[1] POWER R M, HUISKEN J. A guide to light-sheet fluorescence microscopy for multiscale imaging[J]. Nature methods, 2017, 14(4): 360-373.
[2] CHAKRABORTY T, DRISCOLL M K, JEFFERY E, et al. Light-sheet microscopy of cleared tissues with isotropic, subcellular resolution[J]. Nature Methods, 2019, 16(11): 1109-1113.
[3] CHEN B C, LEGANT W R, WANG K, et al. Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution[J]. Science, 2014, 346(6208): 1257998.
[4] LAGACHE T, GRASSART A, DALLONGEVILLE S, et al. Mapping molecular assemblies with fluorescence microscopy and object-based spatial statistics[J]. Nature communications, 2018, 9(1): 698.
[5] PAMPALONI F, BERGE U, MARMARAS A, et al. Tissue-culture light sheet fluorescence mi- croscopy (TC-LSFM) allows long-term imaging of three-dimensional cell cultures under con- trolled conditions[J]. Integrative Biology, 2014, 6(10): 988-998.
[6] FIOLKA R. Light-sheet microscopy at high resolution[J]. Nature biotechnology, 2021, 39(11): 1345-1346.
[7] KELLER P J, AHRENS M B. Visualizing whole-brain activity and development at the single- cell level using light-sheet microscopy[J]. Neuron, 2018, 85(3): 462-483.
[8] DERYCKERE A, STYFHALS R, VIDAL E A, et al. A practical staging atlas to study embry- onic development of Octopus vulgaris under controlled laboratory conditions[J]. BMC Devel- opmental Biology, 2020, 20: 1-18.
[9] YALCIN H C, AMINDARI A, BUTCHER J T, et al. Heart function and hemodynamic analysis for zebrafish embryos[J]. Developmental Dynamics, 2017, 246(11): 868-880.
[10] MIR M, REIMER A, STADLER M, et al. Single molecule imaging in live embryos using lattice light-sheet microscopy[J]. Nanoscale Imaging: Methods and Protocols, 2018: 541-559.
[11] MEMEO R, PAIÈ P, SALA F, et al. Automatic imaging of Drosophila embryos with light sheet fluorescence microscopy on chip[J]. Journal of Biophotonics, 2021, 14(3): e202000396.
[12] BLUTKE A, SUN N, XU Z, et al. Light sheet fluorescence microscopy guided MALDI-imaging mass spectrometry of cleared tissue samples[J]. Scientific Reports, 2020, 10(1): 14461.
[13] AMICH J, MOKHTARI Z, STROBEL M, et al. Three-dimensional light sheet fluorescence microscopy of lungs to dissect local host immune-Aspergillus fumigatus interactions[J]. MBio, 2020, 11(1): e02752-19.
[14] KLINGBERG A, HASENBERG A, LUDWIG-PORTUGALL I, et al. Fully automated eval- uation of total glomerular number and capillary tuft size in nephritic kidneys using lightsheet microscopy[J]. Journal of the American Society of Nephrology, 2017, 28(2): 452-459.
[15] FANG C, YU T, CHU T, et al. Minutes-timescale 3D isotropic imaging of entire organs at subcellular resolution by content-aware compressed-sensing light-sheet microscopy[J]. Nature Communications, 2021, 12(1): 107.
[16] CAI R, PAN C, GHASEMIGHARAGOZ A, et al. Panoptic imaging of transparent mice reveals whole-body neuronal projections and skull–meninges connections[J]. Nature neuroscience, 2019, 22(2): 317-327.
[17] WANG W, ZHANG Y, HUI H, et al. The effect of endothelial progenitor cell transplantation on neointimal hyperplasia and reendothelialisation after balloon catheter injury in rat carotid arteries[J]. Stem Cell Research & Therapy, 2021, 12(1): 1-12.
[18] LUGO-HERNANDEZ E, SQUIRE A, HAGEMANN N, et al. 3D visualization and quantifica- tion of microvessels in the whole ischemic mouse brain using solvent-based clearing and light sheet microscopy[J]. Journal of Cerebral Blood Flow & Metabolism, 2017, 37(10): 3355-3367.
