中文版 | English
题名

先进钠金属负极的界面设计及电化学性能研究

其他题名
INTERPHASE DESIGN AND ELECTROCHEMICAL PERFORMANCE OF ADVANCED SODIUM METAL ANODE
姓名
姓名拼音
CHEN Qianwen
学号
11930861
学位类型
博士
学位专业
070205 凝聚态物理
学科门类/专业学位类别
07 理学
导师
黄立民
导师单位
化学系
论文答辩日期
2023-05-26
论文提交日期
2023-06-27
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

    金属钠具有高比容量(1166.00 mAh g-1)和丰富的储量,是实现高能量密度钠电池最理想的负极材料。然而,由于初始不均匀的钠成核以及不稳定的固体电解质界面膜(SEI),钠金属负极在循环过程中面临钠枝晶生长、电池库仑效率低以及安全性等问题,极大地限制了其商业应用。以上问题和钠金属负极与电解液间固液界面的反应息息相关。因此,本论文聚焦钠金属负极的电化学界面,通过负极界面集流体设计和电解液化学优化等策略,探讨了调控钠成核/生长,以及SEI性质的方法和相关机理,从而达到钠金属负极在可充放电电池中长期稳定性的目标,具体研究如下:

    首先,本研究通过简单的化学镀方法,设计了一种亲钠性缓冲Cu6Sn5合金层用于负极基底界面,调控钠成核/生长行为。该合金层的界面设计既能有效地提高商用铜箔基底的亲钠性,有助于均匀钠沉积。同时可以作为缓冲层,显著释放了合金反应引起的内应力和缓解负极体积变化,抑制了合金层的剥落。基于这些协同效应,在80%的超高放电深度时,Cu6Sn5@Cu集流体表现出600小时的稳定性能,实现了可大规模生产且满足深度充放电的长寿命钠金属负极集流体。

    除了负极界面设计,本研究还通过调控电解液配方(引入15-冠醚-5添加剂)改善钠成核/生长,以及SEI界面化学。具体来说,理论计算和实验研究表明15-冠醚-5添加剂通过与钠离子形成强配位作用,导致了减缓的去溶剂化动力学和阴离子富集的溶剂化结构,进而实现了均匀的成核,并构建了快离子传导和高机械性能的SEI。因此,15-冠醚-5添加剂实现了稳定循环超过1年的钠金属负极(库仑效率高达99.95%),其优异的电化学性能超过了近年来大部分的研究成果。

    为了进一步探究电解液组分对于钠金属负极界面化学与钠枝晶生长的影响,本研究利用不同浓度(0.5 M-2.5 M)的经典NaPF6-二乙二醇二甲醚电解液体系为模型,系统地阐明了电解液浓度、桑德时间(Sand's time)和SEI之间的平衡关系。研究表明低浓度会造成短的桑德时间和脆弱的SEI,但是过高浓度又无法维持钠均匀生长和SEI的平衡关系,均不利于钠金属负极稳定运行。因此,在中等浓度(2.0 M)的电解液中,钠金属负极取得了最佳的电化学性能:既有长的桑德时间,延缓枝晶的形成,又生成了无机组分为主的SEI,抑制枝晶的生长。最终得到电解液化学、成核/生长行为和SEI性质之间的关系,为未来电解液的设计提供了理论指导。

其他摘要

  Sodium (Na) metal possessing abundant reserves and a high specific capacity of 1166.00 mAh g-1, is the ideal anode for high energy density Na batteries. However, its practical application is hindered by many issues, including initially uneven Na nucleation and unstable solid electrolyte interphase (SEI), giving rise to dendrite growth, low Coulombic efficiency, and safety concerns. These issues are closely related to the solid-liquid interphase reactions between Na metal anodes and electrolytes. Therefore, this thesis focuses on electrochemical interphase to discuss the methods and related mechanisms of regulating Na nucleation/growth and SEI properties via metal anode interphase design and electrolyte formulation optimization strategies, achieving long-term stable Na metal batteries. The details are as follows:

  First, we design a sodiophilic/buffered Cu6Sn5 alloy layer on anode substrate interphase to manipulate Na nucleation/growth behavior by a facile electroless plating method. Such interphase design of the alloy layer significantly enhances the commercial Cu substrate's sodiophilicity, conducive to uniform Na deposition. On the other hand, it acts as a buffer layer, greatly releasing the internal stress caused by the alloy reaction and alleviating volume change, which prevents the peeling of alloy layer. Based on these synergetic effects, the easy scale-up Cu6Sn5@Cu current collector achieves 600 h lifetime under an ultrahigh depth of discharge (80%).

  Apart from anode interphase design, the electrolyte recipe regulation (i.e., introducing 15-crown-5 additive) is proposed to optimize Na nucleation/deposition and SEI chemistry. Specifically, theoretical calculations and experimental investigations indicate 15-crown-5 additive 's strong complexation ability with Na+ leads to slower desolvation kinetics and anion-rich solvation sheath, resulting in even nucleation and high ionic conductivity/mechanical property SEI. Therefore, a high average Coulombic efficiency of 99.95% beyond one year is realized, surpassing most previous studies.

  To further investigate the effects of electrolyte components on anode interfacial chemistry and sodium dendrite growth, a classic NaPF6-diethylene glycol dimethyl ether electrolyte system with different concentrations (0.5 M-2.5 M) is employed as a model to systematically elucidate the equilibrium relationship between electrolyte concentration, Sand's time and SEI. It is found that low concentration causes short Sand’s time and frail SEI, but overly high one cannot maintain the balance between dendrite growth and SEI, which are detrimental to the stable operation of Na metal anodes. As a result, the optimal electrochemical performance is achieved at 2.0 M electrolyte owing to its long Sand's time and inorganic composition-occupied SEI, which delay dendrites formation and suppress their growth. These findings reveal the relationship among electrolyte chemistry, nucleation/growth behavior and SEI properties, which provides a theoretical guideline for future electrolyte design.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2023-06
参考文献列表

[1] LIU T, YANG X, NAI J, et al. Recent development of Na metal anodes: Interphase engineering chemistries determine the electrochemical performance[J]. Chemical Engineering Journal, 2021, 409: 127943.
