中文版 | English
题名

本征磁性拓扑绝缘体MnBi4Te7的低温输运性质研究

其他题名
LOW-TEMPERATURE TRANSPORT STUDY OF ANTIFERROMAGNETIC TOPOLOGICAL INSULATOR MnBi4Te7
姓名
姓名拼音
MA Xiaozhou
学号
12032038
学位类型
硕士
学位专业
070205 凝聚态物理
学科门类/专业学位类别
07 理学
导师
何洪涛
导师单位
物理系
论文答辩日期
2023-05-25
论文提交日期
2023-06-27
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

近年来,拓扑绝缘体作为一种新的物态引起了人们极大的研究兴趣。将磁性 引入拓扑绝缘体可以在其拓扑表面态处打开带隙,并产生丰富的拓扑量子态,而 其中最受关注的是量子反常霍尔绝缘体相。人们预测将量子反常霍尔绝缘体与超 导结合,可能形成拓扑超导态,从而观察到马约拉纳费米子的出现,为拓扑量子 计算提供理想的实验平台。以磁性掺杂或磁性邻近效应的方法进行磁性的引入会 不可避免地带来磁性无序等问题,不利于量子反常霍尔效应的实现。MnBi4Te7 作 为最近发现的具有本征磁性与拓扑性质共存的新材料体系,被认为具有丰富的拓 扑量子相,能在较高温度下实现量子反常霍尔效应,因而成为了近期的研究热点。
本论文中,我们将以 MnBi4Te7 为研究对象,结合了电子束光刻技术及脉冲 激光沉积技术,制备六端霍尔器件及 Nb/MnBi4Te7/Nb 超导约瑟夫森结器件,在 不同温度及磁场条件下,对器件的输运特性开展了细致的测量与系统的研究。
我们测量了 MnBi4Te7 霍尔器件在低温下的纵向电阻与霍尔电阻,发现了其 纵向电阻在高磁场下的不饱和线性正磁阻现象,且该现象可从低温一直持续到室 温。该现象的出现指向了 MnBi4Te7 二维拓扑表面态的存在,但其产生的机制并 不能用常用的 Parish-Littlewood 模型与量子线性磁阻模型加以解释,还有待进一 步的理论研究。此外,我们还发现施加偏置电流可对 MnBi4Te7 的磁输运性质进 行有效的调控。随着偏置电流的加大,MnBi4Te7 的反常霍尔效应竟然可发生反 号。基于铁磁态 MBT 为外尔半金属相具有零带隙外尔锥这一认识,我们认为该 新奇现象很大可能与外尔半金属体系中电流激发的俄歇散射过程相关。
我们还在 Nb/MnBi4Te7/Nb 约瑟夫森结器件上进行了微分电阻谱的测量,在 Nb 的超导相变温度之下发现微分电阻谱会出现明显的微分电阻峰。通过分析, 我们认为其来自于安德列夫反射,意味着可通过超导邻近效应在磁性 MnBi4Te7 中诱导产生超导态。我们仔细研究了这一超导态随温度及磁场的变化,并利用 BCS 理论公式拟合实验数据,得出其超导转变温度为 8.4K,超导能隙为 0.503meV。
以上研究揭示了磁性拓扑绝缘体由于其自身的能带结构特点蕴含着丰富的 电输运性质。同时,该研究也为利用磁性拓扑绝缘体与超导的耦合实现可能的拓 扑超导态或马约拉纳费米子打下了基础。

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2023-06
参考文献列表

[1] HASAN M Z, KANE C L. Colloquium: Topological insulators[J]. Reviews of Modern Physics, 2010, 82(4): 3045-3067.
[2] QI X L, ZHANG S C. Topological insulators and superconductors[J]. Reviews of Modern Physics, 2011, 83(4): 1057-1110.
[3] TOKURA Y, YASUDA K, TSUKAZAKI A. Magnetic topological insulators[J]. Nature Reviews Physics, 2019, 1(2): 126-143.
[4] FU L, KANE C L, MELE E J. Topological insulators in three dimensions[J]. Physical Review Letters, 2007, 98(10): 106803.
[5] HIRAHARA T, SAKAMOTO Y, SAISYU Y, et al. Topological metal at the surface of an ultrathin Bi1-xSbx alloy film[J]. Physical Review B, 2010, 81(16): 165422.
[6] ZHANG H, LIU C-X, QI X-L, et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface[J]. Nature Physics, 2009, 5(6): 438-442.
[7] HSIEH D, XIA Y, QIAN D, et al. A tunable topological insulator in the spin helical Dirac transport regime[J]. Nature, 2009, 460(7259): 1101-1159.
[8] XIA Y, QIAN D, HSIEH D, et al. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface[J]. Nature Physics, 2009, 5(6): 398-402.
