中文版 | English
题名

以含炔基的联烯为合成子构筑碳龙配合物

其他题名
CONSTRUCTION OF CARBOLONG COMPLEXES USING ALKYNEFUNCTIONALIZED ALLENES
姓名
姓名拼音
MENG Weiran
学号
12132775
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
陈大发
导师单位
深圳格拉布斯研究院
外机构导师单位
南方科技大学
论文答辩日期
2023-05-22
论文提交日期
2023-06-27
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

金属杂芳香化学作为芳香化学和金属有机化学的交叉学科,其发展一直备受 关注。碳龙化学开辟了金属杂芳香化学的新方向,属于金属有机化学、配位化学 和芳香化学的交叉领域。近年来,本课题组开发了一系列结构新颖、性能独特的 碳龙化合物。在此基础上,本论文利用含有炔基的联烯化合物为合成子,构筑了 若干炔基修饰的碳龙化合物,并对其性质和应用进行初步探索。其主要内容概括 如下: 本文的研究工作是先利用以含炔醇的联烯为合成子构筑碳龙配合物,得到了 一系列 7-碳龙配合物和 8-碳龙配合物,并且进一步分析了碳龙配合物的生成机 理,这为设计含有炔基的碳龙配合物提供了一种方法。之后本论文利用了邻炔基 苯基联烯为合成子构筑碳龙配合物,得到了一系列 8-碳龙配合物和 12-碳龙配合 物。其中 12-碳龙配合物为首例金属杂戊搭烯并萘,且其具有近红外二区吸收的 性质。最后,基于 12-碳龙配合物特殊的吸收性质,本文对其在近红外区的光热 性能进行了探索。 综上所述,本文合成了九种碳龙配合物,并通过核磁共振波谱(NMR)、X 射线单晶衍射及高分辨质谱(HRMS)等方法,对其结构进行了表征。本文不仅 拓展了含炔基的碳龙配合物的合成方法,并且为其光物理性质进行了研究,这为其光学应用奠定了基础。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2023-07
参考文献列表

[1] 华煜辉,张弘,夏海平. 芳香性:历史与发展[J]. 有机化学,2018, 38(1): 11-28.
[2] SCHLEYER P v R. Introduction:  delocalization pi and sigma [J]. Chemical Reviews, 2005, 105(10): 3433-3435.
[3] ABERSFELDER. K, ANDREW J. P, HENRY S, et al. A tricyclic aromatic isomer of hexasilabenzene[J]. Science, 2010, 327(5965): 564-566.
[4] LEGRAND Y-M, VAN DER LEE A, BARBOIU M. Single-crystal X-ray structure of 1,3-dimethylcyclobutadiene by confinement in a crystalline matrix[J]. Science, 2010, 329(5989): 299-302.
[5] SUZUKI K, MATSUO T, HASHIZUME D, et al. A planar rhombic charge-separated tetrasilacyclobutadiene [J]. Science, 2011, 331(6022): 1306-1309.
[6] OTTOSSON H. Organic photochemistry: exciting excited-state aromaticity [J]. Nature Chemistry, 2012, 4(12): 969-971.
[7] Li X, KUZNETSOV A E, ZHANG H-F, et al. Observation of all-metal aromatic molecules [J]. Science, 2001, 291(5505): 859-861.
[8] BOLDYREV A I, WANG L-S. All-metal aromaticity and antiaromaticity [J]. Chemical Reviews, 2005, 105(10): 3716-3757.
[9] HUA Y, ZHANG H, XIA H. History and development [J]. Chinese Journal of Organic Chemistry, 2018, 38(1): 11-28.
[10] FARADAY, M. PHILOS. Trans. Proceedings of the Royal Society of London 1825, 115, 440.
[11] LUO M, CHEN D, LI Q, et al. Unique properties and emerging applications of carbolong metallaaromatics [J]. Accounts of Chemical Research, 2023, DOI: 10.1021/acs.accounts.2c00750.
[12] ZHU C, XIA H. Carbolong Chemistry: A story of carbon chain ligands and transition metals [J]. Accounts of Chemical Research, 2018, 51(7): 1691-1700.
[13] ZEISE W C. Eine besondere platinverbindung[J]. Annalen der Physik, 1827, 9: 632
[14] HOFMANN, A. W. Proceedings of the Royal Society of London. 1856, 8: 1.
[15] HUCKEL E. Quantum-theoretical contributions to the benzene problem. I. The electron configuration of benzene and related compounds[J]. Z. Physik. 1931, 70: 204-286.
[16] BRESLOW R, GROVES J T, RYAN G.Cyclopropenyl cation. Journal of the American Chemical Society, 1967, 89 (19): 5048.
[17] BAIRD N C. Quantum organic photochemistry. II. Resonance and aromaticity in the lowest 3ππ.* state of cyclic hydrocarbons. Journal of the American Chemical Society, 1972, 94 (14): 4941-4948.
