题名 | 面向无人驾驶的数据驱动行为决策和轨迹规划 |
其他题名 | DATA-DRIVEN MANEUVERING AND TRAJECTORY PLANNING FOR AUTONOMOUS DRIVING
|
姓名 | |
姓名拼音 | GAO Rui
|
学号 | 12032493
|
学位类型 | 硕士
|
学位专业 | 0809 电子科学与技术
|
学科门类/专业学位类别 | 08 工学
|
导师 | |
导师单位 | 计算机科学与工程系
|
论文答辩日期 | 2023-05-13
|
论文提交日期 | 2023-06-27
|
学位授予单位 | 南方科技大学
|
学位授予地点 | 深圳
|
摘要 | 自动驾驶局部决策规划作为自动驾驶决策规划模块的重要组成部分,是自动驾驶系统的重要研究方向之一。优秀的决策规划算法能保证安全舒适,解决自动驾驶的安全性问题,能极大的推动自动驾驶的发展。传统决策规划算法难以处理动态障碍物多的场景且对环境变化敏感。环境动态障碍物增多或环境发生变化,都可能导致问题难以求解。近年来,随着深度学习的发展,大量的驾驶数据被收集,为使用深度学习处理决策规划问题提供了理论依据和数据支撑。现有的基于深度学习的局部决策规划算法在以下三个方面存在不足:(1)现有决策规划算法难以捕捉自车和行人之间的交互关系导致泛化效果差;(2)在行为决策建模中忽略了不同的驾驶风格,学习到的决策模型环境适应性差;(3)轨迹规划网络生成轨迹的可行性和安全性难以得到保证。为了处理上述问题,(1)本文提出了拥挤场景下基于强化学习的运动规划算法,使用无模型的强化学习算法在仿真环境中交互学习决策规划策略,设计了自适应感知网络和基于注意力机制动态环境特征提取网络捕捉自车和行人之间的交互关系,并且设计了基于危险感知的奖励函数;(2)为了学习不同的驾驶风格,本文使用模仿学习来学习决策模型,并且设计了基于变分自编码器的多模态决策模型,使用改进后的变分自编码器学习不同的驾驶风格并且结合周围车辆的轨迹预测信息生成自车不同驾驶风格的行为决策;(3)考虑到网络生成轨迹的可行性和安全性,本文设计了基于注意力机制轨迹规划网络,采用了注意力机制融合时序信息和决策信息,并且设计了可微分的碰撞损失函数和基于模型预测控制可微分优化层约束轨迹使其安全可行;基于本文所提出的方法,本文设计了无人驾驶局部决策-规划系统,并将其部署到自动驾驶仿真器中,为后续的研究提供了支撑。 |
其他摘要 | Autonomous driving (AD) local decision-making planning, as an important compo nent of AD decision-making planning module, is one of the important research areas of AD systems. Excellent decision-making planning algorithms can ensure vehicular safety and comfort, increase the system robustness, and greatly promote the development of AD applications. Traditional decision planning algorithms are challenged with scenarios that have many dynamic obstacles and are sensitive to environmental changes. An increase in dynamic obstacles or changes in the environment can lead to difficulties in problem solving. In recent years, with the development of deep learning, a large amount of driving data has been collected, providing theoretical basis and data support for using deep learn ing to process decision-making planning problems. Existing deep learning-based local decision-making planning algorithms have the following three shortcomings: (1) The current decision planning algorithms are difficult to capture the interaction between the ego vehicle and pedestrians, resulting in poor gen eralization performance; (2) Different driving styles are ignored in behavioral decision making modeling, and the learned decision-making model has poor environmental adapt ability; (3) The feasibility and safety of trajectory planning network-generated trajectories are difficult to guarantee. The contributions of this thesis include the following three aspects: (1) This thesis proposes a reinforcement learning-based obstacle avoidance algo rithm in crowded scenes, using model-free reinforcement learning algorithms to interac tively learn decision-making planning strategies in a simulation environment, developing adaptive perception networks and attention-based dynamic environment feature extrac tion networks to handle unpredictable dynamic environments, as well as a risk-aware re ward function; (2) To learn different driving styles, this thesis uses imitation learning to learn decision-making models and designs a multi-modal decision-making model based on variational autoencoder. Using an improved variational autoencoder, it learns differ ent driving styles and combines with the trajectory prediction information of surrounding vehicles to generate behavior decisions