中文版 | English
题名

宇宙射线缪子地质体密度成像技术及其工程应用研究

其他题名
GEOLOGICAL COSMIC-RAY MUOGRAPHY AND ITS APPLICATION IN ENGINEERING EXPLORATION
姓名
姓名拼音
WU Chenyan
学号
12032828
学位类型
硕士
学位专业
0801 力学
学科门类/专业学位类别
08 工学
导师
杨迪琨
导师单位
地球与空间科学系
论文答辩日期
2023-05-15
论文提交日期
2023-06-27
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

宇宙射线缪子密度成像在检测低密度的空洞和破碎带方面有不可替代的优势,因其不受振动和电磁噪声的干扰,且不需在崎岖的地形上进行数据采集,因此我们尝试将宇宙射线缪子成像技术用于工程地质体密度的勘查。然而传统的缪子探测器体积庞大,而且通常需要漫长的观测时间来积累足量的具有统计意义的缪子通量数据。本文提出了可变角分辨率观测模 式以期用更短的观测时间实现目标体的有效成像:缪子探测器通过两块平行正对的塑料闪烁体像素矩阵记录缪子的到达,可以通过改变像素矩阵间距,对仪器的角度分辨率进行调节,较小的间距具有更广的接收视角,对射线路径的分辨率降低,但可以更快速的积累足量的缪子事件。同时,我们选择了像素数量更少的像素矩阵,以提高仪器的便携性。联合多个探测器的缪子通量数据共同反演,可以实现地质体的三维密度成像,用于工程施工路段不良地质体的勘探与监测,进而确保生产建设的安全进行。

为了验证可变角分辨率观测模式的可行性,本文:(1)首先研究了宇宙射线缪子密度成像正演算法,明确了射线方向不透明度与观测通量的转化关系;(2)在此基础上,展开了可变角分辨率缪子密度成像算法的研究,将各接收单元剖分为多个接收微元,以解决低角度分辨率观测模式下,单一射线方向正演的不透明度数据与实测不透明度数据存在较大误差的问题;(3)最后,在空腔和山体破碎带这两种不同尺度、不同类型的地质模型中,设置了高、低两种角度分辨率观测模式,正演计算观测通量数据,将其转换为观测不透明度后,基于该数据反演,对比不同数据采集时间对密度成像清晰度的影响,分析判断是否能用低角度分辨率(如像素矩阵间距 40 cm 时)观测模式在更短的探测时间内对目标体密度进行有效探测。

结果表明对于射线穿透长度较长,缪子观测通量较低的情况(如山体破碎带模型),低角度分辨率观测模式可以显著减少数据稳定所需的时间,并在更短的时间内对目标地质体进行有效密度成像,证明了可变角分辨率观测模式的有效性和必要性。实际测量中可以依据目标体尺度与探测时间和成像精度要求,对仪器的角度分辨率进行选择,进而更经济快速的实现地质体三维缪子密度成像,为工程建设的施工规划与灾害监测提供依据。