[19] FRANÇA C M, RIGGERS R, MUSCHLER J L, et al. 3D-imaging of whole neuronal and vas- cular networks of the human dental pulp via CLARITY and light sheet microscopy[J]. Scientific reports, 2019, 9(1): 10860.
[20] LAZZARI G, VINCIGUERRA D, BALASSO A, et al. Light sheet fluorescence microscopy versus confocal microscopy: In quest of a suitable tool to assess drug and nanomedicine pene- tration into multicellular tumor spheroids[J]. European Journal of Pharmaceutics and Biophar- maceutics, 2019, 142: 195-203.
[21] NEUFERT C, HEICHLER C, BRABLETZ T, et al. Inducible mouse models of colon cancer for the analysis of sporadic and inflammation-driven tumor progression and lymph node metastasis [J]. Nature Protocols, 2021, 16(1): 61-85.
[22] TANAKA N, KACZYNSKA D, KANATANI S, et al. Mapping of the three-dimensional lym- phatic microvasculature in bladder tumours using light-sheet microscopy[J]. British Journal of Cancer, 2018, 118(7): 995-999.
[23] ALLADIN A, CHAIBLE L, GARCIA DEL VALLE L, et al. Tracking cells in epithelial acini by light sheet microscopy reveals proximity effects in breast cancer initiation[J]. Elife, 2020, 9: e54066.
[24] GOLDMAN D B. Vignette and exposure calibration and compensation[J]. IEEE transactions on pattern analysis and machine intelligence, 2010, 32(12): 2276-2288.
[25] HUANG Q, GAO W, CAI W. Thresholding technique with adaptive window selection for uneven lighting image[J]. Pattern recognition letters, 2005, 26(6): 801-808.
[26] SAINI R, DUTTA M. Image segmentation for uneven lighting images using adaptive thresh- olding and dynamic window based on incremental window growing approach[J]. International Journal of Computer Applications, 2012, 56(13).
[27] ROHRBACH A. Artifacts resulting from imaging in scattering media: a theoretical prediction [J]. Optics letters, 2009, 34(19): 3041-3043.
[28] DIJKSMAN J A, BRODU N, BEHRINGER R P. Refractive index matched scanning and de- tection of soft particles[J]. Review of Scientific Instruments, 2017, 88(5): 051807.
[29] COUTU D L, SCHROEDER T. Probing cellular processes by long-term live imaging–historic problems and current solutions[J]. Journal of cell science, 2013, 126(17): 3805-3815.
[30] LOEFFLER D, SCHROEDER T. Understanding cell fate control by continuous single-cell quantification[J]. Blood, The Journal of the American Society of Hematology, 2019, 133(13): 1406-1414.
[31] WANG H, ZHU Q, DING L, et al. Scalable volumetric imaging for ultrahigh-speed brain map- ping at synaptic resolution[J]. National Science Review, 2019, 6(5): 982-992.
[32] XU F, SHEN Y, DING L, et al. High-throughput mapping of a whole rhesus monkey brain at micrometer resolution[J]. Nature biotechnology, 2021, 39(12): 1521-1528.
[33] SIEGMAN A E. Lasers university science books[J]. Mill Valley, CA, 1986, 37(208): 169.
[34] MANDEL L, WOLF E. Optical coherence and quantum optics[M]. Cambridge university press, 1995.
[35] SVELTO O, HANNA D C, et al. Principles of lasers: volume 1[M]. Springer, 2010.
[36] DURNIN J. Exact solutions for nondiffracting beams. I. The scalar theory[J]. JOSA A, 1987, 4(4): 651-654.
[37] LIKAR B, MAINTZ J A, VIERGEVER M A, et al. Retrospective shading correction based on entropy minimization.[J]. Journal of Microscopy, 2000, 197(Pt 3): 285-295.
[38] VAN DEN DOEL L, KLEIN A, ELLENBERGER S, et al. Quantitative evaluation of light microscopes based on image processing techniques[J]. Bioimaging, 1998, 6(3): 138-149.
[39] VARGA V S, BOCSI J, SIPOS F, et al. Scanning fluorescent microscopy is an alternative for quantitative fluorescent cell analysis[J]. Cytometry Part A: The Journal of the International Society for Analytical Cytology, 2004, 60(1): 53-62.