for the autonomous vehicle with different driv ing styles; (3) Considering the feasibility and safety of network-generated trajectories, this thesis deveops an attention-based trajectory planning network, which uses attention mechanisms to fuse temporal and decision-making information and embeds model pre II Abstract dictive control into differentiable optimization layers to jointly constrain trajectories to make them smooth. Based on the proposed methods, this thesis develops an autonomous driving local decision-making planning system, deploys it to an autonomous driving sim ulator, and provides solid supports for the future research. |
关键词 | |
语种 | 中文
|
培养类别 | 独立培养
|
入学年份 | 2020
|
学位授予年份 | 2023-06
|
参考文献列表 | [1] RAJAMANI R. Vehicle Dynamics and Control[M]. Springer Science & Business Media, 2011. [2] LYNCH K M, PARK F C. Modern Robotics[M]. Cambridge University Press, 2017. [3] KOCHENDERFER M J, WHEELER T A, WRAY K H. Algorithms for Decision Making[M].MIT press, 2022. [4] LEONARD J, HOW J, TELLER S, et al. A Perception-driven Autonomous Urban Vehicle[J].Journal of Field Robotics, 2008, 25(10): 727-774. [5] MONTEMERLO M, BECKER J, BHAT S, et al. Junior: The Stanford Entry in the UrbanChallenge[J]. Journal of Field Robotics, 2008, 25(9): 569-597. [6] URMSON C, ANHALT J, BAGNELL D, et al. Autonomous Driving in Urban Environments:Boss and the Urban Challenge[J]. Journal of Field Robotics, 2008, 25(8): 425-466. [7] KAELBLING L P, LITTMAN M L, CASSANDRA A R. Planning and Acting in PartiallyObservable Stochastic Domains[J]. Artificial Intelligence, 1998, 101(1-2): 99-134. [8] BAI H Y, HSU D, LEE W S. Integrated Perception and Planning in the Continuous Space: A POMDP Approach[J]. The International Journal of Robotics Research, 2014, 33(9): 1288-1302. [9] BAI H Y, CAI S J, YE N, et al. Intention-aware Online POMDP Planning for Autonomous Driv ing in a Crowd[C]//2015 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2015: 454-460. [10] BRECHTEL S, GINDELE T, DILLMANN R. Probabilistic Decision-making under Uncer tainty for Autonomous Driving using Continuous POMDPs[C]//17th International IEEE Con ference on Intelligent Transportation Systems (ITSC). IEEE, 2014: 392-399. [11] LIU W, KIM S W, PENDLETON S, et al. Situation-aware Decision Making for Autonomous Driving on Urban Road using Online POMDP[C]//2015 IEEE Intelligent Vehicles SymPosium (IV). IEEE, 2015: 1126-1133. [12] CUNNINGHAM A G, GALCERAN E, EUSTICE R M, et al. MPDM: Multipolicy Decision making in Dynamic, Uncertain Environments for Autonomous Driving[C]//2015 IEEE Interna tional Conference on Robotics and Automation (ICRA). IEEE, 2015: 1670-1677. [13] GALCERAN E, CUNNINGHAM A G, EUSTICE R M, et al. Multipolicy Decision-Making for Autonomous Driving via Changepoint-based Behavior Prediction.[C]//Robotics: Science and Systems: volume 1. 2015: 6. [14] DING W C, ZHANG L, CHEN J, et al. Epsilon: An Efficient Planning System for Automated Vehicles in Highly Interactive Environments[J]. IEEE Transactions on Robotics, 2021, 38(2): 1118-1138. [15] ZHANG L, DING W C, CHEN J, et al. Efficient Uncertainty-aware Decision-making for Au tomated Driving using Guided Branching[C]//2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2020: 3291-3297. [16] POMERLEAU D A. Alvinn: An Autonomous land Vehicle in A Neural Network[C]//Advances in Neural Information Processing Systems: volume 1. 