[18] LIU C, SANDOVAL-SALINAS M E, HONG Y, et al. Macrocyclic Polyradicaloids with unusual Super-ring structure and Global aromaticity [J]. Chem, 2018, 4(7): 1586-1595.
[19] NOZAWA R, KIM J, et al. Nature Communications, 2019, 10 (1): 3576.
[20] RICKHAUS M, JIRASEK M, TEJERINA L, et al. Global aromaticity at the nanoscale [J]. Nature Chemistry, 2020, 12(3): 236-241.
[21] DAVID L, JOSEPH G, The electronic structure of the benzene molecule. Nature. 1986, 70 (3): 699-701.
[22] PAULING L, SHERMAN J. The nature of the chemical bond. VI. The calculation from thermochemical data of the energy of resonance of molecules among several electronic structures [J]. The Journal of Chemical Physics, 1933, 1(8): 606-617.
[23] THORN D L, HOFFMANN R. Delocalization in metallocycles[J], Nouveau. Journal. De Chimie. 1979, 3(1): 39-45.
[24] BLEEKE J R. Metallabenzene chemistry[J]. Accounts of Chemical Research 1991, 24(9): 271- 277.
[25] BLEEKE J R. Metallabenzene[J]. Chemical Reviews, 2001, 101(5): 1205-1227.
[26] HE G, XIA H, JIA G. Progress in the synthesis and reactivity studies of metallabenzenes[J], Chinese Science Bulletin, 2004, 49(15): 1543-1553.
[27] DALEBROOK A F, WRIGHT L J. Annulation of an Iridabenzene through Formal Cycloaddition reactions with Organonitriles[J]. Organometallics, 2009, 28(18): 5536-5540.
[28] BLEEKE J R. Aromatic iridacycles[J]. Accounts of Chemical Research, 2007, 40(10): 1035-1047.
[29] XIA H, HE G, ZHANG H, et al. Osmabenzenes from the reactions of HC≡CCH(OH)C≡CH with OsX2(PPh3)3 (X = Cl, Br) [J]. Journal of the American Chemical Society, 2004, 126(22): 6862-6863.
[30] ZHANG H, XIA H, HE G, et al. Synthesis and characterization of stable ruthenabenzenes [J]. Angewandte Chemie International Edition, 2006, 45(18): 2920-2923.
[31] ROPER, et al. [J]. Journal of the Chemical Society, Chemical Communications., 1982, (14): 811-813.
[32] WEN T B, ZHOU Z Y, JIA G. Synthesis and characterization of a metallabenzyne [J]. Angewandte Chemie International Edition, 2001, 40(10): 1951-1954.
[33] WEN T B, NG S M, HUNG W Y, et al. Protonation and bromination of an osmabenzyne: reactions leading to the formation of new metallabenzynes[J]. Journal of the American Chemical Society, 2003, 125(4): 884-885.
[34] JIA G, Progress in the chemistry of metallabenzynes[J], Accounts of Chemical Research, 2004, 37(7): 479-486.
[35] WEN T B, HUNG W Y, SUNG H H Y, et al. Syntheses of metallabenzynes from an allenylcarbene complex[J]. Journal of the American Chemical Society, 2005, 127(9): 2856-2857.
[36] HUNG W Y, ZHU J, WEN T B, et al. Osmabenzenes from the reactions of a dicationic osmabenzyne complex[J]. Journal of the American Chemical Society, 2006, 128(42): 13742-13752.
[37] HE G, ZHU J, HUNG W Y, et al. A metallanaphthalyne complex from zinc reduction of a vinylcarbyne complex [J]. Angewandte Chemie International Edition, 2007, 46(47): 9065-9068.
[38] JIA G. Recent progress in the chemistry of osmium carbyne and metallabenzyne complexes [J]. Coordination Chemistry Reviews, 2007, 251(17-20): 2167-2187.
[39] LIU B, XIE H, WANG H, et al. Selective synthesis of osmanaphthalene and osmanaphthalyne by intramolecular C-H activation [J]. Angewandte Chemie International Edition, 2009, 48(30): 5461-5464.
[40] HUNG W Y, LIU B, SHOU W, et al. Electrophilic substitution reactions of metallabenzynes [J]. Journal of the American Chemical Society, 2011, 133(45): 18350-18360.
[41] CHEN J, SUNG H H, WILLIAMS I D, et al. Synthesis and characterization of a rhenabenzyne complex [J]. Angewandte Chemie International Edition, 2011, 50(45): 10675-10678.
[42] JIA G. Our Journey to the Chemistry of Metallabenzynes [J]. Organometallics, 2013, 32(23): 6852-6866.
