. An open-source Matlab code package for improved rank-reduction 3D seismic data denoising and reconstruction[J/OL]. Computers & Geosciences, 2016, 95: 59-66. DOI:10.1016/j.cageo.2016.06.017.
[14] OROPEZA V, SACCHI M. Simultaneous seismic data denoising and reconstruction via multichannel singular spectrum analysis[J/OL]. GEOPHYSICS, 2011, 76(3): V25-V32. DOI:10.1190/1.3552706.
[15] CHEN Y, ZHANG D, JIN Z, 等. Simultaneous denoising and reconstruction of 5-D seismic data via damped rank-reduction method[J/OL]. Geophysical Journal International, 2016, 206(3): 1695-1717. DOI:10.1093/gji/ggw230.
[16] GAO J, SACCHI M D, CHEN X. A fast reduced-rank interpolation method for prestack seismic volumes that depend on four spatial dimensions[J/OL]. GEOPHYSICS, 2013, 78(1): V21-V30. DOI:10.1190/geo2012-0038.1.
[17] TRICKETT S, BURROUGHS L, MILTON A, 等. Rank‐reduction‐based trace interpolation[C/OL]//SEG Technical Program Expanded Abstracts 2010. Society of Exploration Geophysicists, 2010: 3829-3833. DOI:10.1190/1.3513645.
[18] GAO J, STANTON A, SACCHI M D. Parallel matrix factorization algorithm and its application to 5D seismic reconstruction and denoising[J/OL]. GEOPHYSICS, 2015, 80(6): V173-V187. DOI:10.1190/geo2014-0594.1.
[19] KREIMER N, SACCHI M D. A tensor higher-order singular value decomposition for prestack seismic data noise reduction and interpolation[J/OL]. GEOPHYSICS, 2012, 77(3): V113-V122. DOI:10.1190/geo2011-0399.1.
[20] DUIJNDAM A J W, SCHONEWILLE M A, HINDRIKS C O H. Reconstruction of band‐limited signals, irregularly sampled along one spatial direction[J/OL]. GEOPHYSICS, 1999, 64(2): 524-538. DOI:10.1190/1.1444559.
[21] TRAD D. Five-dimensional interpolation: Recovering from acquisition constraints[J/OL]. GEOPHYSICS, 2009, 74(6): V123-V132. DOI:10.1190/1. 3245216.
[22] HENNENFENT G, FENELON L, HERRMANN F J. Nonequispaced Curvelet transform for seismic data reconstruction: A sparsity-promoting approach[J/OL]. GEOPHYSICS, 2010, 75(6): WB203-WB210. DOI:10.1190/1.3494032.
[23] HERRMANN F J, HENNENFENT G. Non-parametric seismic data recovery with Curvelet frames[J/OL]. Geophysical Journal International, 2008, 173(1): 233-248. DOI:10.1111/j.1365-246X.2007.03698.x.
[24] NAGHIZADEH M, SACCHI M D. Beyond alias hierarchical scale Curvelet interpolation of regularly and irregularly sampled seismic data[J/OL]. Geophysics, 2010, 75(6): WB189-WB202. DOI:10.1190/1.3509468.
[25] SHAHIDI R, TANG G, MA J, 等. Application of randomized sampling schemes to Curvelet-based sparsity-promoting seismic data recovery: Application of randomized sampling schemes to seismic data recovery[J/OL]. Geophysical Prospecting, 2013, 61(5): 973-997. DOI:10.1111/1365-2478.12050.
[26] CHEN Y, FOMEL S, HU J. Iterative deblending of simultaneous-source seismic data using seislet-domain shaping regularization[J/OL]. GEOPHYSICS, 2014, 79(5): V179-V189. DOI:10.1190/geo2013-0449.1.
[27] GAN S, WANG S, CHEN Y, 等. Seismic data reconstruction via fast projection onto convex sets in the seislet transform domain[C/OL]//SEG Technical Program Expanded Abstracts 2015. New Orleans, Louisiana: Society of Exploration Geophysicists, 2015: 3814-3819. DOI:10.1190/segam2015-5744782.1.