1988: 305-313. [17] MULLER U, BEN J, COSATTO E, et al. Off-road Obstacle Avoidance through End-to-end Learning[C]//Advances in Neural Information Processing Systems: volume 18. 2005: 739-746. [18] CHEN C, SEFF A, KORNHAUSER A, et al. Deepdriving: Learning Affordance for Direct Perception in Autonomous Driving[C]//Proceedings of the IEEE International Conference on Computer Vision. 2015: 2722-2730. [19] BOJARSKI M, DEL TESTA D, DWORAKOWSKI D, et al. End to End Learning for Self driving Cars[J]. CoRR, 2016, abs/1604.07316. [20] HOCHREITER S, SCHMIDHUBER J. Long Short-term Memory[J]. Neural Computation, 1997, 9(8): 1735-1780. [21] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is All You Need[C]//Advances in Neural Information Processing Systems: volume 30. 2017: 5998-6008. [22] ABOU-HUSSEIN M, MÜLLER S H, BOEDECKER J. Multimodal Spatio-temporal Informa tion in End-to-end Networks for Automotive Steering Prediction[C]//2019 International Con ference on Robotics and Automation (ICRA). IEEE, 2019: 8641-8647. [23] WU T H, LUO A, HUANG R, et al. End-to-end Driving Model for Steering Control of Au tonomous Vehicles with Future Spatiotemporal Features[C]//2019 IEEE/RSJ International Con ference on Intelligent Robots and Systems (IROS). IEEE, 2019: 950-955. [24] CHI L, MU Y D. Deep Steering: Learning End-to-end Driving Model from Spatial and Tem poral Visual Cues[J]. CoRR, 2017, abs/1708.03798. [25] YANG Z Y, ZHANG Y X, YU J, et al. End-to-end Multi-modal Multi-task Vehicle Control for Self-driving Cars with Visual Perceptions[C]//2018 24th International Conference on Pattern Recognition (ICPR). IEEE, 2018: 2289-2294. [26] HECKER S, DAI D X, VAN GOOL L. End-to-end Learning of Driving Models with Surround view Cameras and Route Planners[C]//Proceedings of the European Conference on Computer Vision (ECCV). 2018: 435-453. [27] HU S C, CHEN L, WU P H, et al. ST-P3: End-to-end Vision-Based Autonomous Driving via Spatial-Temporal Feature Learning[C]//Computer Vision–ECCV 2022: 17th European Con ference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXXVIII. Springer, 2022: 533-549. [28] CODEVILLA F, MÜLLER M, LÓPEZ A, et al. End-to-end Driving via Conditional Imitation Learning[C]//2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2018: 4693-4700. [29] PRAKASH A, CHITTA K, GEIGER A. Multi-Modal Fusion Transformer for End-to-end Au tonomous Driving[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pat tern Recognition. 2021: 7077-7087. [30] DOSOVITSKIY A, ROS G, CODEVILLA F, et al. CARLA: An Open Urban Driving Simulator [C]//Conference on Robot Learning. PMLR, 2017: 1-16. [31] CHITTA K, PRAKASH A, JAEGER B, et al. Transfuser: Imitation with Transformer-based Sensor Fusion for Autonomous Driving[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022: 1-18. [32] DEO N, TRIVEDI M M. Convolutional Social Pooling for Vehicle Trajectory Prediction[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. 