中文版 | English
题名

光子数可分辨超导铝动态电感探测器的制备与研究

其他题名
Research of the Photon-number-resolving Superconducting Aluminum Microwave Kinetic Inductance Detector
姓名
姓名拼音
WANG Haoyu
学号
12132852
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
08 工学
导师
邓可
导师单位
量子科学与工程研究院
论文答辩日期
2023-05-21
论文提交日期
2023-06-27
学位授予单位
南方科技大学
学位授予地点
深圳
摘要
在弱光探测领域中,超导探测器发挥着重要的作用。微波动态电感探测器 (MKID) 是现阶段主流的超导探测器之一。其工作原理是光子入射到超导体后破坏库伯对,影响超导体的动态电感,最终引起电路谐振频率的偏移。金属铝作为 经典的 BCS 超导体之一,拥有工艺成熟、计算简便、成本低廉的优势。对于高性能铝制 MKID 结构和工艺的系统性研究有着重要意义。本文将从MKID 工作原理的介绍出发,设计了一组 MKID 电路,使用三端子技术和电路结构分解的仿真方式,建立了数学模型来优化仿真流程。仿真好的电路绘制版图制成掩模版,利用微纳加工平台制备了不同结构和加工工艺的 MKID 样品,研究了超导金属铝材料和氮化硅材料的生长工艺。样品于低温测试平台测试样品噪声、谐振频率、品质因数、光响应等。结果表明一种带有双层氮化硅材料的介质层结构的样品噪声最小。同时我们推导出电容电感的结构与噪声和非线性功率之间的关系。在光响应测试实验中,仅有1μm线宽电感存在着光响应。根据实验结果,在特定的噪声条件下,我们探究了MKID 电感部分长度、准粒子扩散现象以及准粒子重组时间等因素对MKID 响应的影响,给出了光子数可分辨的判决条件,综合计算出在低噪声制作工艺下铝MKID 的结构设计参考范围。本实验中基于低噪声工艺的30nm厚铝膜1μm线宽3000μm线长电感的样品实现了光子数可分辨,能量分辨率达到了0.263eV
其他摘要
Superconducting detectors play an important role in the field of weak-light detection. Microwave kinetic inductance detector (MKID) is one of the mainstream superconducting detectors. Its working principle is that the photon is incident on the superconductor and then breaks the Cooper pair, which affects the kinetic inductance of the superconductor, and finally causes the shift of the resonance frequency. As one of the BCS superconductors, Aluminum has the advantages of mature process, calculation simplicity, and low cost. The systematic research on the structure and process of high-performance aluminum MKID is of great significance. This article started with the introduction of MKID working principle. We designed a group of MKID circuits and then used the three-ports technology and the simulation method of circuit structure decomposition to optimize the simulation process. The simulated circuit layout was drawn and made into a mask. Then we used the micro-nano processing platform to prepare MKID samples with different structures and processes. And we studied the process of superconducting aluminum and silicon nitride materials. The noise, resonant frequency, quality factor, and optical response of the samples were tested on the low-temperature testing platform. The measurement results showed that the sample with a double-layer silicon nitride dielectric layer structure has the lowest noise. At the same time, we derive the relationship between the structure of capacitance and inductance and the noise and internal power. In the experience of optical response, only 1μm width inductor sample had optical response. According to the experimental results, we explored the influences of MKID inductor length, quasiparticle diffusion phenomenon, and quasiparticle recombination time on the response of MKID under specific noise conditions. Then we give the photon number resolving judgment condition and calculated the reference range of aluminum MKID structure under low noise manufacturing process. In this experiment, the sample of 30nm thick aluminum film with 1μm width and 3000μm length inductor based on low noise process realized photon number resolving and the energy resolution reached 0.263eV.
关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2023-06
参考文献列表

[1] 李勇. 世界最早的天文观象台——陶寺观象台及其可能的观测年代[J]. 自然科学史研究,2010, 29(3): 259-270.
[2] 李秀辉. 简仪——现存最早的金属天文仪器[J]. 金属世界, 1995, 2.
[3] NASA. Hubble Goes to the eXtreme to Assemble Farthest-Ever View of the Universe[EB/OL].https://images.nasa.gov/details/GSFC_20171208_Archive_e001651.
[4] NASA. A New View of the Tarantula Nebula[EB/OL]. https://images.nasa.gov/details/PIA14415.
[5] 蔡璐. 最新宇宙全景图[J]. 收藏, 2019, 6.
[6] PENZIAS A A, WILSON R W. A measurement of excess antenna temperature at 4080 Mc/s.[J]. Astrophysical Journal, vol. 142, p. 419-421, 1965, 142: 419-421.