[28] GAN S, WANG S, CHEN Y, 等. Compressive sensing for seismic data reconstruction via fast projection onto convex sets based on seislet transform[J/OL]. Journal of Applied Geophysics, 2016, 130: 194-208. DOI:10.1016/j.jappgeo.2016. 03.033.
[29] TRAD D O, ULRYCH T J, SACCHI M D. Accurate interpolation with high‐resolution time‐variant Radon transforms[J/OL]. GEOPHYSICS, 2002, 67(2): 644-656. DOI:10.1190/1.1468626.
[30] WANG J, NG M, PERZ M. Seismic data interpolation by greedy local Radon transform[J/OL]. GEOPHYSICS, 2010, 75(6): WB225-WB234. DOI:10.1190/1. 3484195.
[31] YU Z, FERGUSON J, MCMECHAN G, 等. Wavelet-Radon domain dealiasing and interpolation of seismic data[J/OL]. GEOPHYSICS, 2007, 72(2): V41-V49. DOI:10.1190/1.2422797.
[32] ABMA R, KABIR N. 3D interpolation of irregular data with a POCS algorithm[J/OL]. GEOPHYSICS, 2006, 71(6): E91-E97. DOI:10.1190/1.2356088.
[33] JAHANJOOY S, NIKROUZ R, MOHAMMED N. A faster method to reconstruct seismic data using anti-leakage Fourier transform[J/OL]. Journal of Geophysics and Engineering, 2016, 13(1): 86-95. DOI:10.1088/1742-2132/13/1/86.
[34] XU S, ZHANG Y, PHAM D, 等. Antileakage Fourier transform for seismic data regularization[J/OL]. GEOPHYSICS, 2005, 70(4): V87-V95. DOI:10.1190/1. 1993713.
[35] XU S, ZHANG Y, LAMBARÉ G. Antileakage Fourier transform for seismic data regularization in higher dimensions[J/OL]. GEOPHYSICS, 2010, 75(6): WB113-WB120. DOI:10.1190/1.3507248.
[36] CHAI X, GU H, LI F, 等. Deep learning for irregularly and regularly missing data reconstruction[J/OL]. Scientific Reports, 2020, 10(1): 3302. DOI:10.1038/s41598-020-59801-x.
[37] RONNEBERGER O, FISCHER P, BROX T. U-Net: Convolutional Networks for Biomedical Image Segmentation[J/OL]. International Conference on Medical Image Computing and Computer-Assisted Intervention, 2015. DOI:10.1007/978-3-319-24574-4_28.
[38] LIU Q, FU L, ZHANG M. Deep-seismic-prior-based reconstruction of seismic data using convolutional neural networks[J/OL]. GEOPHYSICS, 2021, 86(2): V131-V142. DOI:10.1190/geo2019-0570.1.
[39] WANG B, ZHANG N, LU W, 等. Deep-learning-based seismic data interpolation: A preliminary result[J/OL]. GEOPHYSICS, 2019, 84(1): V11-V20. DOI:10.1190/ geo2017-0495.1.
[40] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, 等. Generative Adversarial Networks[J/OL]. arXiv:1406.2661 [cs, stat], 2014. http://arxiv.org/abs/1406.2661.
[41] KAUR H, PHAM N, FOMEL S. Seismic data interpolation using deep learning with generative adversarial networks[J/OL]. Geophysical Prospecting, 2021, 69(2): 307-326. DOI:10.1111/1365-2478.13055.
[42] XIE C, FANG Y, ZHANG J. Regularizing the 3-D teleseismic wavefield for receiver function imaging using a radial basis function[J/OL]. Geophysical Journal International, 2022, 229(2): 1255-1267. DOI:10.1093/gji/ggab536.
[43] HU S, JIANG X, ZHU L, 等. Wavefield Reconstruction of Teleseismic Receiver Function with the Stretching‐and‐Squeezing Interpolation Method[J/OL]. Seismological Research Letters, 2019, 90(2A): 716-726. DOI:10.1785/0220180197.
[44] JIANG X, ZHU L, HU S, 等. Three-dimensional reverse-time migration of teleseismic receiver functions using the phase-shift-plus-interpolation method[J/OL]. Geophysical Journal International, 2019, 217(2): 1047-1057. DOI:10.1093/gji/ggz066.