2018: 1468-1476. [33] GAO J Y, SUN C, ZHAO H, et al. Vectornet: Encoding HD Maps and Agent Dynamics from Vectorized Representation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 11525-11533. [34] ZHOU Z K, YE L Y, WANG J P, et al. Hivt: Hierarchical Vector Transformer for Multi agent Motion Prediction[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022: 8823-8833. [35] BANSAL M, KRIZHEVSKY A, OGALE A. ChauffeurNet: Learning to Drive by Imitating the Best and Synthesizing the Worst[C]//Robotics: Science and Systems XV. 2018. [36] CHEN J Y, YUAN B D, TOMIZUKA M. Deep Imitation Learning for Autonomous Driving in Generic Urban Scenarios with Enhanced Safety[C]//2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2019: 2884-2890. [37] VITELLI M, CHANG Y, YE Y W, et al. SafetyNet: Safe Planning for Real-World Self-Driving Vehicles Using Machine-Learned Policies[C]//2022 International Conference on Robotics and Automation. 2021: 897-904. [38] WATKINS C J, DAYAN P. Q-learning[J]. Machine Learning, 1992, 8: 279-292. [39] MNIH V, KAVUKCUOGLU K, SILVER D, et al. Playing Atari with Deep Reinforcement Learning[J]. CoRR, 2013, abs/1312.5602. [40] VAN HASSELT H, GUEZ A, SILVER D. Deep Reinforcement Learning with Double Q learning[C]//Proceedings of the AAAI Conference on Artificial Intelligence: volume 30. 2016. [41] WANG Z Y, SCHAUL T, HESSEL M, et al. Dueling Network Architectures for Deep Reinforce ment Learning[C]//International Conference on Machine Learning. PMLR, 2016: 1995-2003. [42] SILVER D, LEVER G, HEESS N, et al. Deterministic Policy Gradient Algorithms[C]// International Conference on Machine Learning. Pmlr, 2014: 387-395. [43] HESSEL M, MODAYIL J, VAN HASSELT H, et al. Rainbow: Combining Improvements in Deep Reinforcement Learning[C]//Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence: volume 32. New Orleans, Louisiana, USA, 2018. [44] WILLIAMS R J. Simple Statistical Gradient-following Algorithms for Connectionist Reinforce ment Learning[J]. Mach. Learn., 1992, 8: 229-256. [45] KONDA V, TSITSIKLIS J. Actor-Critic Algorithms[C]//SOLLA S, LEEN T, MüLLER K. Advances in Neural Information Processing Systems: volume 12. MIT Press, 1999. [46] MNIH V, BADIA A P, MIRZA M, et al. Asynchronous Methods for Deep Reinforcement Learning[C]//International Conference on Machine Learning. 2016: 1928-1937. [47] SCHULMAN J, LEVINE S, ABBEEL P, et al. Trust Region Policy Optimization[C]// International Conference on Machine Learning. PMLR, 2015: 1889-1897. [48] SCHULMAN J, WOLSKI F, DHARIWAL P, et al. Proximal Policy Optimization Algorithms [J]. CoRR, 2017, abs/1707.06347. [49] HAARNOJA T, TANG H R, ABBEEL P, et al. Reinforcement Learning with Deep Energy-based Policies[C]//2017 International Conference on Machine Learning. PMLR, 2017: 1352-1361. [50] HAARNOJA T, ZHOU A, ABBEEL P, et al. Soft Actor-critic: Off-policy Maximum Entropy Deep Reinforcement Learning with A Stochastic Actor[C]//2018 International Conference on Machine Learning. PMLR, 2018: 1861-1870. [51] SUNEHAG P, LEVER G, GRUSLYS A, et al. Value-Decomposition Networks for Cooperative Multi-Agent Learning Based on Team Reward[C]//Proceedings of the 17th International Con ference on Autonomous Agents and MultiAgent Systems, AAMAS 2018. 2018: 2085-2087. [52] RASHID T, FARQUHAR G, PENG B, et al. Weighted Qmix: Expanding Monotonic Value Function Factorisation for Deep Multi-agent Reinforcement Learning[C]//Advances in Neural Information Processing Systems: volume 33. 2020: 10199-10210. [53] WANG J H, REN Z Z, LIU T, et al. QPLEX: Duplex Dueling Multi-agent Q-Learning[C]//9th International Conference on Learning Representations. 