[43] HARADA N, ONO H, NISHIWAKI T, et al. Synthesis, circular dichroism and absolute stereochemistry of chiral spiroaromatic compounds. 9,9′-Spirobifluorene derivatives, Chemical Communications, 1991, 24: 1753-1754.
[44] RZEPA H S, TAYLOR K R. Möbius and Hückel spiroaromatic systems [J]. Journal of the Chemical Society, Perkin Transactions. 2, 2002, DOI: 10.1039/b205988f9: 1499-1501.
[45] ZHANG Y, WEI J, CHI Y, et al. Spiro Metalla-aromatics of Pd, Pt, and Rh: Synthesis and Characterization [J]. Journal of the American Chemical Society, 2017, 139(14): 5039-5042.
[46] ZHANG Y, WEI J, ZHU M, et al. Tetralithio Metalla-aromatics with two independent perpendicular dilithio aromatic rings spiro-fused by one manganese atom [J]. Angewandte Chemie International Edition, 2019, 58(28): 9625-9631.
[47] HUANG Z, ZHANG Y, ZHANG W-X, et al. A tris-spiro metalla-aromatic system featuring Craig-Möbius aromaticity [J]. Nature Communications, 2021, 12(1): 1319.
[48] ZHU C, LI S, LUO M, et al. Stabilization of anti-aromatic and strained five-membered rings with a transition metal [J]. Nature Chemistry, 2013, 5(8): 698-703.
[49] ZHU C, LUO M, ZHU Q, et al. Planar Mobius aromatic pentalenes incorporating 16 and 18 valence electron osmiums [J]. Nature Communications, 2014, 5: 3265.
[50] ZHU C, ZHOU X, XING H, et al. Sigma-aromaticity in an unsaturated ring: osmapentalene derivatives containing a metallacyclopropene unit [J]. Angewandte Chemie International Edition, 2015, 54(10): 3102-3106.
[51] ZHU C, YANG Y, LUO M, et al. Stabilizing two classical antiaromatic frameworks: demonstration of photoacoustic imaging and the photothermal effect in metalla-aromatics [J]. Angewandte Chemie International Edition, 2015, 54(21): 6181-6185.
[52] ZHU C, WU J, LI S, et al. Synthesis and characterization of a metallacyclic framework with three fused five-membered rings [J]. Angewandte Chemie International Edition, 2017, 56(31): 9067-9071.
[53] ZHU C, ZHU J, ZHOU X, et al. Isolation of an eleven-atom polydentate carbon-chain chelate obtained by cycloaddition of a cyclic osmium carbyne with an alkyne [J]. Angewandte Chemie International Edition, 2018, 57(12): 3154-3157.
[54] ZHU C, YANG C, WANG Y, et al. CCCCC pentadentate chelates with planar Möbius aromaticity and unique properties[J]. Science Advances, 2016, 2(8): e1601031.
[55] ZHUO Q, LIN J, HUA Y, et al. Multiyne chains chelating osmium via three metal-carbon σ bonds[J]. Nature Communications, 2017, 8(1): 1912.
[56] ZHUO Q, ZHANG H, HUA Y, et al. Constraint of a ruthenium-carbon triple bond to a fivemembered ring[J]. Science Advance, 2018, 4(6), DOI: 10.1126/sciadv.aat0336.
[57] ZHUO Q, ZHANG H, DING L, et al. Rhodapentalenes: pincer complexes with internal aromaticity [J]. iScience, 2019, 19: 1214-1224.
[58] 卓庆德. 高效“碳龙”配体: 一锅法构筑过渡金属杂稠芳环[D]. 厦门: 厦门大学化学化工学院, 2016: 1-353.
[59] ZHOU X, WU J, HAO Y, et al. Rational design and synthesis of unsaturated Se-containing osmacycles with sigma-aromaticity [J]. Chemistry, 2018, 24(10): 2389-2395.
[60] LUO M, ZHU C, CHEN L, et al. Halogenation of carbyne complexes: isolation of unsaturated metallaiodirenium ion and metallabromirenium ion [J]. Chemical Science, 2016, 7(3): 1815-1818.
[61] YANG C, LIN G, ZHU C, et al. Metalla-aromatic loaded magnetic nanoparticles for MRI/photoacoustic imaging-guided cancer phototherapy [J]. Journal of Materials Chemistry B, 2018, 6(17): 2528-2535.
[62] CHEN S, PENG L, LIU Y, et al. Conjugated polymers based on metalla-aromatic building blocks [J]. Proceedings of the National Academy of Sciences, 2022, 119(29): e2203701119.
[63] CHEN S, CAO C, YU Z, et al. A dπ‐pπ conjugated system with high mobility and strong emission simultaneously [J]. Advanced Functional Materials, 2023, DOI: 10.1002/adfm.202300359
[64] LU N, DENG Z, GAO J, et al. An osmium-peroxo complex for photoactive therapy of hypoxic tumors [J]. Nature Communications, 2022, 13(1): 2245.
