[1] LIU T, YANG X, NAI J, et al. Recent development of Na metal anodes: Interphase engineering chemistries determine the electrochemical performance[J]. Chemical Engineering Journal, 2021, 409: 127943.
[2] SHI H, ZHANG Y, LIU Y, et al. Metallic sodium anodes for advanced sodium metal batteries: Progress, challenges and perspective[J]. The Chemical Record, 2022, 22: e202200112.
[3] WANG T, HUA Y, XU Z, et al. Recent advanced development of artificial interphase engineering for stable sodium metal anodes[J]. Small, 2022, 18: e2102250.
[4] ZHENG X, HUANG L, YE X, et al. Critical effects of electrolyte recipes for Li and Na metal batteries[J]. Chem, 2021, 7: 2312 -2346.
[5] BAO C, WANG B, LIU P, et al. Solid electrolyte interphases on sodium metal anodes[J]. Advanced Functional Materials, 2020, 30: 2004891.
[6] CHU C X, LI R, CAI F P, et al. Recent advanced skeletons in sodium metal anodes[J]. Energy & Environmental Science, 2021, 14: 4318-4340.
[7] XIA X, DU C F, ZHONG S, et al. Homogeneous Na deposition enab ling highenergy Na-metal batteries[J]. Advanced Functional Materials, 2021, 32: 2110280.
[8] ZHENG X, BOMMIER C, LUO W, et al. Sodium metal anodes for room -temperature sodium-ion batteries: Applications, challenges and solutions[J]. Energy Storage Materials, 2019, 16: 6-23.
[9] ZHU P, GASTOL D, MARSHALL J, et al. A review of current collectors for lithium-ion batteries[J]. Journal of Power Sources, 2021, 485: 229321.
[10] LI Y, LU Y, ZHAO C, et al. Recent advances of electrode materials for low cost sodium-ion batteries towards practical application for grid energy storage[J]. Energy Storage Materials, 2017, 7: 130-151.
[11] SUN Z, YE Y, ZHU J, et al. Regulating sodium deposition th rough gradientlygraphitized framework for dendrite -free Na metal anode[J]. Small, 2022, 18: e2107199.
[12] XU M, LI Y, IHSAN-UL-HAQ M, et al. NaF-rich solid electrolyte interphase for dendrite -free sodium metal batteries[J]. Energy Storage Materials, 2022, 44: 477-486.
[13] ZHAO W, GUO M, ZUO Z, et al. Engineering sodium metal anode with sodiophilic bismuthide penetration for dendrite -free and high-rate sodium-ion battery[J]. Engineering, 2022, 11: 87 -94.
[14] FAN L, LI X. Recent advances in effective prot ection of sodium metal anode[J]. Nano Energy, 2018, 53: 630 -642.
[15] HU X, SUN J, LI Z, et al. Rechargeable room-temperature Na -CO2 batteries[J]. Angewandte Chemie International Edition, 2016, 55: 6482 -6486.
[16] WAKIHARA M. Recent developments in lithium ion batteries[J]. MaterialsScience & Engineering R-Reports, 2001, 33: 109-134.
[17] LI L, ZHENG Y, ZHANG S, et al. Recent progress on sodium ion batteries: Potential high-performance anodes[J]. Energy & Environmental Science, 2018, 11: 2310-2340.
[18] KUBOTA K, KOMABA S. Review—practical issues and future perspective for Na-ion batteries[J]. Journal of The Electrochemical Society, 2015, 162: A2538-A2550.
[19] ZHAO Y, ADAIR K R, SUN X. Recent developments and insights into the understanding of Na metal anodes for Na-metal batteries[J]. Energy & Environmental Science, 2018, 11: 2673 -2695.
[20] PONROUCH A, FRONTERA C, BARDE F, et al. Towards a calcium-based rechargeable battery[J]. Nature Materials, 2016, 15: 169-172.
[21] LEE B, PAEK E, MITLIN D, et al. Sodi um metal anodes: Emerging solutions to dendrite growth[J]. Chemical Reviews, 2019, 119: 5416 -5460.
[22] ROSSO M, BRISSOT C, TEYSSOT A, et al. Dendrite short-circuit and fuse effect on Li/polymer/Li cells[J]. Electrochimica Acta, 2006, 51: 5334 -5340.
[23] TAKEDA Y, YAMAMOTO O, IMANISHI N. Lithium dendrite formation on a lithium metal anode from liquid, polymer and solid electrolytes[J]. Electrochemistry, 2016, 84: 210-218.
[24] SEONG I W, HONG C H, KIM B K, et al. The effects of current density and amount of discharge on dendrite formation in the lithium powder anode electrode[J]. Journal of Power Sources, 2008, 178: 769 -773.
