[1] 李勇. 世界最早的天文观象台——陶寺观象台及其可能的观测年代[J]. 自然科学史研究,2010, 29(3): 259-270.
[2] 李秀辉. 简仪——现存最早的金属天文仪器[J]. 金属世界, 1995, 2.
[3] NASA. Hubble Goes to the eXtreme to Assemble Farthest-Ever View of the Universe[EB/OL].https://images.nasa.gov/details/GSFC_20171208_Archive_e001651.
[4] NASA. A New View of the Tarantula Nebula[EB/OL]. https://images.nasa.gov/details/PIA14415.
[5] 蔡璐. 最新宇宙全景图[J]. 收藏, 2019, 6.
[6] PENZIAS A A, WILSON R W. A measurement of excess antenna temperature at 4080 Mc/s.[J]. Astrophysical Journal, vol. 142, p. 419-421, 1965, 142: 419-421.
[7] YOU L. Superconducting nanowire single-photon detectors for quantum information[J].Nanophotonics, 2020, 9(9): 2673-2692.
[8] ASTAFIEV O, KOMIYAMA S, KUTSUWA T, et al. Single-photon detector in the microwave range[J]. Applied physics letters, 2002, 80(22): 4250-4252.
[9] MIGDALL A, POLYAKOV S V, FAN J, et al. Single-photon generation and detection: physics and applications[M]. Academic Press, 2013.
[10] MAINGAULT L, TARKHOV M, FLORYA I, et al. Spectral dependency of superconducting single photon detectors[M]. American Institute of Physics, 2010.
[11] MAZIN B A, BUMBLE B, MEEKER S R, et al. A superconducting focal plane array for ultraviolet, optical, and near-infrared astrophysics[J]. Optics express, 2012, 20(2): 1503-1511.
[12] MAZIN B A, BUMBLE B, DAY P K, et al. Position sensitive x-ray spectrophotometer using microwave kinetic inductance detectors[J]. Applied physics letters, 2006, 89(22): 222507.
[13] STEVENS J R, COTHARD N F, VAVAGIAKIS E M, et al. Characterization of transition edge sensors for the Simons observatory[J]. Journal of Low Temperature Physics, 2020, 199: 672-680.
[14] 尤立星. 光量子信息利器——超导纳米线单光子探测器[J]. 物理, 2021, 50(10): 678-683.
[15] DAY P, LEDUC H, MAZIN B, et al. Microwave kinetic inductance detectors: background and first results on photon detection[Z]. 2003.
[16] MAZIN B A. Microwave kinetic inductance detectors[M]. California Institute of Technology, 2005.
[17] FUKUDA D, FUJII G, NUMATA T, et al. Titanium-based transition-edge photon number resolving detector with 98% detection efficiency with index-matched small-gap fiber coupling[J].Optics express, 2011, 19(2): 870-875.
[18] LOLLI L, TARALLI E, PORTESI C, et al. High intrinsic energy resolution photon number resolving detectors[J]. Applied Physics Letters, 2013, 103(4): 041107.
[19] FUKUDA D, FUJII G, NUMATA T, et al. Titanium superconducting photon-number-resolving detector[J]. IEEE transactions on applied superconductivity, 2010, 21(3): 241-245.
[20] YAMADA S, ICHINOHE Y, TATSUNO H, et al. Broadband high-energy resolution hard x-ray spectroscopy using transition edge sensors at SPring-8[J]. Review of Scientific Instruments, 2021, 92(1): 013103.
[21] MARSILI F, VERMA V B, STERN J A, et al. Detecting single infrared photons with 93% system efficiency[J]. Nature Photonics, 2013, 7(3): 210-214.
[22] ZHONG H S, WANG H, DENG Y H, et al. Quantum computational advantage using photons [J]. Science, 2020, 370(6523): 1460-1463.
[23] MAZIN B A, DAY P K, LEDUC H G, et al. Superconducting kinetic inductance photon detectors[C]//Highly Innovative Space Telescope Concepts: volume 4849. SPIE, 2002: 283-293.
[24] BASELMANS J. Kinetic inductance detectors[J]. Journal of Low Temperature Physics, 2012, 167: 292-304.
[25] DAY P K, LEDUC H G, MAZIN B A, et al. A broadband superconducting detector suitable for use in large arrays[J]. Nature, 2003, 425(6960): 817-821.
[26] STRADER M, JOHNSON M, MAZIN B, et al. Excess optical enhancement observed with ARCONS for early Crab giant pulses[J]. The Astrophysical Journal Letters, 2013, 779(1): L12.
[27] MAZIN B, MEEKER S R, STRADER M, et al. ARCONS: A 2024 pixel optical through near-IR cryogenic imaging spectrophotometer[J]. Publications of the Astronomical Society of the Pacific, 2013, 125(933): 1348-1361.