[7] YOU L. Superconducting nanowire single-photon detectors for quantum information[J].Nanophotonics, 2020, 9(9): 2673-2692.
[8] ASTAFIEV O, KOMIYAMA S, KUTSUWA T, et al. Single-photon detector in the microwave range[J]. Applied physics letters, 2002, 80(22): 4250-4252.
[9] MIGDALL A, POLYAKOV S V, FAN J, et al. Single-photon generation and detection: physics and applications[M]. Academic Press, 2013.
[10] MAINGAULT L, TARKHOV M, FLORYA I, et al. Spectral dependency of superconducting single photon detectors[M]. American Institute of Physics, 2010.
[11] MAZIN B A, BUMBLE B, MEEKER S R, et al. A superconducting focal plane array for ultraviolet, optical, and near-infrared astrophysics[J]. Optics express, 2012, 20(2): 1503-1511.
[12] MAZIN B A, BUMBLE B, DAY P K, et al. Position sensitive x-ray spectrophotometer using microwave kinetic inductance detectors[J]. Applied physics letters, 2006, 89(22): 222507.
[13] STEVENS J R, COTHARD N F, VAVAGIAKIS E M, et al. Characterization of transition edge sensors for the Simons observatory[J]. Journal of Low Temperature Physics, 2020, 199: 672-680.
[14] 尤立星. 光量子信息利器——超导纳米线单光子探测器[J]. 物理, 2021, 50(10): 678-683.
[15] DAY P, LEDUC H, MAZIN B, et al. Microwave kinetic inductance detectors: background and first results on photon detection[Z]. 2003.
[16] MAZIN B A. Microwave kinetic inductance detectors[M]. California Institute of Technology, 2005.
[17] FUKUDA D, FUJII G, NUMATA T, et al. Titanium-based transition-edge photon number resolving detector with 98% detection efficiency with index-matched small-gap fiber coupling[J].Optics express, 2011, 19(2): 870-875.
[18] LOLLI L, TARALLI E, PORTESI C, et al. High intrinsic energy resolution photon number resolving detectors[J]. Applied Physics Letters, 2013, 103(4): 041107.
[19] FUKUDA D, FUJII G, NUMATA T, et al. Titanium superconducting photon-number-resolving detector[J]. IEEE transactions on applied superconductivity, 2010, 21(3): 241-245.
[20] YAMADA S, ICHINOHE Y, TATSUNO H, et al. Broadband high-energy resolution hard x-ray spectroscopy using transition edge sensors at SPring-8[J]. Review of Scientific Instruments, 2021, 92(1): 013103.
[21] MARSILI F, VERMA V B, STERN J A, et al. Detecting single infrared photons with 93% system efficiency[J]. Nature Photonics, 2013, 7(3): 210-214.
[22] ZHONG H S, WANG H, DENG Y H, et al. Quantum computational advantage using photons [J]. Science, 2020, 370(6523): 1460-1463.
[23] MAZIN B A, DAY P K, LEDUC H G, et al. Superconducting kinetic inductance photon detectors[C]//Highly Innovative Space Telescope Concepts: volume 4849. SPIE, 2002: 283-293.
[24] BASELMANS J. Kinetic inductance detectors[J]. Journal of Low Temperature Physics, 2012, 167: 292-304.
[25] DAY P K, LEDUC H G, MAZIN B A, et al. A broadband superconducting detector suitable for use in large arrays[J]. Nature, 2003, 425(6960): 817-821.
[26] STRADER M, JOHNSON M, MAZIN B, et al. Excess optical enhancement observed with ARCONS for early Crab giant pulses[J]. The Astrophysical Journal Letters, 2013, 779(1): L12.
[27] MAZIN B, MEEKER S R, STRADER M, et al. ARCONS: A 2024 pixel optical through near-IR cryogenic imaging spectrophotometer[J]. Publications of the Astronomical Society of the Pacific, 2013, 125(933): 1348-1361.
[28] MEEKER S R. DARKNESS: The first microwave kinetic inductance detector integral field spectrograph for exoplanet imaging[M]. University of California, Santa Barbara, 2017.
[29] BOCKSTIEGEL C D. The MKID Camera for PICTURE-C and Photon Counting Stochastic Speckle Discrimination[M]. University of California, Santa Barbara, 2019.
[30] COOK T, CAHOY K, CHAKRABARTI S, et al. Planetary imaging concept testbed using a recoverable experiment–coronagraph (PICTURE C)[J]. Journal of Astronomical Telescopes, Instruments, and Systems, 2015, 1(4): 044001-044001.