[2] SHI H, ZHANG Y, LIU Y, et al. Metallic sodium anodes for advanced sodium metal batteries: Progress, challenges and perspective[J]. The Chemical Record, 2022, 22: e202200112.
[3] WANG T, HUA Y, XU Z, et al. Recent advanced development of artificial interphase engineering for stable sodium metal anodes[J]. Small, 2022, 18: e2102250.
[4] ZHENG X, HUANG L, YE X, et al. Critical effects of electrolyte recipes for Li and Na metal batteries[J]. Chem, 2021, 7: 2312 -2346.
[5] BAO C, WANG B, LIU P, et al. Solid electrolyte interphases on sodium metal anodes[J]. Advanced Functional Materials, 2020, 30: 2004891.
[6] CHU C X, LI R, CAI F P, et al. Recent advanced skeletons in sodium metal anodes[J]. Energy & Environmental Science, 2021, 14: 4318-4340.
[7] XIA X, DU C F, ZHONG S, et al. Homogeneous Na deposition enab ling high￾energy Na-metal batteries[J]. Advanced Functional Materials, 2021, 32: 2110280.
[8] ZHENG X, BOMMIER C, LUO W, et al. Sodium metal anodes for room -temperature sodium-ion batteries: Applications, challenges and solutions[J]. Energy Storage Materials, 2019, 16: 6-23.
[9] ZHU P, GASTOL D, MARSHALL J, et al. A review of current collectors for lithium-ion batteries[J]. Journal of Power Sources, 2021, 485: 229321.
[10] LI Y, LU Y, ZHAO C, et al. Recent advances of electrode materials for low cost sodium-ion batteries towards practical application for grid energy storage[J]. Energy Storage Materials, 2017, 7: 130-151.
[11] SUN Z, YE Y, ZHU J, et al. Regulating sodium deposition th rough gradiently￾graphitized framework for dendrite -free Na metal anode[J]. Small, 2022, 18: e2107199.
[12] XU M, LI Y, IHSAN-UL-HAQ M, et al. NaF-rich solid electrolyte interphase for dendrite -free sodium metal batteries[J]. Energy Storage Materials, 2022, 44: 477-486.
[13] ZHAO W, GUO M, ZUO Z, et al. Engineering sodium metal anode with sodiophilic bismuthide penetration for dendrite -free and high-rate sodium-ion battery[J]. Engineering, 2022, 11: 87 -94.
[14] FAN L, LI X. Recent advances in effective prot ection of sodium metal anode[J]. Nano Energy, 2018, 53: 630 -642.
[15] HU X, SUN J, LI Z, et al. Rechargeable room-temperature Na -CO2 batteries[J]. Angewandte Chemie International Edition, 2016, 55: 6482 -6486.
[16] WAKIHARA M. Recent developments in lithium ion batteries[J]. MaterialsScience & Engineering R-Reports, 2001, 33: 109-134.
[17] LI L, ZHENG Y, ZHANG S, et al. Recent progress on sodium ion batteries: Potential high-performance anodes[J]. Energy & Environmental Science, 2018, 11: 2310-2340.
[18] KUBOTA K, KOMABA S. Review—practical issues and future perspective for Na-ion batteries[J]. Journal of The Electrochemical Society, 2015, 162: A2538-A2550.
[19] ZHAO Y, ADAIR K R, SUN X. Recent developments and insights into the understanding of Na metal anodes for Na-metal batteries[J]. Energy & Environmental Science, 2018, 11: 2673 -2695.
[20] PONROUCH A, FRONTERA C, BARDE F, et al. Towards a calcium-based rechargeable battery[J]. Nature Materials, 2016, 15: 169-172.
[21] LEE B, PAEK E, MITLIN D, et al. Sodi um metal anodes: Emerging solutions to dendrite growth[J]. Chemical Reviews, 2019, 119: 5416 -5460.
[22] ROSSO M, BRISSOT C, TEYSSOT A, et al. Dendrite short-circuit and fuse effect on Li/polymer/Li cells[J]. Electrochimica Acta, 2006, 51: 5334 -5340.
[23] TAKEDA Y, YAMAMOTO O, IMANISHI N. Lithium dendrite formation on a lithium metal anode from liquid, polymer and solid electrolytes[J]. Electrochemistry, 2016, 84: 210-218.
[24] SEONG I W, HONG C H, KIM B K, et al. The effects of current density and amount of discharge on dendrite formation in the lithium powder anode electrode[J]. Journal of Power Sources, 2008, 178: 769 -773.
[25] BRISSOT C, ROSSO M, CHAZALVIEL J-N, et al. In situ study of dendritic growth in lithium/PEO-salt/lithium cells[J]. Electrochimica Acta, 1998, 43: 1569-1574.
[26] ZHONG Y R, SHI Q W, ZHU C Q, et al. Mechanistic insights into fast charging and discharging of the sodium metal battery anode: a comparison with lithium[J]. Journal of the American Chemical Society, 2021, 143: 13929 -13936.
[27] DENG Y, ZHENG J X, WARREN A, et al. On the reversibility and fragility of sodium metal electrodes[J]. Advanced Energy Materials, 2019, 9: 1901651.
[28] HAN M, ZHU C, MA T, et al. In situ atomic force microscopy study of nano –micro sodium deposition in ester-based electrolytes[J]. Chemical Communications, 2018, 54: 2381-2384.
[29] HONG Y-S, LI N, CHEN H, et al. In operando observation of chemical and mechanical stability of Li and Na dendrites under quasi-zero electrochemical field[J]. Energy Storage Materials, 2018, 11: 118-126.
[30] PELED E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model[J]. Journal of The Electrochemical Society, 1979, 126: 2047.
[31] GOODENOUGH J B, KIM Y. Challenges for rechargea ble Li batteries[J]. Chemistry of Materials, 2010, 22: 587-603.
[32] AN S J, LI J L, DANIEL C, et al. The state of understanding of the lithium -ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling[J]. Carbon, 2016, 105: 52 -76.
[33] YAN J, ZHANG J, SU Y C, et al. A novel perspecti ve on the formation of the solid electrolyte interphase on the graphite electrode for lithium -ion batteries[J]. Electrochimica Acta, 2010, 55: 1785 -1794.