[40] YOUNG I T. Shading correction: compensation for illumination and sensor inhomogeneities [J]. Current Protocols in Cytometry, 2000, 14(1): 2-11.
[41] MODEL M A, BURKHARDT J K. A standard for calibration and shading correction of a fluorescence microscope[J]. Cytometry: The Journal of the International Society for Analytical Cytology, 2001, 44(4): 309-316.
[42] MODEL M. Intensity calibration and flat-field correction for fluorescence microscopes[J]. Cur- rent protocols in cytometry, 2014, 68(1): 10-14.
[43] STERNBERG S R. Biomedical image processing[J]. Computer, 1983, 16(01): 22-34.
[44] LEONG F W, BRADY M, MCGEE J O. Correction of uneven illumination (vignetting) in digital microscopy images[J]. Journal of clinical pathology, 2003, 56(8): 619-621.
[45] LIKAR B, MAINTZ J A, VIERGEVER M A, et al. Retrospective shading correction based on entropy minimization.[J]. Journal of Microscopy, 2000, 197(Pt 3): 285-295.
[46] SCHWARZFISCHER M, MARR C, KRUMSIEK J, et al. Efficient fluorescence image nor- malization for time lapse movies[J]. Proc. Microscopic Image Analysis with Applications in Biology, 2011, 5(5).
[47] SINGH S, BRAY M A, JONES T, et al. Pipeline for illumination correction of images for high-throughput microscopy[J]. Journal of microscopy, 2014, 256(3): 231-236.
[48] SMITH K, LI Y, PICCININI F, et al. CIDRE: an illumination-correction method for optical microscopy[J]. Nature methods, 2015, 12(5): 404-406.
[49] PENG T, THORN K, SCHROEDER T, et al. A BaSiC tool for background and shading cor- rection of optical microscopy images[J]. Nature communications, 2017, 8(1): 14836.
[50] KHONINA S N, KAZANSKIY N L, KARPEEV S V, et al. Bessel beam: Significance and applications—A progressive review[J]. Micromachines, 2020, 11(11): 997.
[51] VICENTE O C, CALOZ C. Bessel beams: a unified and extended perspective[J]. Optica, 2021, 8(4): 451-457.
[52] KHONINA S N, KAZANSKIY N L, KARPEEV S V, et al. Bessel beam: Significance and applications—A progressive review[J]. Micromachines, 2020, 11(11): 997.
[53] JIMÉNEZ-GAMBÍN S, JIMÉNEZ N, BENLLOCH J M, et al. Generating Bessel beams with broad depth-of-field by using phase-only acoustic holograms[J]. Scientific reports, 2019, 9(1): 20104.
[54] LUNA-PALACIOS Y Y, LICEA-RODRIGUEZ J, CAMACHO-LOPEZ M D, et al. Multicolor light-sheet microscopy for a large field of view imaging: A comparative study between Bessel and Gaussian light-sheets configurations[J]. Journal of Biophotonics, 2022, 15(6): e202100359.
[55] XIONG B, HAN X, WU J, et al. Improving axial resolution of Bessel beam light-sheet fluores- cence microscopy by photobleaching imprinting[J]. Optics Express, 2020, 28(7): 9464-9476.
[56] FAHRBACH F O, SIMON P, ROHRBACH A. Microscopy with self-reconstructing beams[J]. Nature photonics, 2010, 4(11): 780-785.
[57] GARCÉS-CHÁVEZ V, MCGLOIN D, MELVILLE H, et al. Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam[J]. Nature, 2002, 419(6903): 145-147.
[58] DURNIN J, MICELI JR J, EBERLY J H. Diffraction-free beams[J]. Physical review letters, 1987, 58(15): 1499.
[59] GARCÉS-CHÁVEZ V, MCGLOIN D, MELVILLE H, et al. Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam[J]. Nature, 2002, 419(6903): 145-147.
[60] LIN P Y, HWANG S P L, LEE C H, et al. Two-photon scanned light sheet fluorescence mi- croscopy with axicon imaging for fast volumetric imaging[J]. Journal of Biomedical Optics, 2021, 26(11): 116503-116503.