[31] LOZI J, GUYON O, JOVANOVIC N, et al. SCExAO, an instrument with a dual purpose: perform cutting-edge science and develop new technologies[C]//Adaptive Optics Systems VI: volume 10703. SPIE, 2018: 1266-1277.
[32] KARKARE K, BARRY P, BRADFORD C, et al. Full-array noise performance of deployment grade superspec mm-wave on-chip spectrometers[J]. Journal of Low Temperature Physics, 2020, 199(3-4): 849-857.
[33] CATALDO G, BARRENTINE E, BULCHA B, et al. Second-generation design of micro-spec: a medium-resolution, submillimeter-wavelength spectrometer-on-a-chip[J]. Journal of Low Temperature Physics, 2018, 193: 923-930.
[34] ADE P, ANDERSON C, BARRENTINE E, et al. The experiment for cryogenic large-aperture intensity mapping (EXCLAIM)[J]. Journal of Low Temperature Physics, 2020, 199: 1027-1037.
[35] FASANO A, AGUIAR M, BENOIT A, et al. KISS: a spectrometric imager for millimetre cosmology[C]//EPJ Web of Conferences: volume 228. EDP Sciences, 2020: 00010.
[36] SHI Q, LV W T, FAN B, et al. Characterization of a 0.35 THz aluminum 64-pixel MKID array[C]//Infrared, Millimeter-Wave, and Terahertz Technologies VI: volume 11196. SPIE, 2019:118-125.
[37] CECIL T, MICELI A, GADES L, et al. Kinetic inductance detectors for x-ray spectroscopy[J].Physics Procedia, 2012, 37: 697-702.
[38] CECIL T, MICELI A, QUARANTA O, et al. Tungsten silicide films for microwave kinetic inductance detectors[J]. Applied Physics Letters, 2012, 101(3): 032601.
[39] FAVERZANI M, ALPERT B, BACKER D, et al. The HOLMES experiment[J]. Journal of Low Temperature Physics, 2016, 184: 922-929.
[40] COLANTONI I, BELLENGHI C, CALVO M, et al. Bullkid: Bulky and low-threshold kinetic inductance detectors[J]. Journal of Low Temperature Physics, 2020, 199: 593-597.
[41] STACEY G J. THz low resolution spectroscopy for astronomy[J]. IEEE Transactions on Terahertz Science and Technology, 2011, 1(1): 241-255.
[42] HOOK J R, HALL H E. Solid state physics[M]. John Wiley & Sons, 2013.
[43] PINES D. P. Nozi eres, The Theory of Quantum Liquids[J]. Benjamin, 1966.
[44] COOPER L N. Bound electron pairs in a degenerate Fermi gas[J]. Physical Review, 1956, 104(4): 1189.
[45] BARDEEN J, COOPER L N, SCHRIEFFER J R. Theory of superconductivity[J]. Physical review, 1957, 108(5): 1175.
[46] FETTER A, WALECKA J. Quantum Theory of Many-Particle Systems. Dover Publications[J]. Mineola, NY, 2003.
[47] ONNES H K. Further experiments with liquid helium[C]//Proceedings of the KNAW: volume 13. 1911: 1910-1911.
[48] TINKHAM M. Introduction to superconductivity[M]. Courier Corporation, 2004.
[49] LONDON F, LONDON H. The electromagnetic equations of the supraconductor[J]. Proceedings of the Royal Society of London. Series A-Mathematical and Physical Sciences, 1935, 149(866): 71-88.
[50] GORTER C J, CASIMIR H. On supraconductivity I[J]. Physica, 1934, 1(1-6): 306-320.
[51] BARENDS R. Photon-detecting superconducting resonators[M]. R. Barends, 2009.
[52] GAO J, ZMUIDZINAS J, VAYONAKIS A, et al. Equivalence of the effects on the complex conductivity of superconductor due to temperature change and external pair breaking[J]. Journal of Low Temperature Physics, 2008, 151(1-2): 557-563.
[53] HENKELS W, KIRCHER C. Penetration depth measurements on type II superconducting films [J]. IEEE Transactions on magnetics, 1977, 13(1): 63-66.
[54] KAUTZ R L. Picosecond pulses on superconducting striplines[J]. Journal of Applied Physics, 1978, 49(1): 308-314.
[55] MAZIN B. Microwave Kinetic Inductance Detectors Ph. D. thesis[Z]. 2004.