[34] USHIROGATA K, SODEYAMA K, FUTERA Z, et al. Near-shore aggregation mechanism of electrolyte decomposition products to explain solid electrolyte interphase formation[J]. Journal of The Electrochemical Society, 2015, 162: A2670-A2678.
[35] CHE H Y, CHEN S L, XIE Y Y, et al. Electrolyte design strategies and research progress for room-temperature sodium-ion batteries[J]. Energy & Environmental Science, 2017, 10: 1075 -1101.
[36] RODRIGUEZ R, LOEFFLER K E, NATHAN S S, et al. In situ optical imaging of sodium electrodeposition: Effects of fluoroethylene carbonate[J]. ACS Energy Letters, 2017, 2: 2051 -2057.
[37] PAN K, LU H, ZHONG F, et al. Understanding the electrochemical compatibility and reaction mechanism on Na metal and hard carbon anodes of PC-based electrolytes for sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2018, 10: 39651-39660.
[38] CHEN Q W, HE H, HOU Z, et al. Building an artificial solid electrolyte interphase with high-uniformity and fast ion diffusion for ultralong -life sodium metal anodes[J]. Journal of Materials Chemistry A, 2020, 8: 16232-16237.
[39] LIN D, LIU Y, CUI Y. Reviv ing the lithium metal anode for high -energy batteries[J]. Nature Nanotechnology, 2017, 12: 194 -206.
[40] WEI S, CHOUDHURY S, XU J, et al. Highly stable sodium batteries enabled by functional ionic polymer membranes[J]. Advanced Materials, 2017, 29: 1605512.
[41] CHEN X, SHEN X, LI B, et al. Ion-solvent complexes promote gas evolution from electrolytes on a sodium metal anode[J]. Angewandte Chemie International Edition, 2018, 57: 734 -737.
[42] LI Z P, ZHU K J, LIU P, et al. 3D confinement strategy for dendri te-free sodium metal batteries[J]. Advanced Energy Materials, 2022, 12: 2100359.
[43] LIU B, LEI D, WANG J, et al. 3D uniform nitrogen -doped carbon skeleton for ultra-stable sodium metal anode[J]. Nano Research, 2020, 13: 2136 -2142.
[44] CHOUDHURY S, WEI S, OZHABES Y, et al. Designing solid -liquid interphases for sodium batteries[J]. Nature Communications, 2017, 8: 898.
[45] LUTZ L, ALVES DALLA CORTE D, TANG M, et al. Role of electrolyte anions in the Na-O2 battery: implications for NaO2 solvation and the stability of the sodium solid electrolyte interphase in glyme ethers[J]. Chemistry ofMaterials, 2017, 29: 6066-6075.
[46] CHEN Q W, ZHANG T X, HOU Z, et al. Large -scale sodiophilic/buffered alloy architecture enables deeply cyclable Na metal anodes[J]. Chemical Engineering Journal, 2022, 433: 133270.
[47] CHEN R, LU X, HE Q, et al. Sb2S3 nanorod hierarchies enabling homogeneous sodium deposition for dendrite -free sodium-metal batteries[J]. ACS Applied Energy Materials, 2022, 5: 10952-10960.
[48] WANG G, ZHANG Y, GUO B, et al. Core -shell C@Sb nanoparticles as a nucleation layer for high-performance sodium metal anodes[J]. Nano Letters, 2020, 20: 4464-4471.
[49] XIANG P, LIU W, CHEN X, et al. Facile one -step preparation of 3D nanoporous Cu/Cu6Sn5 microparticles as anode material for lithium-ion batteries with superior lithium storage properties[J]. Metallurgical andMaterials Transactions A, 2020, 51: 5965 -5973.
[50] XU Y, MENON A S, HARKS P P R M L, et al. Honeycomb -like porous 3D nickel electrodeposition for stable li and na metal anodes[J]. Energy StorageMaterials, 2018, 12: 69-78.
[51] YANG W, YANG W, DONG L B, et al. Hierarchical ZnO nanorod arrays grown on copper foam as an advanced three -dimensional skeleton for dendrite -free sodium metal anodes[J]. Nano Energy, 2021, 80: 105563.
[52] YAN J, ZHI G, KONG D, et al. 3D printed RGO/CNT microlattice aerogel for a dendrite-free sodium metal anode [J]. Journal of Materials Chemistry A, 2020, 8: 19843-19854.
[53] MUBARAK N, REHMAN F, IHSAN-UL-HAQ M, et al. Highly sodiophilic, defect-rich, lignin-derived skeletal carbon nanofiber host for sodium metal batteries[J]. Advanced Energy Materials, 2022, 12: 2103904.
[54] HE X, JIN S, MIAO L, et al. A 3D hydroxylated MXene/carbon nanotubes composite as a scaffold for dendrite -free sodium-metal electrodes[J]. Angewandte Chemie International Edition, 2020, 59: 16705 -16711.
[55] ZHAO Y, GONCHAROVA L V, LUSHINGTON A, et al. Superior stable and long life sodium metal anodes achieved by atomic layer depositio n[J]. Advanced Materials, 2017, 29: 1606663.
[56] WANG H, WANG C, MATIOS E, et al. Critical role of ultrathin graphene films with tunable thickness in enabling highly stable sodium metal anodes[J]. Nano Letters, 2017, 17: 6808-6815.
[57] SHI P, ZHANG S, LU G, et al. Red phosphorous-derived protective layers with high ionic conductivity and mechanical strength on dendrite -free sodium and potassium metal anodes[J]. Advanced Energy Materials, 2021, 11: 2003381.
[58] ZHU M, WANG G, LIU X, et al. Dendrite -free sodium metal anodes enabled by a sodium benzenedithiolate -rich protection layer[J]. Angewandte Chemie International Edition, 2020, 59: 6596 -6600.
[59] CHEN Q, HOU Z, SUN Z, et al. Polymer –inorganic composite prote ctive layer for stable Na metal anodes[J]. ACS Applied Energy Materials, 2020, 3: 2900-2906.
[60] HOU Z, WANG W H, YU Y K, et al. Poly (vinylidene difluoride) coating on Cu current collector for high -performance Na metal anode[J]. Energy StorageMaterials, 2020, 24: 588-593.
[61] YANG J Y, GAO Z H, FERBER T, et al. Guided -formation of a favorable interface for stabilizing Na metal solid -state batteries[J]. Journal of MaterialsChemistry A, 2020, 8: 7828-7835.