[45] YEEH Z, SONG Y, BYUN J, 等. Regularization of multidimensional sparse seismic data using Delaunay tessellation[J/OL]. Journal of Applied Geophysics, 2020, 174: 103877. DOI:10.1016/j.jappgeo.2019.103877.
[46] NEAL S L, PAVLIS G L. Imaging P-to-S conversions with multichannel receiver functions[J/OL]. Geophysical Research Letters, 1999, 26(16): 2581-2584. DOI:10.1029/1999GL900566.
[47] NEAL S L, PAVLIS G L. Imaging P-to-S conversions with broad-band seismic arrays using multichannel time-domain deconvolution[J/OL]. Geophysical Journal International, 2001, 147(1): 57-67. DOI:10.1046/j.1365-246X.2001.00507.x.
[48] POPPELIERS C, PAVLIS G L. Three-dimensional, prestack, plane wave migration of teleseismic P-to-S converted phases: 1. Theory: PLANE WAVE MIGRATION[J/OL]. Journal of Geophysical Research: Solid Earth, 2003, 108(B2). DOI:10.1029/2001JB000216.
[49] PAVLIS G L. Three-dimensional, wavefield imaging of broadband seismic array data[J/OL]. Computers & Geosciences, 2011, 37(8): 1054-1066. DOI:10.1016/j. cageo.2010.11.015.
[50] ZHANG J, ZHENG T. Receiver Function Imaging with Reconstructed Wavefields from Sparsely Scattered Stations[J/OL]. Seismological Research Letters, 2015, 86(1): 165-172. DOI:10.1785/0220140028.
[51] SHELDRAKE K P. Regional Wavefield reconstruction for teleseismic P-waves and Surface waves[J/OL]. Geophysical Research Letters, 2002, 29(11): 1544. DOI:10.1029/2001GL013721.
[52] WILSON C, GUITTON A. Teleseismic wavefield interpolation and signal extraction using high-resolution linear radon transforms[J/OL]. Geophysical Journal International, 2007, 168(1): 171-181. DOI:10.1111/j.1365-246X.2006.03163.x.
[53] SONG P, ZHANG X, LIU Y, 等. Moho imaging based on receiver function analysis with teleseismic wavefield reconstruction: Application to South China[J/OL]. Tectonophysics, 2017, 718: 118-131. DOI:10.1016/j.tecto.2017.05.031.
[54] CHAI C, AMMON C J, MACEIRA M, 等. Inverting interpolated receiver functions with surface wave dispersion and gravity: Application to the western U.S. and adjacent Canada and Mexico[J/OL]. Geophysical Research Letters, 2015, 42(11): 4359-4366. DOI:10.1002/2015GL063733.
[55] OUSSIDI A, ELHASSOUNY A. Deep generative models: Survey[C/OL]//2018 International Conference on Intelligent Systems and Computer Vision (ISCV). Fez: IEEE, 2018: 1-8.DOI:10.1109/ISACV.2018.8354080.
[56] SALAKHUTDINOV R, HINTON G E. Deep Boltzmann Machines[J/OL]. Journal of Machine Learning Research, 2009, 5(2): 1967-2006. DOI:10.1162/NECO_a_00311.
[57] REZENDE D J, MOHAMED S, WIERSTRA D. Stochastic Backpropagation and Approximate Inference in Deep Generative Models[J/OL]. arXiv:1401.4082 [cs, stat], 2014. http://arxiv.org/abs/1401.4082.
[58] OORD A van den, KALCHBRENNER N, KAVUKCUOGLU K. Pixel Recurrent Neural Networks: arXiv:1601.06759[R/OL]. arXiv, 2016.DOI:10.48550/arXiv. 1601.06759.
[59] URIA B, CÔTÉ M A, GREGOR K, 等. Neural Autoregressive Distribution Estimation[J/OL]. arXiv:1605.02226 [cs], 2016. http://arxiv.org/abs/ 1605.02226.
[60] RADFORD A, NARASIMHAN K, SALIMANS T, 等. Improving Language Understanding by Generative Pre-Training[J].