[9] CHEN J, QIN H J, YANG F, et al. Gate-voltage control of chemical potential and weak antilocalization in Bi2Se3[J]. Physical Review Letters, 2010, 105(17): 176602.
[10] ARANGO Y C, HUANG L B, CHEN C Y, et al. Quantum transport and nano angle-resolved photoemission spectroscopy on the topological surface states of single Sb2Te3 Nanowires[J]. Scientific Reports, 2016, 6: 29493.
[11] HASAN M Z, MOORE J E. Three-dimensional topological insulators[J]. Annual Review of Condensed Matter Physics, 2011, 2(1): 55-78.
[12] SEIBEL C, MAASS H, BENTMANN H, et al. The Rashba-split surface state of Sb2Te3(0001) and its interaction with bulk states[J]. Journal of Electron Spectroscopy and Related Phenomena, 2015, 201: 110-114.
[13] Yu R, Zhang W, Zhang H J, et al. Quantized anomalous Hall effect in magnetic topological insulators[J]. Science, 2010, 329(5987): 61-64.
[14] Wang J, Lian B, Zhang H, et al. Quantum anomalous Hall effect with higher plateaus[J]. Physical review letters, 2013, 111(13): 136801.
[15] CHEN Y L, CHU J H, ANALYTIS J G, et al. Massive Dirac fermion on the surface of a magnetically doped topological insulator[J]. Science, 2010, 329(5992): 659-662.
[16] CHANG C-Z, ZHANG J, FENG X, et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator[J]. Science, 2013, 340(6129): 167-170.
[17] CHANG C Z, ZHAO W, KIM D Y, et al. High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator[J]. Nature Materials, 2015, 14(5): 473-477.
[18] FENG X, FENG Y, WANG J, et al. Thickness dependence of the quantum anomalous Hall effect in Magnetic Topological Insulator Films[J]. Advanced Materials, 2016, 28(30): 6386- 6390.
[19] LEE I, KIM C K, LEE J, et al. Imaging Dirac-mass disorder from magnetic dopant atoms in the ferromagnetic topological insulator Crx(Bi0.1Sb0.9)(2-x)Te3[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(5): 1316-1321.
[20] BURKOV A A, BALENTS L. Weyl semimetal in a topological insulator multilayer[J]. Physical Review Letters, 2011, 107(12): 127205.
[21] FENG Y, JIANG G Y, WU W X, et al. Tunable chiral and helical edge state transport in a magnetic topological insulator bilayer[J]. Physical Review B, 2019, 100(16): 165403.
[22] JIANG G Y, FENG Y, WU W X, et al. Quantum anomalous Hall multilayers grown by molecular beam epitaxy[J]. Chinese Physics Letters, 2018, 35(7): 076802.
[23] MOGI M, KAWAMURA M, YOSHIMI R, et al. A magnetic heterostructure of topological insulators as a candidate for an axion insulator[J]. Nature Materials, 2017, 16(5): 516-521.
[24] LI J, LI Y, DU S, et al. Intrinsic magnetic topological insulators in van der Waals layered MnBi2Te4-family materials[J]. Science Advances, 2019, 5(6): eaaw5685.
[25] YAN J Q, LIU Y H, PARKER D S, et al. A-type antiferromagnetic order in MnBi4Te7 and MnBi6Te10 single crystals[J]. Physical Review Materials, 2020, 4(5): 054202.
[26] BURKOV A A, BALENTS L. Weyl semimetal in a topological insulator multilayer[J]. Physical Review Letters, 2011, 107(12): 127205.
[27] GE J, LIU Y, LI J, et al. High-Chern-number and high-temperature quantum Hall effect without Landau levels[J]. National Science Review, 2020, 7(8): 1280-1287.
[28] DENG Y J, YU Y J, SHI M Z, et al. Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4[J]. Science, 2020, 367(6480): 895-900.
[29] LIU C, WANG Y C, LI H, et al. Robust axion insulator and Chern insulator phases in a two- dimensional antiferromagnetic topological insulator[J]. Nature Materials, 2020, 19(5): 522- 527.
[30] JIANG Q, WANG C, MALINOWSKI P, et al. Quantum oscillations in the field-induced ferromagnetic state of MnBi2−xSbxTe4[J]. Physical Review B, 2021, 103(20): 205111.
[31] LI H, GAO S Y, DUAN S F, et al. Dirac surface states in intrinsic magnetic topological insulators EuSn2As2 and MnBi2nTe3n+1[J]. Physical Review X, 2019, 9(4): 041039.
[32] LEE J S, RICHARDELLA A, FRALEIGH R D, et al. Engineering the breaking of time- reversal symmetry in gate-tunable hybrid ferromagnet/topological insulator heterostructures[J]. Npj Quantum Materials, 2018, 3: 51.