[61] JIA H, YU X, YANG Y, et al. Axial resolution enhancement of light-sheet microscopy by double scanning of Bessel beam and its complementary beam[J]. Journal of biophotonics, 2019, 12(1): e201800094.
[62] HUISKEN J, STAINIER D Y. Even fluorescence excitation by multidirectional selective plane illumination microscopy (mSPIM)[J]. Optics letters, 2007, 32(17): 2608-2610.
[63] GLASER A K, CHEN Y, YIN C, et al. Multidirectional digital scanned light-sheet microscopy enables uniform fluorescence excitation and contrast-enhanced imaging[J]. Scientific Reports, 2018, 8(1): 13878.
[64] CHANG Y, YAN L, WU T, et al. Remote sensing image stripe noise removal: From image decomposition perspective[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(12): 7018-7031.
[65] MÜNCH B, TRTIK P, MARONE F, et al. Stripe and ring artifact removal with combined wavelet—Fourier filtering[J]. Optics express, 2009, 17(10): 8567-8591.
[66] FEHRENBACH J, WEISS P, LORENZO C. Variational algorithms to remove stationary noise: applications to microscopy imaging[J]. IEEE transactions on image processing, 2012, 21(10): 4420-4430.
[67] ESCANDE P, WEISS P, ZHANG W. A variational model for multiplicative structured noise removal[J]. Journal of Mathematical Imaging and Vision, 2017, 57: 43-55.
[68] LIANG X, ZANG Y, DONG D, et al. Stripe artifact elimination based on nonsubsampled contourlet transform for light sheet fluorescence microscopy[J]. Journal of Biomedical Optics, 2016, 21(10): 106005-106005.
[69] DA CUNHA A L, ZHOU J, DO M N. The nonsubsampled contourlet transform: theory, design, and applications[J]. IEEE transactions on image processing, 2006, 15(10): 3089-3101.
[70] WEI Z, WU X, TONG W, et al. Elimination of stripe artifacts in light sheet fluorescence mi- croscopy using an attention-based residual neural network[J]. Biomedical Optics Express, 2022, 13(3): 1292-1311.
[71] STRINGER C, WANG T, MICHAELOS M, et al. Cellpose: a generalist algorithm for cellular segmentation[J]. Nature methods, 2021, 18(1): 100-106.
[72] WANG Z. Fast algorithms for the discrete W transform and for the discrete Fourier transform [J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1984, 32(4): 803-816.
[73] KHAYAM S A. The discrete cosine transform (DCT): theory and application[J]. Michigan State University, 2003, 114(1): 31.
[74] SAZLI M H. A brief review of feed-forward neural networks[J]. Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering, 2006, 50(01).
[75] SALEHINEJAD H, SANKAR S, BARFETT J, et al. Recent advances in recurrent neural net- works[A]. 2017.
[76] O’SHEA K, NASH R. An introduction to convolutional neural networks[A]. 2015.
[77] KINGMA D P, BA J A, ADAM J. A method for stochastic optimization. arXiv 2014: volume 106[A]. 2020.
[78] XIAO L, FANG C, ZHU L, et al. Deep learning-enabled efficient image restoration for 3D microscopy of turbid biological specimens.[J]. Optics Express, 2020, 28(20): 30234-30247.
[79] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks [J]. Communications of the ACM, 2020, 63(11): 139-144.
[80] MIRZA M, OSINDERO S. Conditional generative adversarial nets[A]. 2014.
[81] RADFORD A, METZ L, CHINTALA S. Unsupervised representation learning with deep con- volutional generative adversarial networks[A]. 2015.
[82] ISOLA P, ZHU J Y, ZHOU T, et al. Image-to-image translation with conditional adversarial networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 1125-1134.
[83] WANG T C, LIU M Y, ZHU J Y, et al. High-resolution image synthesis and semantic manip- ulation with conditional gans[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 8798-8807.
[84] WOO S, PARK J, LEE J Y, et al. Cbam: Convolutional block attention module[C]//Proceedings of the European conference on computer vision (ECCV). 2018: 3-19.
[85] MAO X, LI Q, XIE H, et al. Least squares generative adversarial networks[C]//Proceedings of the IEEE international conference on computer vision. 2017: 2794-2802.
修改评论