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2023-06
参考文献列表

[1] 李术才, 刘斌, 孙怀凤, 等. 隧道施工超前地质预报研究现状及发展趋势[J]. 岩石力学与工程学报, 2014, 33(06): 1090-113.
[2] 赵永贵, 刘浩, 孙宇, 等. 隧道地质超前预报研究进展[J]. 地球物理学进展, 2003, (03): 460-4.
[3] BONECHI L, D’ALESSANDRO R, GIAMMANCO A. Atmospheric muons as an imaging tool[J]. Reviews in Physics, 2020, 5.
[4] LECHMANN A, MAIR D, ARIGA A, et al. Muon tomography in geoscientific research – A guide to best practice[J]. Earth-Science Reviews, 2021, 222.
[5] PROCUREUR S. Muon imaging: Principles, technologies and applications[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 878: 169-79.
[6] OLáH L. Research and development of particle detectors for muon tomography and the CERN ALICE experiment[J]. 2016.
[7] SHUKLA P, SANKRITH S. Energy and angular distributions of atmospheric muons at the Earth[J]. International Journal of Modern Physics A, 2018, 33(30): 1850175.
[8] LESPARRE N, GIBERT D, MARTEAU J, et al. Geophysical muon imaging: feasibility and limits[J]. Geophysical Journal International, 2010, 183(3 : 1348 -61.
[9] 叶邦角, 李样, 周志浩. 缪子成像及元素成分分析[J]. 物理, 2021, 50(04 : 248-56.
[10] 杨紫艳, 王鹤, 张荣庆, 等. 宇宙线μ子成像技术研究进展 [J]. 地球科学前沿(汉斯), 2021, 11(4 : 9.
[11] KAISER R. Muography: overview and future directions[J]. Philos Trans A Math Phys Eng Sci, 2018, 377(2137).
[12] ALVAREZ L W, ANDERSON J A, BEDWEI F E, et al. Search for Hidden Chambers in the Pyramids: The structure of the Second Pyramid of Giza is determined by cosmic -ray absorption[J]. Science, 1970, 167(3919): 832-9.
[13] TANAKA H K M, OLAH L. Overview of muographers[J]. Philos Trans A Math Phys Eng Sci, 2018, 377(2137).
[14] TANAKA H, NAKANO T, TAKAHASHI S, et al. High resolution imaging in the inhomogeneous crust with cosmic-ray muon radiography: The density structure below the volcanic crater floor of Mt. Asama, Japan[J]. Earth and Planetary Science Letters, 2007, 263(1-2): 104-13.
[15] LESPARRE N, GIBERT D, MARTEAU J, et al. Density muon radiography of La Soufrière of Guadeloupe volcano: comparison with geological, electrical resistivity and gravity data[J]. Geophysical Journal International, 2012, 190(2): 1008-19.
[16] LO PRESTI D, RIGGI F, FERLITO C, et al. Muographic monitoring of the volcano -tectonic evolution of Mount Etna[J]. Sci Rep, 2020, 10(1): 11351.
[17] NISHIYAMA R, MIYAMOTO S, NAGANAWA N. Application of Emulsion Cloud Chamber to cosmic-ray muon radiography[J]. Radiation Measurements, 2015, 83: 56-8.
[18] OLáH L, TANAKA H K M, OHMINATO T, et al. Plug Formation Imaged Beneath the Active Craters of Sakurajima Volcano With Muography[J]. Geophysical Research Letters, 2019, 46(17-18): 10417-24.
[19] ROSAS-CARBAJAL M, JOURDE K, MARTEAU J, et al. Three-dimensional density structure of La Soufrière de Guadeloupe lava dome from simultaneous muon radiographies and gravity data[J]. Geophysical Research Letters, 2017, 44(13): 6743-51.
[20] TANAKA H K M, MIYAJIMA H, KUSAGAYA T, et al. Cosmic muon imaging of hidden seismic fault zones: Rainwater permeation into the mechanical fractured zones in Itoigawa–Shizuoka Tectonic Line, Japan[J]. Earth and Planetary Science Letters, 2011, 306(3-4): 156-62.
[21] TANAKA H K M, NAGAMINE K, NAKAMURA S N, et al. Radiographic measurements of the internal structure of Mt. West Iwate with near-horizontal cosmic-ray muons and future developments[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 555(1-2): 164-72.
[22] TANAKA H K M, UCHIDA T, TANAKA M, et al. Development of a portable assembly-type cosmic-ray muon module for measuring the density structure of a column of magma[J]. Earth, Planets and Space, 2010, 62(2): 119-29.
[23] TANAKA H K M, UCHIDA T, TANAKA M, et al. Detecting a mass change inside a volcano by cosmic-ray muon radiography (muography : First results from measurements at Asama volcano, Japan[J]. Geophysical Research Letters, 2009, 36(17 .
[24] TIOUKOV V, ALEXANDROV A, BOZZA C, et al. First muography of Stromboli volcano[J]. Sci Rep, 2019, 9(1): 6695.
[25] LECHMANN A, MAIR D, ARIGA A, et al. SMAUG v1.0 – a user-friendly muon simulator for the imaging of geological objects in 3-D[J]. Geoscientific Model Development, 2022, 15(6): 2441-73.
[26] NISHIYAMA R, ARIGA A, ARIGA T, et al. First measurement of ice-bedrock interface of alpine glaciers by cosmic muon radiography[J]. Geophysical Research Letters, 2017, 44(12): 6244-51.
[27] NISHIYAMA R, ARIGA A, ARIGA T, et al. Bedrock sculpting under an active alpine glacier revealed from cosmic-ray muon radiography[J]. Sci Rep, 2019, 9(1): 6970.