2021. [54] FOERSTER J, FARQUHAR G, AFOURAS T, et al. Counterfactual Multi-agent Policy Gradi ents[C]//Proceedings of the AAAI Conference on Artificial Intelligence: volume 32. 2018. [55] DE WITT C S, GUPTA T, MAKOVIICHUK D, et al. Is Independent Learning All You Need in the Starcraft Multi-agent Challenge?[J]. CoRR, 2020, abs/2011.09533. [56] YU C, VELU A, VINITSKY E, et al. The Surprising Effectiveness of PPO in Cooperative Multi-agent Games[J]. Advances in Neural Information Processing Systems, 2022, 35: 24611- 24624. [57] JIANG J C, DUN C, HUANG T J, et al. Graph Convolutional Reinforcement Learning[C]// 8th International Conference on Learning Representations, ICLR 2020. Addis Ababa, Ethiopia: OpenReview.net, 2020. [58] HÜGLE M, KALWEIT G, WERLING M, et al. Dynamic Interaction-aware Scene Understand ing for Reinforcement Learning in Autonomous Driving[C]//2020 IEEE International Confer ence on Robotics and Automation (ICRA). Paris, France: IEEE, 2020: 4329-4335. [59] KIPF T N, WELLING M. Semi-supervised Classification with Graph Convolutional Networks [C]//5th International Conference on Learning Representations. 2017. [60] TANG X L, HUANG B, LIU T, et al. Highway Decision-making and Motion Planning for Autonomous Driving via Soft Actor-critic[J]. IEEE Transactions on Vehicular Technology, 2022, 71(5): 4706-4717. [61] HUANG Z Y, WU J D, LV C. Efficient Deep Reinforcement Learning With Imitative Expert Priors for Autonomous Driving[J]. IEEE Transactions on Neural Networks and Learning Sys tems, 2022: 1-13. [62] ALAHI A, GOEL K, RAMANATHAN V, et al. Social LSTM: Human Trajectory Prediction in Crowded Spaces[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016: 961-971. [63] VEMULA A, MUELLING K, OH J. Social Attention: Modeling Attention in Human Crowds [C]//2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2018: 4601-4607. [64] CHEN C A, LIU Y J, KREISS S, et al. Crowd-robot Interaction: Crowd-aware Robot Naviga tion with Attention-based Deep Reinforcement Learning[C]//2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019: 6015-6022. [65] KINGMA D P, WELLING M. Auto-Encoding Variational Bayes[C]//Proceedings of the 2nd International Conference on Learning Representations,ICLR2014. Banff, AB, Canada, 2014. [66] HE K M, ZHANG X Y, REN S Q, et al. Deep Residual Learning for Image Recognition[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016: 770-778. [67] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An Image Is Worth 16x16 Words: Transformers for Image Recognition at Scale[C]//9th International Conference on Learning Rep resentations. 2021. [68] LIU L, DUGAS D, CESARI G, et al. Robot Navigation in Crowded Environments using Deep Reinforcement Learning[C]//2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2020: 5671-5677. [69] SATHYAMOORTHY A J, LIANG J, PATEL U, et al. Densecavoid: Real-time Navigation in Dense Crowds using Anticipatory Behaviors[C]//2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2020: 11345-11352. [70] CHEN C A, HU S, NIKDEL P, et al. Relational Graph Learning for Crowd Navigation[C]// 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2020: 10007-10013. [71] CHEN Y Y, LIU C C, SHI B E, et al. Robot Navigation in Crowds by Graph Convolutional Networks with