[28] MEEKER S R. DARKNESS: The first microwave kinetic inductance detector integral field spectrograph for exoplanet imaging[M]. University of California, Santa Barbara, 2017.
[29] BOCKSTIEGEL C D. The MKID Camera for PICTURE-C and Photon Counting Stochastic Speckle Discrimination[M]. University of California, Santa Barbara, 2019.
[30] COOK T, CAHOY K, CHAKRABARTI S, et al. Planetary imaging concept testbed using a recoverable experiment–coronagraph (PICTURE C)[J]. Journal of Astronomical Telescopes, Instruments, and Systems, 2015, 1(4): 044001-044001.
[31] LOZI J, GUYON O, JOVANOVIC N, et al. SCExAO, an instrument with a dual purpose: perform cutting-edge science and develop new technologies[C]//Adaptive Optics Systems VI: volume 10703. SPIE, 2018: 1266-1277.
[32] KARKARE K, BARRY P, BRADFORD C, et al. Full-array noise performance of deployment grade superspec mm-wave on-chip spectrometers[J]. Journal of Low Temperature Physics, 2020, 199(3-4): 849-857.
[33] CATALDO G, BARRENTINE E, BULCHA B, et al. Second-generation design of micro-spec: a medium-resolution, submillimeter-wavelength spectrometer-on-a-chip[J]. Journal of Low Temperature Physics, 2018, 193: 923-930.
[34] ADE P, ANDERSON C, BARRENTINE E, et al. The experiment for cryogenic large-aperture intensity mapping (EXCLAIM)[J]. Journal of Low Temperature Physics, 2020, 199: 1027-1037.
[35] FASANO A, AGUIAR M, BENOIT A, et al. KISS: a spectrometric imager for millimetre cosmology[C]//EPJ Web of Conferences: volume 228. EDP Sciences, 2020: 00010.
[36] SHI Q, LV W T, FAN B, et al. Characterization of a 0.35 THz aluminum 64-pixel MKID array[C]//Infrared, Millimeter-Wave, and Terahertz Technologies VI: volume 11196. SPIE, 2019:118-125.
[37] CECIL T, MICELI A, GADES L, et al. Kinetic inductance detectors for x-ray spectroscopy[J].Physics Procedia, 2012, 37: 697-702.
[38] CECIL T, MICELI A, QUARANTA O, et al. Tungsten silicide films for microwave kinetic inductance detectors[J]. Applied Physics Letters, 2012, 101(3): 032601.
[39] FAVERZANI M, ALPERT B, BACKER D, et al. The HOLMES experiment[J]. Journal of Low Temperature Physics, 2016, 184: 922-929.
[40] COLANTONI I, BELLENGHI C, CALVO M, et al. Bullkid: Bulky and low-threshold kinetic inductance detectors[J]. Journal of Low Temperature Physics, 2020, 199: 593-597.
[41] STACEY G J. THz low resolution spectroscopy for astronomy[J]. IEEE Transactions on Terahertz Science and Technology, 2011, 1(1): 241-255.
[42] HOOK J R, HALL H E. Solid state physics[M]. John Wiley & Sons, 2013.
[43] PINES D. P. Nozi eres, The Theory of Quantum Liquids[J]. Benjamin, 1966.
[44] COOPER L N. Bound electron pairs in a degenerate Fermi gas[J]. Physical Review, 1956, 104(4): 1189.
[45] BARDEEN J, COOPER L N, SCHRIEFFER J R. Theory of superconductivity[J]. Physical review, 1957, 108(5): 1175.
[46] FETTER A, WALECKA J. Quantum Theory of Many-Particle Systems. Dover Publications[J]. Mineola, NY, 2003.
[47] ONNES H K. Further experiments with liquid helium[C]//Proceedings of the KNAW: volume 13. 1911: 1910-1911.
[48] TINKHAM M. Introduction to superconductivity[M]. Courier Corporation, 2004.
[49] LONDON F, LONDON H. The electromagnetic equations of the supraconductor[J]. Proceedings of the Royal Society of London. Series A-Mathematical and Physical Sciences, 1935, 149(866): 71-88.
[50] GORTER C J, CASIMIR H. On supraconductivity I[J]. Physica, 1934, 1(1-6): 306-320.
[51] BARENDS R. Photon-detecting superconducting resonators[M]. R. Barends, 2009.
[52] GAO J, ZMUIDZINAS J, VAYONAKIS A, et al. Equivalence of the effects on the complex conductivity of superconductor due to temperature change and external pair breaking[J]. Journal of Low Temperature Physics, 2008, 151(1-2): 557-563.