[33] HAO Y J, LIU P F, FENG Y, et al. Gapless surface Dirac cone in antiferromagnetic topological insulator MnBi2Te4 [J]. Physical Review X, 2019, 9(4): 041038.
[34] JIANG Z, LIU J, LIU Z, et al. A review of angle-resolved photoemission spectroscopy study on topological magnetic material family of MnBi2Te4[J]. Electronic Structure, 2023, 4(4): 043002.
[35] CHEN Y J, XU L X, LI J H, et al. Topological electronic structure and its temperature evolution in antiferromagnetic topological insulator MnBi2Te4 [J]. Physical Review X, 2019, 9(4): 401040.
[36] OTROKOV M M, KLIMOVSKIKH I I, BENTMANN H, et al. Prediction and observation of an antiferromagnetic topological insulator[J]. Nature, 2019, 576(7787): 416-422.
[37] HU C, GORDON K N, LIU P, et al. A van der Waals antiferromagnetic topological insulator with weak interlayer magnetic coupling[J]. Nature Communications, 2020, 11(1): 97.
[38] XU X, YANG S, WANG H, et al. Ferromagnetic-antiferromagnetic coexisting ground state and exchange bias effects in MnBi4Te7 and MnBi6Te10[J]. Nature Communications, 2022, 13(1): 7646-7646.
[39] MAJORANA E. A symmetric theory of electrons and positrons[J]. Soryushiron Kenkyu Electronics, 1981, 63(3): 149-162.
[40] KITAEV A Y. Unpaired Majorana fermions in quantum wires[J]. Physics-uspekhi, 2001, 44(10S): 131.
[41] MOURIK V, ZUO K, FROLOV S M, et al. Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices[J]. Science, 2012, 336(6084): 1003-1007.
[42] ROKHINSON L P, LIU X Y, FURDYNA J K. The fractional a.c. Josephson effect in a semiconductor-superconductor nanowire as a signature of Majorana particles[J]. Nature Physics, 2012, 8(11): 795-799.
[43] NADJ-PERGE S, DROZDOV I K, LI J, et al. Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor[J]. Science, 2014, 346(6209): 602-607.
[44] YIN J X, WU Z, WANG J H, et al. Observation of a robust zero-energy bound state in iron- based superconductor Fe(Te,Se)[J]. Nature Physics, 2015, 11(7): 543-546.
[45] ZHANG P, YAJI K, HASHIMOTO T, et al. Observation of topological superconductivity on the surface of an iron-based superconductor[J]. Science, 2018, 360(6385): 182-186.
[46] LI M, LI G, CAO L, et al. Ordered and tunable Majorana-zero-mode lattice in naturally strained LiFeAs[J]. Nature, 2022, 606(7916): 890-895.
[47] KIRSHENBAUM K, SYERS P S, HOPE A P, et al. Pressure-induced unconventional superconducting phase in the topological insulator Bi2Se3[J]. Physical Review Letters, 2013, 111(8): 087001.
[48] HOR Y S, WILLIAMS A J, CHECKELSKY J G, et al. Superconductivity in CuxBi2Se3 and its implications for pairing in the undoped topological insulator[J]. Physical Review Letters, 2010, 104(5): 057001.
[49] FU L, KANE C L. Superconducting proximity effect and majorana fermions at the surface of a topological insulator[J]. Physical Review Letters, 2008, 100(9): 096407.
[50] WANG M-X, LIU C, XU J-P, et al. The Coexistence of superconductivity and topological order in the Bi2Se3 thin films[J]. Science, 2012, 336(6077): 52-55.
[51] XU J-P, LIU C, WANG M-X, et al. Artificial topological superconductor by the proximity effect[J]. Physical Review Letters, 2014, 112(21): 217001.
[52] XU J P, WANG M X, LIU Z L, et al. Experimental detection of a Majorana mode in the core of a magnetic vortex inside a topological insulator-superconductor Bi2Te3/NbSe2 heterostructure[J]. Physical Review Letters, 2015, 114(1): 017001.
[53] SUN H H, ZHANG K W, HU L H, et al. Majorana zero mode detected with spin selective Andreev reflection in the vortex of a topological superconductor[J]. Physical Review Letters, 2016, 116(25): 257003.
[54] WANG J, ZHOU Q, LIAN B, et al. Chiral topological superconductor and half-integer conductance plateau from quantum anomalous Hall plateau transition[J]. Physical Review B, 2015, 92(6): 064520.
[55] CHUNG S B, QI X L, MACIEJKO J, et al. Conductance and noise signatures of Majorana backscattering[J]. Physical Review B, 2011, 83(10): 100512.