[62] ZHAO Y, GONCHAROVA L V, ZHANG Q, et al. Inor ganic-organic coating via molecular layer deposition enables long life sodium metal anode[J]. Nano Letters, 2017, 17: 5653 -5659.
[63] ZHANG S, ZHAO Y, ZHAO F, et al. Gradiently sodiated alucone as an interfacial stabilizing strategy for solid -state Na metal batteries[J]. Advanced Functional Materials 2020, 30: 2001118.
[64] ZHANG D, LI B, WANG S, et al. Simultaneous formation of artificial SEI film and 3D host for stable metallic sodium anodes[J]. ACS Applied Materials& Interfaces, 2017, 9: 40265-40272.
[65] MA M Y, LU Y, YAN Z H, et al. In situ synthesis of a bismuth layer on a sodium metal anode for fast interfacial transport in sodium-oxygen batteries[J]. Batteries & Supercaps, 2019, 2: 663 -667.
[66] TIAN H J, SHAO H Z, CHEN Y, et al. Ultra -stable sodium metal-iodine batteries enabled by an in-situ solid electrolyte interphase[J]. Nano Energy, 2019, 57: 692-702.
[67] LI P R, XU T H, DING P, et al. Highly reversible Na and K metal anodes enabled by carbon paper protection[J]. Energy Storage Materials, 2018, 15: 8-13.
[68] ZHANG L, XIA X, ZHONG Y, et al. Exploring self-healing liquid Na-K alloy for dendrite-free electrochemical energy storage[J]. Advance d Materials, 2018, 30: 1804011.
[69] TIAN H Z, SEH Z W, YAN K, et al. Theoretical investigation of 2D laye redmaterials as protective films for lithium and sodium metal anodes[J]. Advanced Energy Materials, 2017, 7: 1602528.
[70] SNYDACKER D H, HEGDE V I, WOLVERTON C. Electrochemically stable coating materials for Li, Na, and Mg metal anodes in durable high en ergy batteries[J]. Journal of The Electrochemical Society, 2017, 164: A3582 -A3589.
[71] IERMAKOVA D I, DUGAS R, PALACIN M R, et al. On the comparative stability of Li and Na metal anode interfaces in conventional alkyl carbonate electrolytes[J]. Journal of The Electrochemical Society, 2015, 162: A7060 -A7066.
[72] SEH Z W, SUN J, SUN Y, et al. A highly reversible room-temperature sodium metal anode[J]. ACS Central Science, 2015, 1: 449 -455.
[73] WANG S Y, CHEN Y W, JIE Y L, et al. Stable sodium metal batteri es viamanipulation of electrolyte solvation structure[J]. Small Methods, 2020, 4: 1900856.
[74] WANG C, THENUWARA A C, LUO J, et al. Extending the low -temperature operation of sodium metal batteries combining linear and cyclic ether-based electrolyte solutions[J]. Nature Communications, 2022, 13: 4934.
[75] ZHENG J M, LOCHALA J A, KWOK A, et al. Research progress towards understanding the unique interfaces between concentrated electrolytes and electrodes for energy storage applications[J]. Advanced Science , 2017, 4: 1700032.
[76] CAO R G, MISHRA K, LI X L, et al. Enabling room temperature sodium metal batteries[J]. Nano Energy, 2016, 30: 825 -830.
[77] LEE J, LEE Y, LEE J, et al. Ultraconcentrated sodium bis(fluorosulfonyl)imide -based electrolytes for high-performance sodium metal batteries[J]. ACS Applied Materials & Interfaces, 2017, 9: 3723-3732.
[78] RAKOV D A, CHEN F, FERDOUSI S A, et al. Engineering high -energy￾density sodium battery anodes for improved cycling with superconcentra ted ionic-liquid electrolytes[J]. Nature Materials, 2020, 19: 1096-1101.
[79] WANG H, TONG Z Q, YANG R, et al. Electrochemically stable sodium metal￾tellurium/carbon nanorods batteries[J]. Advanced Energy Materials, 2019, 9: 1903046.
[80] CHEN X, QIN L, SUN J, et al. Phase transfer-mediated degradation of ether￾based localized high-concentration electrolytes in alkali metal batteries[J].
[81] ZHENG J, CHEN S, ZHAO W, et al. Extremely stable sodium metal batteries enabled by localized high-concentration electrolytes[J]. ACS Energy Letters, 2018, 3: 315-321.
[82] GUO X F, YANG Z, ZHU Y F, et al. High -voltage, highly reversible sodium batteries enabled by fluorine -rich electrode/electrolyte interphases[J]. Small Methods, 2022, 6: e2200209.
[83] FAN J J, DAI P, SHI C G, et al. Synergistic dual-additive electrolyte for interphase modification to boost cyclability of layered cathode for sodium ion batteries[J]. Advanced Functional Materials, 2021, 31: 2010500.
[84] WANG H, WANG C, MATIOS E, et al. Facile stabiliz ation of the sodium metal anode with additives: Unexpected key role of sodium polysulfide and adverse effect of sodium nitrate[J]. Angewandte Chemie International Edition, 2018, 57: 7734-7737.
[85] ZHAO Y, LIANG J, SUN Q, et al. In situ formation of highly controllable and stable Na 3PS4 as a protective layer for Na metal anode[J]. Journal of MaterialsChemistry A, 2019, 7: 4119-4125.
[86] WANG W, ZHANG R P, ZUO P J, et al. An interphase -enhanced liquid Na-K anode for dendrite -free alkali metal batteries ena bled by SiCl 4 electrolyte additive[J]. Energy Storage Materials, 2021, 37: 199-206.
[87] ZHENG X, FU H, HU C, et al. Toward a stable sodium metal anode in carbonate electrolyte: a compact, inorganic alloy interface[J]. The Journal of Physical Chemistry Letters, 2019, 10: 707-714.
[88] CHEN X, SHEN X, HOU T Z, et al. Ion -solvent chemistry-inspired cation￾additive strategy to stabilize electrolytes for sodium -metal batteries[J]. Chem, 2020, 6: 2242-2256.
[89] SHI Q, ZHONG Y, WU M, et al. High-performance sodium metal anodes enabled by a bifunctional potassium salt[J]. Angewandte Chemie International Edition, 2018, 57: 9069 -9072.