[53] HENKELS W, KIRCHER C. Penetration depth measurements on type II superconducting films [J]. IEEE Transactions on magnetics, 1977, 13(1): 63-66.
[54] KAUTZ R L. Picosecond pulses on superconducting striplines[J]. Journal of Applied Physics, 1978, 49(1): 308-314.
[55] MAZIN B. Microwave Kinetic Inductance Detectors Ph. D. thesis[Z]. 2004.
[56] KAPLAN S B, CHI C, LANGENBERG D, et al. Quasiparticle and phonon lifetimes in superconductors[J]. Physical Review B, 1976, 14(11): 4854.
[57] DE VISSER P. Quasiparticle dynamics in aluminium superconducting microwave resonators [Z]. 2014.
[58] TINKHAM M. Introduction to superconductivity[M]. Courier Corporation, 2004.
[59] DRESSEL M, GRÜNER G. Electrodynamics of Solids Cambridge University Press[J]. Cambridge, UK, 2002.
[60] MAUSKOPF P. Transition edge sensors and kinetic inductance detectors in astronomical instruments[J]. Publications of the Astronomical Society of the Pacific, 2018, 130(990): 082001.
[61] GÖPPL M, FRAGNER A, BAUR M, et al. Coplanar waveguide resonators for circuit quantum electrodynamics[J]. Journal of Applied Physics, 2008, 104(11): 113904.
[62] MATTIS D C, BARDEEN J. Theory of the anomalous skin effect in normal and superconducting metals[J]. Physical Review, 1958, 111(2): 412.
[63] GAO J, DAAL M, MARTINIS J M, et al. A semiempirical model for two-level system noise in superconducting microresonators[J]. Applied Physics Letters, 2008, 92(21): 212504.
[64] WISBEY D, MARTIN A, REINISCH A, et al. New method for determining the quality factor and resonance frequency of superconducting micro-resonators from sonnet simulations[J].Journal of Low Temperature Physics, 2014, 176: 538-544.
[65] FITZGERALD A M, WHITE C D, CHUNG C C, et al. Design for Manufacturing: ProcessIntegration and Photomask Layout[J]. MEMS Product Development: From Concept to Commercialization, 2021: 129-148.
[66] 严利人. 光刻机曝光光学中的概念辨析[J]. 微细加工技术, 2003(2): 29-33.
[67] 李晓巍, 付祥, 燕飞, 等. 量子计算研究现状与未来发展[J]. 中国工程科学, 2022, 24(4).
[68] 刘红艳, 万关良, 闫志瑞. 硅片清洗及最新发展[J]. 中国稀土学报, 2003(z1): 144-149.
[69] HATZAKIS M, CANAVELLO B, SHAW J M. Single-step optical lift-off process[J]. IBM Journal of Research and Development, 1980, 24(4): 452-460.
[70] 金伟华, 金春水, 张立超, 等. 基于混合优化算法测定铝薄膜光学常数[J]. 光学精密工程,2008, 16(9): 1582-1588.
[71] WANG X, YING C, CAO Z. Progress in planar optical . Berlin and Heidelberg[M]. SpringerVerlag, 2016.
[72] Z.MAI W, et al. High Near-IR Absorption Optical Stack for Aluminum Kinetic Inductance Detectors[J]. [submitted], 2023.
[73] 王心心, 梁庭, 熊继军, 等. ICPECVD 制备氮化硅薄膜工艺的研究[J]. 仪表技术与传感器,2016(2): 8-11.
[74] 吴清鑫, 陈光红, 于映, 等. PECVD 法生长氮化硅工艺的研究[J]. 功能材料, 2007, 38(5):703-705.
[75] KOGAN S. Electronic Noise and Fluctuations in Solids Cambridge Univ[M]. Press, 1996.
[76] JANSSEN R, ENDO A, BASELMANS J, et al. Power handling and responsivity of submicron wide superconducting coplanar waveguide resonators[J]. Journal of Low Temperature Physics, 2012, 167: 354-359.
[77] SHI S C, LI J, LIN Z H, et al. Development of an MKIDs-based THz superconducting imaging array (TeSIA) at 0.85 THz[J]. Journal of Low Temperature Physics, 2018, 193: 128-133.
[78] DE VISSER P J, DE ROOIJ S A, MURUGESAN V, et al. Phonon-trapping-enhanced energy resolution in superconducting single-photon detectors[J]. Physical Review Applied, 2021, 16 (3): 034051.
[79] HU J, HE Q, YU F, et al. Study of quasi-particle dynamics using the optical pulse response of a superconducting resonator[J]. Applied Physics Letters, 2021, 119(2): 022601.
修改评论