[65] WANG J, LI J, ZHOU Y, et al. Tuning an electrode work function using organometallic complexes in inverted perovskite solar cells [J]. Journal of the American Chemical Society, 2021, 143(20): 7759-7768.
[66] CUI F H, LI Q, GAO L H, et al. Condensed osmaquinolines with NIR-II absorption synthesized by aryl C-H annulation and aromatization [J]. Angewandte Chemie International Edition, 2022, 61(48): e202211734.
[67] ROBINSON J T, TABAKMAN S M, LIANG Y, et al. Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy [J]. Journal of the American Chemical Society, 2011, 133(17): 6825-6831.
[68] JUNG H S, VERWILST P, SHARMA A, et al. Organic molecule-based photothermal agents: an expanding photothermal therapy universe [J]. Chem Soc Rev, 2018, 47(7): 2280-2297.
[69] TANG J H, YAO C J, CUI B B, et al. Ruthenium-amine conjugated organometallic materials for multistate Near-IR electrochromism and information storage [J]. A Journal of the Chemical Society of Japan, 2016, 16(2): 754-767.
[70] YIN C, LI X, WANG Y, et al. Organic semiconducting macromolecular dyes for NIR‐II photoacoustic imaging and photothermal therapy [J]. Advanced Functional Materials, 2021, 31(37): 2104650.
[71] GE X, FU Q, BAI L, et al. Photoacoustic imaging and photothermal therapy in the second near-infrared window [J]. New Journal of Chemistry, 2019, 43(23): 8835-8851.
[72] JIANG Z, ZHANG C, WANG X, et al. A borondifluoride-complex-based photothermal agent with an 80 % photothermal conversion efficiency for photothermal therapy in the NIR-II window [J]. Angewandte Chemie International Edition, 2021, 60(41): 22376-22384.
[73] OU C, NA W, GE W, et al. Biodegradable charge-transfer complexes for glutathione depletion induced ferroptosis and NIR-II photoacoustic imaging guided cancer photothermal therapy [J]. Angewandte Chemie International Edition, 2021, 60(15): 8157-8163.
[74] ZHU J, JIA G, LIN Z. Theoretical investigation of alkyne metathesis catalyzed by W/Mo alkylidyne complexes[J]. Organometallics, 2006, 25(7): 1812-1819.
[75] BEWERIES T, FISCHER C, PEITZ S, et al. To understand the formation of group 4 metallacyclopentanes from the corresponding metallacyclopropenes[J]. Journal of the American Chemical Society, 2009, 131(12): 4463-4469.
[76] SUZUKI N, HASHIZUME D. Five-membered metallacycloalkynes formed from group 4 metals and [n]cumulene (n= 3,5) ligands [J]. Coordination Chemistry Reviews, 2010, 254(11-12): 1307-1326.
[77] BEWERIES T, HAEHNEL M, ROSENTHAL U. Recent advances in the chemistry of heterometallacycles of group 4 metallocenes [J]. Catal. Sci. Technol., 2013, 3(1): 18-28.
[78] LIN Q, LI S, LIN J, et al. Synthesis and characterization of photothermal osmium carbolong complexes [J]. Chemistry, 2018, 24(33): 8375-8381.
[79] IKEUCHI T, INUKI S, OISHI S, et al. Gold(I)-catalyzed cascade cyclization reactions of allenynes for the synthesis of fused cyclopropanes and acenaphthenes [J]. Angewandte Chemie International Edition, 2019, 58(23): 7792-7796.
[80] LI W, LIN Z, CHEN L, et al. Highly stereoselective kinetic resolution of α-allenic alcohols: an enzymatic approach. Tetrahedron Letters, 2016, 57(5), 603-606.
[81] ZHAO R, HUANG X, WANG M, et al. TfOH-catalyzed phosphinylation of 2,3-allenols into gamma-ketophosphine oxides [J]. Journal of Organic Chemistry, 2020, 85(12): 8185-8195.
[82] MA S, ZHAO S. Novel substituent and chelating effects in the Pd-catalyzed reaction of 2,3-allenols, aryl iodides, and amines. highly regio- and stereoselective synthesis of 2-amino-3-alken-1-ols or 4-amino-2(e)-alken-1-ols. Journal of the American Chemical Society, 2001, 123(23): 5578-5579.

所在学位评定分委会
化学
国内图书分类号
O627.8
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544075
专题理学院_化学系
推荐引用方式
GB/T 7714
孟蔚然. 以含炔基的联烯为合成子构筑碳龙配合物[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132775-孟蔚然-化学系.pdf(6754KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[孟蔚然]的文章
百度学术
百度学术中相似的文章
[孟蔚然]的文章
必应学术
必应学术中相似的文章
[孟蔚然]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。