[90] ZHAO S, WANG C, DU D, et al. Bifunctional effects of cation additive on Na-O2 batteries[J]. Angewandte Chemie International Edit ion, 2021, 133: 3242-3248.
[91] YI Q, LU Y, SUN X, et al. Fluorinated ether based electrolyte enabling sodium-metal batteries with exceptional cycling stability[J]. ACS AppliedMaterials & Interfaces, 2019, 11: 46965 -46972.
[92] XIA L, XIA Y, WANG C, et al. 5 V-class electrolytes based on fluorinated solvents for Li-ion batteries with excellent cyclability[J]. ChemElectroChem, 2015, 2: 1707-1712.
[93] ZHENG X Y, GU Z Y, LIU X Y, et al. Bridging the immiscibility of an all -fluoride fire extinguishant with highly -fluorinated electrolytes toward safe sodium metal batteries[J]. Energy & Env ironmental Science, 2020, 13: 1788 -1798.
[94] PU J, ZHONG C, LIU J, et al. Advanced in situ technology for Li/Na metal anodes: an in-depth mechanistic understanding[J]. Energy & Environmental Science, 2021, 14: 3872-3911.
[95] LIU Q, ZHANG L, SUN H, et al. In situ observation of sodium dendrite growth and concurrent mechanical property measurements using an environmental transmission electron microscopy -atomic force microscopy (ETEM-AFM) platform[J]. ACS Energy Letters, 2020, 5: 2546 -2559.
[96] LI X K, ZHAO L Z, LI P, et al. In-situ electron microscopy observation of electrochemical sodium plating and stripping dynamics on carbon nanofiber current collectors[J]. Nano Energy, 2017, 42: 122 -128.
[97] BAYLEY P M, TREASE N M, GREY C P J J O T A C S. Insights int o electrochemical sodium metal deposition as probed with in situ 2 3Na NMR[J]. Journal of the American Chemical Society, 2016, 138: 1955 -1961.
[98] WENZEL S, LEICHTWEISS T, WEBER D A, et al. Interfacial reactivity benchmarking of the sodium ion conductors Na 3PS4 and sodium β-alumina for protected sodium metal anodes and sodium all-solid-state batteries[J]. ACS Applied Materials & Interfaces, 2016, 8: 28216-28224.
[99] ZHAO Y, GONCHAROVA L V, ZHANG Q, et al. Inorganic –organic coating via molecular layer deposition enables long life sodium metal anode[J]. Nano Letters, 2017, 17: 5653 -5659.
[100]SUN H, ZHU G, XU X, et al. A safe and non -flammable sodium metal battery based on an ionic liquid electrolyte[J]. Nature Communications, 2019, 10: 3302.
[101]FANG Y, LUAN D, LOU X W D. Recent advances on mixed metal sulfides for advanced sodium-ion batteries[J]. Advanced Materials, 2020, 32: e2002976.
[102]SUN B, XIONG P,.MAITRA U, et al. Design strategies to enable the efficient use of sodium metal anodes in high -energy batteries[J]. Advanced Materials, 2020, 32: e1903891.
[103]WU Y, XING F, XU R, et al. Spatially confining and chemically bonding amorphous red phosphorus in the nitrogen doped porous carbon tubes leading to superior sodium storage performance[J]. Journ al of Materials Chemistry A, 2019, 7: 8581-8588.
[104]HOU Z, YU Y, WANG W, et al. Lithiophilic Ag nanoparticle layer on Cu current collector toward stable Li metal anode[J]. ACS Applied Materials & Interfaces, 2019, 11: 8148-8154.
[105]LU K, GAO S, LI G, et al. Regulating interfacial Na -ion flux via artificial layers with fast ionic conductivity for stable and high -rate Na metal batteries [J]. ACS Materials Letters, 2019, 1: 303-309.
[106]HOU Z, WANG W, YU Y, et al. Poly(vinylidene difluoride) coating on Cu current collector for high-performance Na metal anode[J]. Energy StorageMaterials, 2020, 24: 588-593.
[107]LUO J, LU X,.MATIOS E, et al. Tunable MXene -derived 1D/2D hybrid nanoarchitectures as a stable matrix for dendrite -free and ultrahigh capacity sodium metal anode[J]. Nano Letters, 2020, 20: 7700 -7708.
[108]YANG H, ZHANG L, WANG H, et al. Regulating Na deposition by constructing a Au sodiophilic interphase on CNT modified carbon cloth for flexible sodium metal anode [J]. Journa l of Colloid and Interface Science, 2022, 611: 317-326.
[109]GO W, KIM M H, PARK J, et al. Nanocrevasse -rich carbon fibers for stable lithium and sodium metal anodes[J]. Nano Letters, 2019, 19: 1504 -1511.
[110]SUN B, LI P, ZHANG J, et al. Dendrite -free sodium-metal anodes for high￾energy sodium-metal batteries[J]. Advanced Materials, 2018, 30: e1801334.
[111]WANG Z, ZHANG X, ZHOU S, et al. Lightweight, thin, and flexible silver nanopaper electrodes for high-capacity dendrite-free sodium metal anodes[J]. Advanced Functional Materials, 2018, 28: 1804038.
[112]HOU Z, WANG W, CHEN Q, et al. Hybrid protective layer for stable sodium metal anodes at high utilization[J]. ACS Applied Materials & Interfaces, 2019, 11: 37693-37700.
[113]LIANG S, CHENG Y J, ZHU J, et al. A chronicle review of nonsilicon (Sn, Sb, Ge)-based lithium/sodium-ion battery alloying anodes[J]. Small Methods, 2020, 4: 2000218.
[114]TANG S, ZHANG Y Y, ZHANG X G, et al. Stable Na plating and stripping electrochemistry promoted by in situ construction of an alloy-based sodiophilic interphase[J]. Advanced Materials, 2019, 31: e1807495.
[115]BAGGETTO L, JUMAS J C, GORKA J, et al. Predictions of particle size and lattice diffusion pathway requirements for sodium-ion anodes using eta -Cu6Sn5 thin films as a model system[J]. Physical Chemistry Chemical Physics, 2013, 15: 10885-10894.