Attention Learned from Human Gaze[J]. IEEE Robotics and Automation Letters, 2020, 5(2): 2754-2761. [72] SATHYAMOORTHY A J, PATEL U, GUAN T, et al. Frozone: Freezing-free, Pedestrian friendly Navigation in Human Crowds[J]. IEEE Robotics and Automation Letters, 2020, 5(3): 4352-4359. [73] GRAVES A. Adaptive Computation Time for Recurrent Neural Networks[J]. CoRR, 2016, abs/1603.08983. [74] RUMELHART D E, HINTON G E, WILLIAMS R J. Learning Representations by Back propagating Errors[J]. Nature, 1986, 323(6088): 533-536. [75] CHO K, VAN MERRIËNBOER B. cC aglar Gü lcc ehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). 2014: 1724-1734. [76] EVERETT M, CHEN Y F, HOW J P. Motion Planning among Dynamic, Decision-making Agents with Deep Reinforcement Learning[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018: 3052-3059. [77] CHEN Y F, LIU M, EVERETT M, et al. Decentralized Non-communicating Multiagent Colli sion Avoidance with Deep Reinforcement Learning[C]//2017 IEEE international conference on Robotics and Automation (ICRA). IEEE, 2017: 285-292. [78] ALONSO-MORA J, BREITENMOSER A, RUFLI M, et al. Optimal Reciprocal Collision Avoidance for Multiple Non-holonomic Robots[M]//Distributed Autonomous Robotic systems. Springer, 2013: 203-216. [79] SUTTON R S, BARTO A G. Reinforcement Learning: An Introduction[M]. MIT press, 2018. [80] GAZIS D C, HERMAN R, ROTHERY R W. Nonlinear Follow-the-leader Models of Traffic Flow[J]. Operations Research, 1961, 9(4): 545-567. [81] TREIBER M, HENNECKE A, HELBING D. Congested Traffic States in Empirical Observa tions and Microscopic Simulations[J]. Physical review E, 2000, 62(2): 1805. [82] WANG J K, WANG Y, ZHANG D K, et al. Learning Hierarchical Behavior and Motion Planning for Autonomous Driving[C]//Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Las Vegas, NV, USA, 2020: 2235-2242. [83] BEHRISCH M, BIEKER L, ERDMANN J, et al. SUMO–simulation of Urban Mobility: An Overview[C]//Proceedings of SimuL 2011, The Third International Conference on Advances in System Simulation. ThinkMind, 2011. [84] KICKI P, GAWRON T, SKRZYPCZYŃSKI P. A Self-Supervised Learning Approach to Rapid Path Planning for Car-Like Vehicles Maneuvering in Urban Environment[J]. CoRR, 2020, abs/2003.00946. [85] ZENG W Y, LUO W J, SUO S, et al. End-to-end Interpretable Neural Motion Planner[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, CA, USA, 2019: 8660-8669. [86] ZHANG Y F, ZHANG J H, ZHANG J D, et al. A Novel Learning Framework for Sampling Based Motion Planning in Autonomous Driving[C]//Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence. New York, USA, 2020: 1202-1209. [87] FEI C, WANG B, ZHUANG Y Z, et al. Triple-GAIL: a Multi-modal Imitation Learning Frame work with Generative Adversarial Nets[C]//Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence. 2020: 2929-2935. [88] HO J, ERMON S. Generative Adversarial Imitation Learning[C]//Advances in Neural Informa tion Processing Systems: volume 29. 2016: 4565-4573. [89] TOMCZAK J, WELLING M. VAE with a VampPrior[C]//International Conference on Artificial Intelligence and Statistics. PMLR, 2018: 1214-1223. [90] VAN DEN OORD A, VINYALS O, et al. Neural Discrete Representation Learning[C]// Advances in Neural Information Processing Systems: volume 30. 