[61] BROWN T B, MANN B, RYDER N, 等. Language Models are Few-Shot Learners[M/OL]. arXiv, 2020. http://arxiv.org/abs/2005.14165.
[62] RADFORD A, WU J, CHILD R, 等. Language Models are Unsupervised Multitask Learners[J].
[63] OUYANG L, WU J, JIANG X, 等. Training language models to follow instructions with human feedback[M/OL]. arXiv, 2022. http://arxiv.org/abs/ 2203.02155.
[64] LIU M, LI W, JERVIS M, 等. 3D seismic facies classification using convolutional neural network and semi-supervised generative adversarial network[C]//SEG Technical Program Expanded Abstracts 2019. 2019.
[65] FENG R, BALLING N, GRANA D, 等. Bayesian Convolutional Neural Networks for Seismic Facies Classification[J/OL]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(10): 8933-8940. DOI:10.1109/TGRS.2020.3049012.
[66] LIU M, JERVIS M, LI W, 等. Seismic facies classification using supervised convolutional neural network and semi-supervised generative adversarial networks[J]. Geophysics, 2020, 85(4): 1-57.
[67] CHEN G, LIU Y, ZHANG M, 等. Dropout-Based Robust Self-Supervised Deep Learning for Seismic Data Denoising[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19.
[68] RICHARDSON A, FELLER C. Seismic data denoising and deblending using deep learning[J]. 2019.
[69] HAN W, ZHOU Y, YUE C. Deep learning convolutional neural networks for random noise attenuation in seismic data[J]. Geophysical Prospecting for Petroleum, 2018.
[70] GAO, HAN, ZHANG, 等. Simultaneous Denoising and Interpolation of Seismic Data via the Deep Learning Method[J]. Earthquake Research in China, 2019.
[71] ZHU W, TAI K S, MOUSAVI S M, 等. An End-to-End Earthquake Detection Method for Joint Phase Picking and Association using Deep Learning[J]. 2021.
[72] GUO C, ZHU T, GAO Y, 等. AEnet: Automatic Picking of P-Wave First Arrivals Using Deep Learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020.
[73] HE Z, PENG P, WANG L, 等. PickCapsNet: Capsule Network for Automatic P-Wave Arrival Picking[J]. IEEE Geoscience and Remote Sensing Letters, 2020, PP(99): 1-5.
[74] HUGO S, BERND S. DeepPhasePick: A method for detecting and picking seismic phases from local earthquakes based on highly optimized convolutional and recurrent deep neural networks[J]. Geophysical Journal International, 2021.
[75] JIN P, ZHANG X, CHEN Y, 等. Unsupervised Learning of Full-Waveform Inversion: Connecting CNN and Partial Differential Equation in a Loop[J]. arXiv e-prints, 2021.
[76] WU Y, LIN Y, ZHOU Z. Inversionet: Accurate and efficient seismic-waveform inversion with convolutional neural networks[C]//SEG Technical Program Expanded Abstracts 2018. 2018.
[77] ZHANG W, GAO J. Deep-Learning Full-Waveform Inversion Using Seismic Migration Images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, PP(99): 1-18.
[78] YANG L, SUN S Z. Seismic horizon tracking using a deep convolutional neural network[J/OL]. Journal of Petroleum Science and Engineering, 2020, 187: 106709. DOI:10.1016/j.petrol.2019.106709.
[79] WU H, ZHANG B, LIN T, 等. Semi-automated seismic horizon interpretation using encoder-decoder convolutional neural network[J]. Geophysics, 2019, 84(6): 1-56.
[80] BAI T, PEJMAN T. Attention-based LSTM-FCN for earthquake detection and location[J]. Geophysical Journal International, 2021(3): 3.
[81] NGUYEN V Q, YANG H J, KIM K, 等. Real-Time Earthquake Detection Using Convolutional Neural Network and Social Data[C]//2017 IEEE Third International Conference on Multimedia Big Data (BigMM). 2017.
[82] MCCULLOCH W S, PITTS W H. A logical Calculus of Ideas Immanent in Nervous Activity[J]. The Bulletin of Mathematical Biophysics, 1942, 5: 115-133.