[116]WANG T S, LIU Y C, LU Y X, et al. Dendrite -free Na metal plating/stripping onto 3D porous Cu hosts[J]. Energy Storage Materials, 2018, 15: 274-281.
[117]YANG C, LIN C, LIN S, et al. Cu 0 . 0 2Ti 0 . 9 4Nb2 . 0 4O7 : an advanced anodematerial for lithium-ion batteries of electric vehicles[J]. Journal of Power Sources, 2016, 328: 336-344.
[118]SUDAGAR J, LIAN J, SHA W. Electroless nickel, alloy, composite and nano coatings-a critical review[J]. Journal of Alloys and Compounds, 2013, 571: 183-204.
[119]AGARWALA R C, AGARWALA V. Electroless alloy/composite coatings: A review[J]. Sadhana -Academy Proceedings in Engineering Sciences, 2003, 28: 475-493.
[120]PARK C, YOO B, LEE J. Characteristics of electroless Sn plating electrolyte using a choline chloride -based ionic liquid[J]. Korean Journal of Metals andMaterials, 2018, 56: 645-651.
[121]ZHAO J, CUI G F. Study on adsorption and complexation behavior of thiourea on copper surface[J]. International Journal of Electrochemical Science, 2011, 6: 4048-4058.
[122]FUJIWARA Y. Sn deposition onto Cu and alloy layer growth by a contact immersion process[J]. Thin Solid Films, 2003, 425: 121 -126.
[123]FUJIWARA Y, SHIBASAKI K, TAKAHASHI M, et al. Cu-Sn alloy microtube assembly fabricated by electroless plating on polyester nonwoven fabric and its lithiation-delithiation performance[J]. Applied Surface Science, 2019, 493: 112-124.
[124]WANG G, AUBIN M, MEHTA A, et al. Stabilization o f Sn anode through structural reconstruction of a Cu -Sn intermetallic coating layer[J]. AdvancedMaterials, 2020, 32: 2003684.
[125]LI K, ZHANG J, LIN D, et al. Evolution of the electrochemical interface in sodium ion batteries with ether electrolytes[J]. Nature Communications, 2019, 10: 725.
[126]DOI K, YAMADA Y, OKOSHI M, et al. Reversible sodium metal electrodes: is fluorine an essential interphasial component?[J]. Angewandte Chemie International Edition, 2019, 58: 8024 -8028.
[127]MARCINIUK L L, HAMMER P, PASTORE H O, et al. Sodium titanate as basic catalyst in transesterification reactions[J]. Fuel, 2014, 118: 48 -54.
[128]LU X, LUO J M,.MATIOS E, et al. Enabling high-performance sodium metal anodes via a sodiophilic structure constructed by hierarchi cal Sb2MoO6microspheres[J]. Nano Energy, 2020, 69: 104446.
[129]CUI X Y, WANG Y J, WU H D, et al. A carbon foam with sodiophilic surface for highly reversible, ultra -long cycle sodium metal anode[J]. Advanced Science, 2021, 8: 2003178.
[130]HU X, JOO P H, WANG H, et al. Nip the sodium dendrites in the bud on planar doped graphene in liquid/gel electrolytes[J]. Advanced FunctionalMaterials, 2019, 29: 1807974.
[131]LIU S, BAI M, TANG X, et al. Enabling high -performance sodium metal anode via a presodiate d alloy-induced interphase[J]. Chemical Engineering Journal, 2021, 417: 128997.
[132]LI Y, OU C, ZHU J, et al. Ultrahigh and durable volumetric lithium/sodium storage enabled by a highly dense graphene -encapsulated nitrogen -doped carbon@Sn compact monolith[J]. Nano Letters, 2020, 20: 2034 -2046.
[133]XU Y, WANG C,.MATIOS E, et al. Sodium deposition with a controlled location and orientation for dendrite -free sodium metal batteries[J]. Advanced Energy Materials, 2020, 10: 2002308.
[134]XIE Y, HU J, HAN Z, et al. Encapsulating sodium deposition into carbon rhombic dodecahedron guided by sodiophilic sites for dendrite -free Na metal batteries[J]. Energy Storage Materials, 2020, 30: 1-8.
[135]YE L, LIAO M, ZHAO T, et al. A sodiophilic inter phase-mediated, dendrite -free anode with ultrahigh specific capacity for sodium-metal batteries[J]. Angewandte Chemie International Edition, 2019, 58: 17054 -17060.
[136]WANG L, SHANG J, HUANG Q, et al. Smoothing the sodium-metal anode with a self-regulating alloy interface for high-energy and sustainable sodium￾metal batteries[J]. Advanced Materials, 2021, 33: e2102802.
[137]JIN Q, LU H, ZHANG Z, et al. Synergistic manipulation of Na +flux and surface-preferred effect enabling high -areal-capacity and dendrite-free sodium metal battery[J]. Advanced Science, 2022, 9: e2103845.
[138]PI Y, GAN Z, LI Z, et al. Methanol-derived high-performance Na 3V2 (PO4 ) 3 /C: From kilogram-scale synthesis to pouch cell safety detection[J]. Nanoscale, 2020, 12: 21165-21171.
[139]NAVEED A, YANG H, SHAO Y, et al. A highly reversible Zn anode with intrinsically safe organic electrolyte for long -cycle-life batteries[J]. Advanced Materials, 2019, 31: e1900668.
[140]HOU Z, LU Z, CHEN Q, et al. Realizing wide -temperature Zn metal anodes through concurrent interface stability regulation and solvation structure modulation[J]. Energy Storage Materials, 2021, 42: 517-525.
[141]BIOVIA D S J R. Materials studio[J]. 2017.
[142]SUN H, REN P, FRIED J R. The compass force field: Parameterization and validation for phosphazenes[J]. Computational and Theoretical Polymer Science, 1998, 8: 229-246.
[143]BORODIN O, OLGUIN M, GANESH P, et al. Competitive lithium solvation of linear and cyclic carbonates from quantum chemistry[J]. Physical Chemistry Chemical Physics, 2016, 18: 164 -175.
[144]KAZEMABAD M, VERLIEFDE A, CORNELISSEN E R, et al. Crown ether containing polyelectrolyte multilayer membranes for lithium recovery[J]. Journal of Membrane Science, 2020, 595: 117432.