[28] BRYMAN D, BUENO J, JANSEN J. Blind test of muon geotomography for mineral exploration[J]. ASEG Extended Abstracts, 2015, 2015(1): 1-3.
[29] SCHOUTEN D. Muon geotomography: selected case studies[J]. Philos Trans A Math Phys Eng Sci, 2018, 377(2137).
[30] SCHOUTEN D, LEDRU P. Muon Tomography Applied to a Dense Uranium Deposit at the McArthur River Mine[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(10): 8637-52.
[31] MORISHIMA K, KUNO M, NISHIO A, et al. Discovery of a big void in Khufu’s Pyramid by observation of cosmic-ray muons[J]. Nature, 2017, 552(7685): 386-90.
[32] NEDDERMEYER S H, ANDERSON C D. Note on the Nature of Cosmic-Ray Particles[J]. Physical Review, 1937, 51(10): 884-6.
[33] BUGAEV E V, MISAKI A, NAUMOV V A, et al. Atmospheric muon flux at sea level, underground, and underwater[J]. Physical Review D, 1998, 58(5): 054001.
[34] GUARNACCIA E T. Modeling and Measurement of the Cosmic Muon Flux at Underground Sites[D]; Virginia Polytechnic Institute and State University, 2014.
[35] SU N, LIU Y, WANG L, et al. A Comparison of Muon Flux Models at Sea Level for Muon Imaging and Low Background Experiments[J]. Frontiers in Energy Research, 2021, 9.
[36] GUAN M, CHU M-C, CAO J, et al. A parametrization of the cosmic-ray muon flux at sea-level[J]. arXiv preprint arXiv:150906176, 2015.
[37] REYNA D. A simple parameterization of the cosmic-ray muon momentum spectra at the surface as a function of zenith angle[J]. arXiv preprint hep -ph/0604145, 2006.
[38] TANG A, HORTON-SMITH G, KUDRYAVTSEV V A, et al. Muon simulations for Super-Kamiokande, KamLAND, and CHOOZ[J]. Physical Review D, 2006, 74(5).
[39] GROOM D E, MOKHOV N V, STRIGANOV S I. MUON STOPPING POWER AND RANGE TABLES 10 MeV–100 TeV[J]. Atomic Data and Nuclear Data Tables, 2001, 78(2): 183-356.
[40] LECHMANN A, MAIR D, ARIGA A, et al. The effect of rock composition on muon tomography measurements[J]. Solid Earth, 2018, 9(6): 1517-33.
[41] 张建鸣, 李志伟, 刘芳, 等. 多重库仑散射对小尺度物体缪子透射成像精度的影响 [J]. 物理学报, 2023, 72(02): 41-50.
[42] ANASTASIO A, AMBROSINO F, BASTA D, et al. The MU-RAY experiment. An application of SiPM technology to the understanding of volcanic phenomena[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2013, 718: 134-7.
[43] BACCANI G, BONECHI L, BORSELLI D, et al. The MIMA project. Design, construction and performances of a compact hodoscope for muon radiography applications in the context of archaeology and geophysical prospections[J]. Journal of Instrumentation, 2018, 13(11): P11001.
[44] SARACINO G, AMBROSINO F, BONECHI L, et al. The MURAVES muon telescope: technology and expected performances[J]. Annals of Geophysics, 2017, 60(1).
[45] GIBERT D, BEAUDUCEL F, DéCLAIS Y, et al. Muon tomography: Plans for observations in the Lesser Antilles[J]. Earth, Planets and Space, 2010, 62(2): 153-65.
[46] AMBROSINO F, ANASTASIO A, BROSS A, et al. Joint measurement of the atmospheric muon flux through the Puy de Dôme volcano with plastic scintillators and Resistive Plate Chambers detectors[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(11): 7290-307.
[47] BOZZA C, CONSIGLIO L, D’AMBROSIO N, et al. Nuclear emulsion techniques for muography[J]. Annals of Geophysics, 2017, 60(1).
[48] MORISHIMA K. Latest Developments in Nuclear Emulsion Technology [J]. Physics Procedia, 2015, 80: 19-24.
[49] NISHIO A, MORISHIMA K, KUWABARA K, et al. Development of Nuclear Emulsion Detector for Muon Radiography[J]. Physics Procedia, 2015, 80: 74-7.
[50] OLáH L, BARNAFöLDI G, HAMAR G, et al. CCC-based muon telescope for examination of natural caves[J]. Geoscientific Instrumentation, Methods and Data Systems, 2012, 1(2): 229-34.
[51] SARACINO G, AMATO L, AMBROSINO F, et al. Imaging of underground cavities with cosmic-ray muons from observations at Mt. Echia (Naples [J]. Sci Rep, 2017, 7(1): 1181.
[52] LESPARRE N, CABRERA J, MARTEAU J. 3-D density imaging with muon flux measurements from underground galleries[J]. Geophysical Journal International, 2017, 208(3): 1579-91.
[53] CONRAD J, BOTNER O, HALLGREN A, et al. Including systematic uncertainties in confidence interval construction for Poisson statistics[J]. Physical Review D, 2003, 67(1): 012002.

所在学位评定分委会
地球物理学
国内图书分类号
P31
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544088
专题理学院_地球与空间科学系
推荐引用方式
GB/T 7714
吴晨妍. 宇宙射线缪子地质体密度成像技术及其工程应用研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032828-吴晨妍-地球与空间科学(3756KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[吴晨妍]的文章
百度学术
百度学术中相似的文章
[吴晨妍]的文章
必应学术
必应学术中相似的文章
[吴晨妍]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。