[56] KAPLAN S B, CHI C, LANGENBERG D, et al. Quasiparticle and phonon lifetimes in superconductors[J]. Physical Review B, 1976, 14(11): 4854.
[57] DE VISSER P. Quasiparticle dynamics in aluminium superconducting microwave resonators [Z]. 2014.
[58] TINKHAM M. Introduction to superconductivity[M]. Courier Corporation, 2004.
[59] DRESSEL M, GRÜNER G. Electrodynamics of Solids Cambridge University Press[J]. Cambridge, UK, 2002.
[60] MAUSKOPF P. Transition edge sensors and kinetic inductance detectors in astronomical instruments[J]. Publications of the Astronomical Society of the Pacific, 2018, 130(990): 082001.
[61] GÖPPL M, FRAGNER A, BAUR M, et al. Coplanar waveguide resonators for circuit quantum electrodynamics[J]. Journal of Applied Physics, 2008, 104(11): 113904.
[62] MATTIS D C, BARDEEN J. Theory of the anomalous skin effect in normal and superconducting metals[J]. Physical Review, 1958, 111(2): 412.
[63] GAO J, DAAL M, MARTINIS J M, et al. A semiempirical model for two-level system noise in superconducting microresonators[J]. Applied Physics Letters, 2008, 92(21): 212504.
[64] WISBEY D, MARTIN A, REINISCH A, et al. New method for determining the quality factor and resonance frequency of superconducting micro-resonators from sonnet simulations[J].Journal of Low Temperature Physics, 2014, 176: 538-544.
[65] FITZGERALD A M, WHITE C D, CHUNG C C, et al. Design for Manufacturing: ProcessIntegration and Photomask Layout[J]. MEMS Product Development: From Concept to Commercialization, 2021: 129-148.
[66] 严利人. 光刻机曝光光学中的概念辨析[J]. 微细加工技术, 2003(2): 29-33.
[67] 李晓巍, 付祥, 燕飞, 等. 量子计算研究现状与未来发展[J]. 中国工程科学, 2022, 24(4).
[68] 刘红艳, 万关良, 闫志瑞. 硅片清洗及最新发展[J]. 中国稀土学报, 2003(z1): 144-149.
[69] HATZAKIS M, CANAVELLO B, SHAW J M. Single-step optical lift-off process[J]. IBM Journal of Research and Development, 1980, 24(4): 452-460.
[70] 金伟华, 金春水, 张立超, 等. 基于混合优化算法测定铝薄膜光学常数[J]. 光学精密工程,2008, 16(9): 1582-1588.
[71] WANG X, YING C, CAO Z. Progress in planar optical . Berlin and Heidelberg[M]. SpringerVerlag, 2016.
[72] Z.MAI W, et al. High Near-IR Absorption Optical Stack for Aluminum Kinetic Inductance Detectors[J]. [submitted], 2023.
[73] 王心心, 梁庭, 熊继军, 等. ICPECVD 制备氮化硅薄膜工艺的研究[J]. 仪表技术与传感器,2016(2): 8-11.
[74] 吴清鑫, 陈光红, 于映, 等. PECVD 法生长氮化硅工艺的研究[J]. 功能材料, 2007, 38(5):703-705.
[75] KOGAN S. Electronic Noise and Fluctuations in Solids Cambridge Univ[M]. Press, 1996.
[76] JANSSEN R, ENDO A, BASELMANS J, et al. Power handling and responsivity of submicron wide superconducting coplanar waveguide resonators[J]. Journal of Low Temperature Physics, 2012, 167: 354-359.
[77] SHI S C, LI J, LIN Z H, et al. Development of an MKIDs-based THz superconducting imaging array (TeSIA) at 0.85 THz[J]. Journal of Low Temperature Physics, 2018, 193: 128-133.
[78] DE VISSER P J, DE ROOIJ S A, MURUGESAN V, et al. Phonon-trapping-enhanced energy resolution in superconducting single-photon detectors[J]. Physical Review Applied, 2021, 16 (3): 034051.
[79] HU J, HE Q, YU F, et al. Study of quasi-particle dynamics using the optical pulse response of a superconducting resonator[J]. Applied Physics Letters, 2021, 119(2): 022601.

所在学位评定分委会
材料与化工
国内图书分类号
O511+.9
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544080
专题量子科学与工程研究院
推荐引用方式
GB/T 7714
王浩宇. 光子数可分辨超导铝动态电感探测器的制备与研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132852-王浩宇-量子科学与工程(8071KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[王浩宇]的文章
百度学术
百度学术中相似的文章
[王浩宇]的文章
必应学术
必应学术中相似的文章
[王浩宇]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。