[56] LIAN B A, WANG J, ZHANG S C. Edge-state-induced Andreev oscillation in quantum anomalous Hall insulator-superconductor junctions[J]. Physical Review B, 2016, 93(16): 161401.
[57] He Q L, Pan L, Stern A L, et al. Chiral Majorana fermion modes in a quantum anomalous Hall insulator–superconductor structure[J]. Science, 2017, 357(6348): 294-299.
[58] PENG Y, XU Y. Proximity-induced Majorana hinge modes in antiferromagnetic topological insulators[J]. Physical Review B, 2019, 99(19): 195431.
[59] XU W-Z, CHU C-G, PAN Z-C, et al. Proximity-induced superconducting gap in the intrinsic magnetic topological insulator MnBi2Te4[J]. Physical Review B, 2022, 105(18): 184515.
[60] BARDEEN J, COOPER L N, SCHRIEFFER J R. Microscopic theory of superconductivity[J]. Physical Review, 1957, 106(1): 162-164.
[61] MATTHIAS B T, SUHL H, CORENZWIT E. Spin exchange in superconductors[J]. Physical Review Letters, 1958, 1(3): 92.
[62] BUZDIN A I. Proximity effects in superconductor-ferromagnet heterostructures[J]. Reviews of Modern Physics, 2005, 77(3): 935-976.
[63] MACHIDA K, YOUNGNER D. Theory of superconductivity in ternary rare-earth compounds. II [J]. Journal of Low Temperature Physics, 1979, 35(5-6): 561-568.
[64] BERNHARD C, TALLON J L, NIEDERMAYER C, et al. Coexistence of ferromagnetism and superconductivity in the hybrid ruthenate-cuprate compound RuSr2GdCu2O8 studied by muon spin rotation and dc magnetization[J]. Physical Review B, 1999, 59(21): 14099-14107.
[65] EISAKI H, TAKAGI H, CAVA R J, et al. Competition between magnetism and superconductivity in rare-earth nickel boride carbides[J]. Physical Review B, 1994, 50(1): 647-650.
[66] MULLER K H, NAROZHNYI V N. Interaction of superconductivity and magnetism in borocarbide superconductors[J]. Reports on Progress in Physics, 2001, 64(8): 943-1008.
[67] MEISSNER H. Superconductivity of Contacts with Interposed Barriers[J]. Physical Review, 1960, 117(3): 672-680.
[68] XIA J, SHELUKHIN V, KARPOVSKI M, et al. Inverse proximity effect in superconductor- ferromagnet bilayer structures[J]. Physical Review Letters, 2009, 102(8): 087004.
[69] FULDE P, FERRELL R A. Superconductivity in a strong spin-exchange field[J]. Physical Review, 1964, 135(3A): A550.
[70] KONTOS T, APRILI M, LESUEUR J, et al. Inhomogeneous superconductivity induced in a ferromagnet by proximity effect[J]. Physical Review Letters, 2001, 86(2): 304.
[71] BERGERET F S, Volkov A F, EFETOV K B. Long-range proximity effects in superconductor- ferromagnet structures[J]. Physical Review Letters, 2001, 86(18): 4096.
[72] LINDER J, ROBINSON J W A. Superconducting spintronics[J]. Nature Physics, 2015, 11(4): 307-315.
[73] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
[74] LEI X, ZHOU L, HAO Z Y, et al. Surface-induced linear magnetoresistance in the antiferromagnetic topological insulator MnBi2Te4[J]. Physical Review B, 2020, 102(23) : 235431.
[75] ABRIKOSOV A A. Quantum linear magnetoresistance[J]. Europhysics Letters, 2000, 49(6): 789.
[76] PARISH M M, LITTLEWOOD P B. Non-saturating magnetoresistance in heavily disordered semiconductors[J]. Nature, 2003, 426(6963): 162-165.
[77] NAGAOSA N, SINOVA J, ONODA S, et al. Anomalous Hall effect[J]. Reviews of Modern Physics, 2010, 82(2): 1539-1592.
[78] JAGO R, WENDLER F, MALIC E. Current enhancement due to field-induced dark carrier multiplication in graphene[J]. 2D Materials, 2017, 4(2): 021031.
[79] WINZER T, JAGO R, MALIC E. Experimentally accessible signatures of Auger scattering in graphene[J]. Physical Review B, 2016, 94(23): 235430.

所在学位评定分委会
物理学
国内图书分类号
O469
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544089
专题理学院_物理系
推荐引用方式
GB/T 7714
马晓宙. 本征磁性拓扑绝缘体MnBi4Te7的低温输运性质研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032038-马晓宙-物理系.pdf(6042KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[马晓宙]的文章
百度学术
百度学术中相似的文章
[马晓宙]的文章
必应学术
必应学术中相似的文章
[马晓宙]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。