[145]IANNAZZO D, ESPRO C, FERLAZZO A, et al. Electrochemical and fluorescent properties of crown ether functionalized graphene quantum dots for potassium and sodium ions detection[J]. Nanomaterials, 2021, 11: 2897.
[146]PEDERSEN C J, FRENSDORFF H K Macrocyclic polyethers and their complexes[J]. Angewandte Chemie International Edition, 1972, 11: 16 -25.
[147]YAHMIN Y, PRANOWO H D, ARMUNANTO R. Theoretical study on 15 -crown-5 complex with some metal cations[J]. Indonesian J ournal of Chemistry, 2012, 12: 135-140.
[148]WANG X, MAI W, GUAN X, et al. Recent advances of electroplating additives enabling lithium metal anodes to applicable battery techniques[J]. Energy & Environmental Materials, 2020, 4: 284-292.
[149]MENG R, LI H, LU Z, et al. Tuning Zn-ion solvation chemistry with chelating ligands toward stable aqueous Zn anodes[J]. Advanced Materials, 2022, 34: 2200677.
[150]YU Z, RUDNICKI P E, ZHANG Z W, et al. Rational solvent molecule tuning for high-performance lithium me tal battery electrolytes[J]. Nature Energy, 2022, 7: 94-106.
[151]LI Y, XU P, MOU J, et al. Single cobalt atoms decorated n -doped carbon polyhedron enabled dendrite -free sodium metal anode[J]. Small Methods, 2021, 5: e2100833.
[152]ZHANG Q, LU Y Y, ZHOU M, et al. Achieving a stable Na metal anode with a 3D carbon fibre scaffold[J]. Inorganic Chemistry Frontiers, 2018, 5: 864 -869.
[153]YUAN L, HU J G, DING Z Y, et al. Electrochemical deposition of bright nickel on titanium matrix from ammoniacal solution in the presence of thiourea[J]. International Journal of Electrochemical Science, 2017, 12: 7312 -7325.
[154]MA M Y, CAI H R, XU C L, et al. Engineering solid electrolyte interface at nano-scale for high-performance hard carbon in sodium-ion batteries[J]. Advanced Functional Materials, 2021, 31: 2100278.
[155]XU Z L, YOON G, PARK K Y, et al. Tailoring sodium intercalation in graphite for high energy and power sodium ion batteries[J]. Nature Communications, 2019, 10: 2598.
[156]LUKATSKAYA M R, FELDBLYUM J I, MACKANIC D G, et al. Concentrated mixed cation acetate "water-in-salt" solutions as green and low-cost high voltage electrolytes for aqueous batteries[J]. Energy & Environmental Science, 2018, 11: 2876-2883.
[157]REN X D, ZOU L F, CAO X, et al. Enablin g high-voltage lithium-metal batteries under practical conditions[J]. Joule, 2019, 3: 1662 -1676.
[158]ZHANG G Z, DENG X L, LI J W, et al. A bifunctional fluorinated ether co -solvent for dendrite -free and long-term lithium metal batteries[J]. Nano Energy, 2022, 95: 107014.
[159]MOON H, MANDAI T, TATARA R, et al. Solvent activity in electrolyte solutions controls electrochemical reactions in Li-ion and Li-sulfur batteries[J]. Journal of Physical Chemistry C, 2015, 119: 3957 -3970.
[160]PARISI M, PAPPALARDO S. Ten-membered rings or larger with one or more oxygen atoms[M]. Comprehensive heterocyclic chemistry iii. Elsevier. 2008: 667-750.
[161]ZHENG X, WENG S, LUO W, et al. Deciphering the role of fluoroethylene carbonate towards highly reversible sodium metal anodes[J]. Research, 2022, 2022: 9754612.
[162]LIU X Y, ZHENG X Y, DAI Y M, et al. Fluoride -rich solid-electrolyte -interface enabling stable sodium metal batteries in high -safe electrolytes[J]. Advanced Functional Materials, 2021, 31: 2103522.
[163]ESHETU G G, DIEMANT T, HEKMATFAR M, et al. Impact of the electrolyte salt anion on the solid electrolyte interphase formation in sodium ion batteries[J]. Nano Energy, 2019, 55: 327 -340.
[164]LUO J, WANG C, WANG H, et al. Pillared MXene with ultral arge interlayer spacing as a stable matrix for high performance sodium metal anodes[J]. Advanced Functional Materials, 2018, 29: 1805946.
[165]WANG S Y, LIU Y, LU K, et al. Engineering RGO/MXene hybrid film as an anode host for stable sodium-metal batteries[J]. Energy & Fuels, 2021, 35: 4587-4595.
[166]TAI Z X, LIU Y J, YU Z P, et al. Noncollapsing 3D solid -electrolyte interphase for high -rate rechargeable sodium metal batteries[J]. Nano Energy,2022, 94: 106947.
[167]LI T J, SUN J C, GAO S Z, et al. Superior sodium metal anodes enabled by sodiophilic carbonized coconut framework with 3D tubular structure[J]. Advanced Energy Materials, 2021, 11: 2003699.
[168]XU P, LI X, YAN M Y, et al. A highly reversible sodium metal anode by mitigating electrodeposition overpotential[J]. Journal of Materials Chemistry A, 2021, 9: 22892-22900.
[169]LIU S Y, BAI M, TANG X Y, et al. Enabling high -performance sodium metal anode via a presodiated alloy -induced interphase[J]. Chemical Engineering Journal, 2021, 417:
[170]FANG Y, LIAN R, LI H, et al. Induction of planar sodium growth on MXene (Ti 3C2Tx )-modified carbon cloth hosts for flexible sodium metal anodes[J]. ACS Nano, 2020, 14: 8744-8753.
[171]CAO K S, MA Q L, TIETZ F, et al. A robust, highly reversible, mixed conducting sodium metal anode[J]. Science Bulletin, 2021, 66: 179 -186.
[172]YAN K, ZHAO S, ZHANG J, et al. Dendrite -free sodium metal batteries enabled by the release of contact strain on flexible a nd sodiophilic matrix[J]. Nano Letters, 2020, 20: 6112-6119.
[173]ZHANG J L, WANG W H, SHI R Y, et al. Three -dimensional carbon felt host for stable sodium metal anode[J]. Carbon, 2019, 155: 50 -55.
