中文版 | English
题名

A CRITERION FOR ERGODICITY AND NONUNIFORM HYPERBOLICITY FOR BILLIARDS

其他题名
台球中一个遍历性和非一致双曲性判据
姓名
姓名拼音
GUO Jianhao
学号
12032002
学位类型
硕士
学位专业
070101 基础数学
学科门类/专业学位类别
07 理学
导师
Raul Mario Ures De La Madrid
导师单位
数学系
论文答辩日期
2023-05-23
论文提交日期
2023-06-27
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

In this thesis we give an introduction to the study of mathematical billiards and proved a criterion using ergodic homoclinic class to establish ergodicity and nonuniform hyperbolicity for smooth maps with singularities, as a generalization of the result by F. Rodriguez Hertz, M. A. Rodriguez Hertz, A. Tahzibi and R. Ures.

Firstly, we review several concepts and theorems in ergodic theory. We survey the settings and results in the Pesin theory for smooth maps with singularities, especially the existence of Pesin blocks, the Stable Manifold Theorem and the absolute continuity of stable and unstable partitions. The original criterion, applied to diffeomorphisms on compact connected manifolds, is also introduced.

Secondly, we give an self-contained introduction to the general billiard theory, in particular the chaotic billiards. The basic definitions, facts and examples are surveyed, most of them with proofs. The most important classes of chaotic billiards, i.e., the Sinai billiards and Bunimovich billiards are discussed. Also we describe the class of billiards that the Pesin theory for smooth maps with singularities is applicable, i.e., the billiards of class $\Pi$.

Finally, the generalized criterion under the setting of smooth maps with singularities is proved with Hopf argument. As a corollary, we prove that in the hyperbolic case, the ergodic components in the Spectral Decomposition Theorem are exactly the ergodic homoclinic classes. This provided the possibility to apply the theory of ergodic homoclinic class to the study of billiards.
 