[83] RUMELHART D E, HINTON G E, WILLIAMS R J. Learning Representations by Back Propagating Errors[J]. Nature, 1986, 323(6088): 533-536.
[84] HINTON G E, OSINDERO S, TEH Y W. A Fast Learning Algorithm for Deep Belief Nets[J/OL]. Neural Computation, 2006, 18(7): 1527-1554. DOI:10.1162/neco.2006. 18.7.1527.
[85] NAIR V, HINTON G E. Rectified Linear Units Improve Restricted Boltzmann Machines Vinod Nair[C]//International Conference on International Conference on Machine Learning. 2010.
[86] MAAS A L, HANNUN A Y, NG A Y. Rectifier nonlinearities improve neural network acoustic models[J/OL]. in ICML Workshop on Deep Learning for Audio, Speech and Language Processing, 2013.
[87] LECUN Y, BOSER B, DENKER J, 等. Backpropagation Applied to Handwritten Zip Code Recognition[J]. Neural Computation, 1989, 1(4): 541-551.
[88] SZEGEDY C, LIU W, JIA Y, 等. Going Deeper with Convolutions[J]. IEEE Computer Society, 2014.
[89] SIMONYAN K, ZISSERMAN A. Very Deep Convolutional Networks for Large-Scale Image Recognition[M/OL]. arXiv, 2015. http://arxiv.org/abs/1409.1556. DOI:10.48550/arXiv.1409.1556.
[90] KRIZHEVSKY A, SUTSKEVER I, HINTON G. ImageNet Classification with Deep Convolutional Neural Networks[J]. Advances in neural information processing systems, 2012, 25(2).
[91] GIRSHICK R, DONAHUE J, DARRELL T, 等. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation[J]. IEEE Computer Society, 2013.
[92] GIRSHICK R. Fast R-CNN[J]. Computer Science, 2015.
[93] HE K, GKIOXARI G, DOLLAR P, 等. Mask R-CNN[C]//International Conference on Computer Vision. 2017.
[94] ZHAO Z, WU Y. Attention-Based Convolutional Neural Networks for Sentence Classification[C]//Interspeech 2016. 2016.
[95] MILLETARI F, NAVAB N, AHMADI S A. V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation[M/OL]. arXiv, 2016. http://arxiv.org/abs/1606.04797. DOI:10.48550/arXiv.1606.04797.
[96] TRAN D, BOURDEV L, FERGUS R, 等. Learning Spatiotemporal Features with 3D Convolutional Networks[J]. IEEE, 2015.
[97] SIMONYAN K, ZISSERMAN A. Two-Stream Convolutional Networks for Action Recognition in Videos[J]. Advances in neural information processing systems, 2014, 1.
[98] NOH H, HONG S, HAN B. Learning Deconvolution Network for Semantic Segmentation[J]. IEEE, 2016.
[99] BENGIO Y, SIMARD P, FRASCONI P. Learning long-term dependencies with gradient descent is difficult[J/OL]. IEEE Transactions on Neural Networks, 1994, 5(2): 157-166. DOI:10.1109/72.279181.
[100] GLOROT X, BENGIO Y. Understanding the difficulty of training deep feedforward neural networks[J]. Journal of Machine Learning Research - Proceedings Track, 2010, 9: 249-256.
[101] HE K, ZHANG X, REN S, 等. Deep Residual Learning for Image Recognition[J/OL]. arXiv:1512.03385 [cs], 2015. http://arxiv.org/abs/ 1512.03385.
[102] HE K, ZHANG X, REN S, 等. Identity Mappings in Deep Residual Networks[J/OL]. European Conference on Computer Vision, 2016. DOI:10.1007/978-3-319-46493-0_38.
[103] 张敏, 李贤均, 王瑞琦, 等. 一种基于时空融合特征的间歇过程弱故障识别方法[J]. 工业工程与管理, 2022, 27(3): 10.
[104] IOFFE S, SZEGEDY C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift[J]. JMLR.org, 2015.
[105] GRAVES A, FERNÁNDEZ S, GOMEZ F. Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks[C]//ACM. 2006.
[106] LECUN Y, BOTTOU L, ORR G B, 等. Efficient BackProp[J]. neural networks tricks of the trade, 1998.