[174]CHU C X, WANG N N, LI L L, et al. Uniform nucleatio n of sodium in 3D carbon nanotube framework via oxygen doping for long -life and efficient Na metal anodes[J]. Energy Storage Materials, 2019, 23: 137-143.
[175]ZHENG X, LI P, CAO Z, et al. Boosting the reversibility of sodium metal anode via heteroatom-doped hollow carbon fibers[J]. Small, 2019, 15: e1902688.
[176]YANG L, WANG W, HU M, et al. Ultrahigh rate binder-free Na 3V2 (PO4 ) 3 /carbon cathode for sodium-ion battery[J]. Journal of Energy Chemistry, 2018, 27: 1439-1445.
[177]JIANG R, HONG L, LIU Y, et a l. An acetamide additive stabilizing ultra -low concentration electrolyte for long -cycling and high-rate sodium metal battery[J]. Energy Storage Materials, 2021, 42: 370-379.
[178]ZHANG W, ZHANG J, LIU X, et al. In -situ polymerized gel polymer electrolytes with high room-temperature ionic conductivity and regulated Na +solvation structure for sodium metal batteries[J]. Advanced FunctionalMaterials, 2022, 32: 2201205.
[179]COHN A P, METKE T, DONOHUE J, et al. Rethinking sodium-ion anodes as nucleation layers for anode -free batteries[J]. Journal of Materials Chemistry A, 2018, 6: 23875-23884.
[180]LU Q, OMAR A, HANTUSCH M, et al. Dendrite -free and corrosion-resistant sodium metal anode for enhanced sodium batteries[J]. Applied Surface Science, 2022, 600: 154168.
[181]XU Z, YANG J, ZHANG T, et al. Stable Na metal anode enabled by a reinforced multistructural SEI layer[J]. Advanced Functional Materials, 2019, 29: 1901924.
[182]CAO L, LI D, POLLARD T, et al. Fluorinated interphase enables reve rsible aqueous zinc battery chemistries[J]. Nature Nanotechnology, 2021, 16: 902 -910.
[183]YANG Q, LI Q, LIU Z, et al. Dendrites in Zn -based batteries[J]. AdvancedMaterials, 2020, 32: e2001854.
[184]HOU Z, GAO Y, ZHOU R, et al. Unraveling the rate -dependent stability of metal anodes and its implication in designing cycling protocol[J]. Advanced Functional Materials, 2022, 32: 2107584.
[185]HAN D, CUI C, ZHANG K, et al. A non -flammable hydrous organic electrolyte for sustainable zinc batteries[J]. Nature Sustainability, 2022, 5: 205-213.
[186]GUAN K L, TAO L, YANG R, et al. Anti-corrosion for reversible zinc anode via a hydrophobic interface in aqueous zinc batteries[J]. Advanced EnergyMaterials, 2022, 12: 2103557.
[187]HAO J, LI B, LI X, et al. An in -depth study of Zn metal surface chemistry for advanced aqueous Zn-ion batteries[J]. Advanced Materials, 2020, 32: e2003021.
[188]KUROTU T. Simultaneous determination of Zn (ii) and Ni(ii) in the presence of crown-ether by DC polarography[J]. Fresenius Journal of Analytical Chemistry, 1992, 344: 554-555.
[189]LEE S, KANG I, KIM J, et al. Real-time visualization of Zn metal plating/stripping in aqueous batteries with high areal capacities[J]. Journal of Power Sources, 2020, 472: 228334.
[190]XIN W, MIAO L, ZHANG L, et al. Turning the byproduct Zn 4 (OH) 6SO4·xH2O into a uniform solid electrolyte interphase to stabilize aqueous Zn anode[J]. ACS Materials Letters, 2021, 3: 1819-1825.
[191]ZHANG P, ZHU J, WANG M, et al. Lithium dendrite suppression and cycling efficiency of lithium anode[J]. Electrochemistry Communications, 2018, 87: 27-30.
[192]LEE Y, MA B, BAI P. Concentration polarization and metal dendrite initiation in isolated electrolyte microchannels[J]. Energy & Environmental Science, 2020, 13: 3504-3513.
[193]SUO L, HU Y S, LI H, et al. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries[J]. Nature Communications, 2013, 4: 1481.
[194]LANDESFEIND J, GASTEIGER H A. Temperature and concentration dependence of the ionic transport properties of lithium-ion battery electrolytes[J]. Journal of The Electrochemical Society, 2019, 166: A3079 -A3097.
[195]EHRL A, LANDESFEIND J, WALL W A, et al. Determination of transport parameters in liquid binary lithium ion battery electrolytes[J]. Journal of The Electrochemical Society, 2017, 164: A826 -A836.
[196]CHEN Q, ZHUANG W, HOU Z, et al. A dual-function additive to regulate nucleation behavior and interfacial chemistry for ultra -stable Na metal anodes beyond one year[J]. Advanced Functional Materials, 2022, 33: 2210206.
[197]BAI P, LI J, BRUSHETT F R, et al. Transition of lithium growth mechanisms in liquid electrolytes[J]. Energy & Environmental Science, 2016, 9: 3221 -3229.
[198]MA B, BAI P. Fast charging limits of ideally stable metal anodes in liquid electrolytes[J]. Advanced Energy Materials, 2022, 12: 2102967.
[199]NYMAN A, BEHM M, LINDBERGH G. Electrochemical characterisation and modelling of the mass transport phenomena in LiPF6 –EC–EMC electrolyte[J]. Electrochimica Acta, 2008, 53: 6356 -6365.
[200]CAI Y, ZHANG Q, LU Y, et al. An ionic liquid electrolyte with enhanced Li +transport ability enables stable Li deposition for high -performance Li-O2batteries[J]. Angewandte Chemi e International Edition, 2021, 60: 25973 -25980.

所在学位评定分委会
物理学
国内图书分类号
TM911.3
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544092
专题理学院_化学系
推荐引用方式
GB/T 7714
陈倩雯. 先进钠金属负极的界面设计及电化学性能研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930861-陈倩雯-化学系.pdf(11871KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[陈倩雯]的文章
百度学术
百度学术中相似的文章
[陈倩雯]的文章
必应学术
必应学术中相似的文章
[陈倩雯]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。