关键词
语种
英语
培养类别
独立培养
入学年份
2020
学位授予年份
2023-06
参考文献列表

[1] TABACHNIKOV S. Geometry and billiards[M]. American Mathematical Soc., 2005.
[2] CHERNOV N, MARKARIAN R. Introduction to the Erogodic Theory of Chaotic Billiards[M]. Rio de Janeiro: Impa, 2003.
[3] CHERNOV N. Entropy, Lyapunov exponents, and mean free path for billiards[J]. J. Statist. Phys., 1997, 88: 1-29.
[4] BOLTZMANN L. Einige allgemenine Sätze über das Wärmegleichgewicht[J]. Wien. Ber., 1871, 63: 679-711.
[5] BOLTZMANN L. Über die Eigenschaften monozyklischer und amderer damit vervandter Systeme[J]. Creeles Journal, 1884, 98: 68-94.
[6] SINAI Y G. On the Foundation of the Ergodic Hypothesis for a Dynamical System of Statistical Mechanics[J]. Dokl. Akad. Nauk SSSR, 1963, 163: 1261-1264.
[7] SINAI Y G. Dynamical systems with elastic reflections: Ergodic properties of dispersing billiards[J]. Russ. Math. Surv., 1970, 25: 137-189.
[8] SIMÁNYI N. Singularities and non-hyperbolic manifolds do not coincide[J]. Nonlinearity, 2013, 26: 1703-1717.
[9] SZÁSZ D. Mathematical billiards and chaos[J]. Eur. Math. Soc. Newsl, 2014, 93: 22-29.
[10] BUNIMOVICH L A. On billiards close to dispersing[J]. Math. USSR., 1974, 23: 45-67.
[11] BUNIMOVICH L. On ergodic properties of nowhere dispersing billiards[J]. Commun. Math. Phys., 1979, 65: 295-312.
[12] WOJTKOWSKI M. Principles for the design of billiards with nonvanishing Lyapunov exponents [J]. Commun. Math. Phys., 1986, 105: 391-414.
[13] MARKARIAN R. Billiards with Pesin region of measure one[J]. Commun. Math. Phys., 1988, 118: 87-87.
[14] DONNAY V. Using Integrability to Produce chaos: Billiards with Positive Entropy[J]. Commun. Math. Phys., 1991, 141: 225-257.
[15] BUNIMOVICH L A. On absolutely focusing mirrors[C]//KRENGEL U, et al. Lecture Notes in Math. 1514. Berlin: Springer, 1992: 62-82.
[16] PESIN Y B. Families of invariant manifolds corresponding to non zero Characteristic exponent [J]. Math. USSR Izvestija, 1976, 10: 1261-1305.
[17] PESIN Y B. Characteristic Lyapunov exponents and smooth ergodic theory[J]. Russ. Math. Surv., 1977, 32: 55-114.
[18] RODRIGUEZ HERTZ F, RODRIGUEZ HERTZ M A, TAHZIBI A, et al. New criteria for ergodicity and nonuniform hyperbolicity[J]. Duke Mathematical Journal, 2011, 160(3): 599-629.
[19] AVILA A, CROVISIER S, WILKINSON A. C1 density of stable ergodicity[J]. Advances in Mathematics, 2021, 379: 107496.
[20] AVILA A, BOCHI J. Nonuniform hyperbolicity, global dominated splittings and generic properties of volume-preserving diffeomorphisms[J]. Transactions of the American Mathematical Society, 2012, 364(6): 2883-2907.
[21] AVILA A, CROVISIER S, WILKINSON A. Diffeomorphisms with positive metric entropy[J]. Publications mathématiques de l’IHÉS, 2016, 124(1): 319-347.
[22] NÚÑEZ G, OBATA D, RODRIGUEZ HERTZ J. New examples of stably ergodic diffeomorphisms in dimension 3[J]. Nonlinearity, 2021, 34(3): 1352-1365.
[23] RODRIGUEZ HERTZ J, VÁSQUEZ C H. Structure of accessibility classes[J]. Discrete Contin. Dyn. Syst., 2020, 40(8): 4653-4664.
[24] NÚÑEZ G, RODRIGUEZ HERTZ J. Minimality and stable Bernoulliness in dimension 3[J]. Discrete Contin. Dyn. Syst., 2020, 40(3): 1879-1887.
[25] KATOK A, STRELVYN J M, et al. Invariant Manifolds, Entropy and Billiards; Smooth Maps with Singularities. Lecture notes in Mathematics[M]. Berlin: Springer, 1986.
[26] BRIN M, STUCK G. Introduction to dynamical systems[M]. Cambridge university press, 2002.
[27] MAÑÉ R. Ergodic Theory and Differentiable Dynamics[M]. Berlin: Springer, 1987.
[28] VIANA M, OLIVEIRA K. Foundations of Ergodic Theory[M]. Cambridge: Cambridge University Press, 2016.
[29] ROHLIN R. On the Fundamental Ideas of Measure Theory, Amer. Math. Soc. Transl. Ser. 2 [M]. Providence: Amer. Math. Soc., 1952.
[30] PESIN Y B. Description of Pi-Partition of a Diffeomorphism with Invariant Measure[J]. Math. Notes of the USSR Acad. of Sci., 1977, 22(1): 506-515.
[31] MARKARIAN R. Non-uniformly hyperbolic billiards[J]. Ann. Fac. Sci. Toulouse Math., 1994, 3: 223-257.
[32] CHERNOV N, MARKARIAN R. Chaotic billiards[M]. Providence: American Mathematical Soc., 2006.
[33] BUNIMOVICH L, et al. Dynamical Systems, Ergodic Theory and Applications. 2nd ed.[M]. Berlin: Springer, 2000.
[34] LORENTZEN L, WAADELAND H. Continued Fractions, Vol. 1: Convergence Theory. 2nd ed.[M]. Atlantis Press, 2008.
[35] CHERNOV N I, HASKELL C. Nonuniformly hyperbolic K-systems are Bernoulli[J]. Ergodic theory and dynamical systems, 1996, 16(1): 19-44.
[36] DEL MAGNO G, MARKARIAN R. On the Bernoulli property of planar hyperbolic billiards [J]. Communications in Mathematical Physics, 2017, 350: 917-955.
[37] ANDRADE R M. Bernoulli Property for Some Hyperbolic Billiards[J]. Regular and Chaotic Dynamics, 2020, 25: 349-382.

所在学位评定分委会
数学
国内图书分类号
O19
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544078
专题理学院_数学系
推荐引用方式
GB/T 7714
Guo JH. A CRITERION FOR ERGODICITY AND NONUNIFORM HYPERBOLICITY FOR BILLIARDS[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032002-郭建豪-数学系.pdf(1180KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[郭建豪]的文章
百度学术
百度学术中相似的文章
[郭建豪]的文章
必应学术
必应学术中相似的文章
[郭建豪]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。