[107] TIBSHIRANI R. Regression shrinkage and selection via the lasso: a retrospective[J]. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2011, 73(3): 267-288.
[108] TIKHONOV A N. On the stability of inverse problems[J]. dolk.akad.nauk sssr, 1943.
[109] HINTON G E, CAMP D V. Keeping the neural networks simple by minimizing the description length of the weights[J]. ACM, 1999.
[110] HINTON G E, SRIVASTAVA N, KRIZHEVSKY A, 等. Improving neural networks by preventing co-adaptation of feature detectors[M]. 2012: págs. 212-223.
[111] KINGMA D P, BA J. Adam: A Method for Stochastic Optimization: arXiv:1412.6980[R/OL]. arXiv, 2017. DOI:10.48550/arXiv.1412.6980.
[112] HE K, ZHANG X, REN S, 等. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification[J/OL]. arXiv:1502.01852 [cs], 2015. http://arxiv.org/abs/1502.01852.
[113] XIN H, ZHANG H, KANG M, 等. High‐Resolution Lithospheric Velocity Structure of Continental China by Double‐Difference Seismic Travel‐Time Tomography[J/OL]. Seismological Research Letters, 2019, 90(1): 229-241. DOI:10.1785/0220180209.
[114] SUN Y, ZHANG W, CHEN X. Seismic‐Wave Modeling in the Presence of Surface Topography in 2D General Anisotropic Media by a Curvilinear Grid Finite‐Difference Method[J/OL]. Bulletin of the Seismological Society of America, 2016, 106(3): 1036-1054. DOI:10.1785/0120150285.
[115] SUN Y, ZHANG W, CHEN X. 3D Seismic Wavefield Modeling in Generally Anisotropic Media with a Topographic Free Surface by the Curvilinear Grid Finite‐Difference Method[J/OL]. Bulletin of the Seismological Society of America, 2018, 108(3A): 1287-1301. DOI:10.1785/0120170154.
[116] ZHANG W, CHEN X. Traction image method for irregular free surface boundaries in finite difference seismic wave simulation[J/OL]. Geophysical Journal International, 2006, 167(1): 337-353. DOI:10.1111/j.1365-246X.2006.03113.x.
[117] ZHU H, ZHANG W, CHEN X. Two-dimensional seismic wave simulation in anisotropic media by non-staggered finite difference method[J/OL]. Chinese Journal of Geophysics, 2009, 52(6): 1536-1546. DOI:10.3969/j.issn.0001-5733.2009. 06.015.
[118] KRISTEKOVÁ M, KRISTEK J, MOCZO P. Time-frequency misfit and goodness-of-fit criteria for quantitative comparison of time signals[J/OL]. Geophysical Journal International, 2009, 178(2): 813-825. DOI:10.1111/j.1365-246X.2009. 04177.x.
[119] KRISTEKOVÁ M, KRISTEK J, MOCZO P, 等. Misfit Criteria for Quantitative Comparison of Seismograms[J/OL]. Bulletin of the Seismological Society of America, 2006, 96(5): 1836-1850. DOI:10.1785/0120060012.
[120] CHEN Y, CHEN X, WANG Y, 等. The Interpolation of Sparse Geophysical Data[J/OL]. Surveys in Geophysics, 2019, 40(1): 73-105. DOI:10.1007/s10712-018-9501-3.
[121] LI J, SHEN Y, ZHANG W. Three‐Dimensional Passive‐Source Reverse‐Time Migration of Converted Waves: The Method[J/OL]. Journal of Geophysical Research: Solid Earth, 2018, 123(2): 1419-1434. DOI:10.1002/2017JB014817.
[122] DZIEWONSKI A M, ANDERSON D L. Preliminary reference Earth model[J/OL]. Physics of the Earth and Planetary Interiors, 1981, 25(4): 297-356. DOI:10.1016/0031-9201(81)90046-7.
[123] 张桂诚. 第一视角行为识别算法研究[D/OL]. 西安理工大学, 2021. DOI:10.27398/d.cnki.gxalu.2021.001464.
[124] 陈九辉. 远震体波接收函数方法:理论与应用[D/OL]. 中国地震局地质研究所, 2007.
修改评论