2017: 6306-6315. [91] WANG Q, KULKARNI S R, VERDÚ S. Divergence Estimation for Multidimensional Densities via 𝑘-Nearest-Neighbor Distances[J]. IEEE Transactions on Information Theory, 2009, 55(5): 2392-2405. [92] CAESAR H, BANKITI V, LANG A H, et al. nuScenes: a Multimodal Dataset for Autonomous Driving[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog nition. 2020: 11621-11631. [93] ALEXIADIS V, COLYAR J, HALKIAS J, et al. The Next Generation Simulation Program[J]. Institute of Transportation Engineers. ITE Journal, 2004, 74(8): 22. [94] CHANG M F, LAMBERT J, SANGKLOY P, et al. Argoverse: 3D Tracking and Forecasting with Rich Maps[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019: 8748-8757. [95] HOUSTON J, ZUIDHOF G, BERGAMINI L, et al. One Thousand and One Hours: Self-driving Motion Prediction Dataset[C]//4th Conference on Robot Learning: volume 155. 2020: 409-418. [96] KINGMA D P, BA J. Adam: A Method for Stochastic Optimization[C]//3rd International Con ference on Learning Representations. 2015. [97] PULVER H, EIRAS F, CAROZZA L, et al. PILOT: Efficient Planning by Imitation Learning and Optimisation for Safe Autonomous Driving[C]//2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2020: 1442-1449. [98] EIRAS F, HAWASLY M, ALBRECHT S V, et al. A Two-stage Optimization-based Motion Planner for Safe Urban Driving[J]. IEEE Transactions on Robotics, 2021, 38(2): 822-834. [99] ZHOU J Y, WANG R, LIU X, et al. Exploring Imitation Learning for Autonomous Driving with Feedback Synthesizer and Differentiable Rasterization[C]//2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Prague, Czech Republic, 2021: 1450-1457. [100] AGRAWAL A, AMOS B, BARRATT S, et al. Differentiable Convex Optimization Layers[C]// Advances in Neural Information Processing Systems: volume 32. 2019: 9558-9570. [101] BOYD S, BOYD S P, VANDENBERGHE L. Convex Optimization[M]. Cambridge university press, 2004. [102] PINI S, PERONE C S, AHUJA A, et al. Safe Real-World Autonomous Driving by Learning to Predict and Plan with a Mixture of Experts[J]. CoRR, 2022, abs/2211.02131. [103] LIU P J, WANG X, ZHANG C Z. Data-Driven Human-Like Path Planning for Autonomous Driving Based on Imitation Learning[C]//2022 5th International Conference on Intelligent Au tonomous Systems (ICoIAS). IEEE, 2022: 119-124. [104] HENAFF M, CANZIANI A, LECUN Y. Model-predictive Policy Learning with Uncertainty Regularization for Driving in Dense Traffic[C]//7th International Conference on Learning Rep resentations. 2019. [105] WERLING M, ZIEGLER J, KAMMEL S, et al. Optimal Trajectory Generation for Dynamic Street Scenarios in A Frenét Frame[C]//2010 IEEE International Conference on Robotics and Automation. Anchorage, Alaska, USA, 2010: 987-993. |
所在学位评定分委会 | 电子科学与技术
|
国内图书分类号 | TP242.6
|
来源库 | 人工提交
|
成果类型 | 学位论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/544074 |
专题 | 工学院_计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
高瑞. 面向无人驾驶的数据驱动行为决策和轨迹规划[D]. 深圳. 南方科技大学,2023.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
12032493-高瑞-计算机科学与工程(3733KB) | -- | -- | 限制开放 | -- | 请求全文 |
个性服务 |
原文链接 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
导出为Excel格式 |
导出为Csv格式 |
Altmetrics Score |
谷歌学术 |
谷歌学术中相似的文章 |
[高瑞]的文章 |
百度学术 |
百度学术中相似的文章 |
[高瑞]的文章 |
必应学术 |
必应学术中相似的文章 |
[高瑞]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论