[25] BRISSOT C, ROSSO M, CHAZALVIEL J-N, et al. In situ study of dendritic growth in lithium/PEO-salt/lithium cells[J]. Electrochimica Acta, 1998, 43: 1569-1574.
[26] ZHONG Y R, SHI Q W, ZHU C Q, et al. Mechanistic insights into fast charging and discharging of the sodium metal battery anode: a comparison with lithium[J]. Journal of the American Chemical Society, 2021, 143: 13929 -13936.
[27] DENG Y, ZHENG J X, WARREN A, et al. On the reversibility and fragility of sodium metal electrodes[J]. Advanced Energy Materials, 2019, 9: 1901651.
[28] HAN M, ZHU C, MA T, et al. In situ atomic force microscopy study of nano –micro sodium deposition in ester-based electrolytes[J]. Chemical Communications, 2018, 54: 2381-2384.
[29] HONG Y-S, LI N, CHEN H, et al. In operando observation of chemical and mechanical stability of Li and Na dendrites under quasi-zero electrochemical field[J]. Energy Storage Materials, 2018, 11: 118-126.
[30] PELED E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model[J]. Journal of The Electrochemical Society, 1979, 126: 2047.
[31] GOODENOUGH J B, KIM Y. Challenges for rechargea ble Li batteries[J]. Chemistry of Materials, 2010, 22: 587-603.
[32] AN S J, LI J L, DANIEL C, et al. The state of understanding of the lithium -ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling[J]. Carbon, 2016, 105: 52 -76.
[33] YAN J, ZHANG J, SU Y C, et al. A novel perspecti ve on the formation of the solid electrolyte interphase on the graphite electrode for lithium -ion batteries[J]. Electrochimica Acta, 2010, 55: 1785 -1794.
[34] USHIROGATA K, SODEYAMA K, FUTERA Z, et al. Near-shore aggregation mechanism of electrolyte decomposition products to explain solid electrolyte interphase formation[J]. Journal of The Electrochemical Society, 2015, 162: A2670-A2678.
[35] CHE H Y, CHEN S L, XIE Y Y, et al. Electrolyte design strategies and research progress for room-temperature sodium-ion batteries[J]. Energy & Environmental Science, 2017, 10: 1075 -1101.
[36] RODRIGUEZ R, LOEFFLER K E, NATHAN S S, et al. In situ optical imaging of sodium electrodeposition: Effects of fluoroethylene carbonate[J]. ACS Energy Letters, 2017, 2: 2051 -2057.
[37] PAN K, LU H, ZHONG F, et al. Understanding the electrochemical compatibility and reaction mechanism on Na metal and hard carbon anodes of PC-based electrolytes for sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2018, 10: 39651-39660.
[38] CHEN Q W, HE H, HOU Z, et al. Building an artificial solid electrolyte interphase with high-uniformity and fast ion diffusion for ultralong -life sodium metal anodes[J]. Journal of Materials Chemistry A, 2020, 8: 16232-16237.
[39] LIN D, LIU Y, CUI Y. Reviv ing the lithium metal anode for high -energy batteries[J]. Nature Nanotechnology, 2017, 12: 194 -206.
[40] WEI S, CHOUDHURY S, XU J, et al. Highly stable sodium batteries enabled by functional ionic polymer membranes[J]. Advanced Materials, 2017, 29: 1605512.
[41] CHEN X, SHEN X, LI B, et al. Ion-solvent complexes promote gas evolution from electrolytes on a sodium metal anode[J]. Angewandte Chemie International Edition, 2018, 57: 734 -737.
[42] LI Z P, ZHU K J, LIU P, et al. 3D confinement strategy for dendri te-free sodium metal batteries[J]. Advanced Energy Materials, 2022, 12: 2100359.
[43] LIU B, LEI D, WANG J, et al. 3D uniform nitrogen -doped carbon skeleton for ultra-stable sodium metal anode[J]. Nano Research, 2020, 13: 2136 -2142.
[44] CHOUDHURY S, WEI S, OZHABES Y, et al. Designing solid -liquid interphases for sodium batteries[J]. Nature Communications, 2017, 8: 898.
[45] LUTZ L, ALVES DALLA CORTE D, TANG M, et al. Role of electrolyte anions in the Na-O2 battery: implications for NaO2 solvation and the stability of the sodium solid electrolyte interphase in glyme ethers[J]. Chemistry ofMaterials, 2017, 29: 6066-6075.
[46] CHEN Q W, ZHANG T X, HOU Z, et al. Large -scale sodiophilic/buffered alloy architecture enables deeply cyclable Na metal anodes[J]. Chemical Engineering Journal, 2022, 433: 133270.
[47] CHEN R, LU X, HE Q, et al. Sb2S3 nanorod hierarchies enabling homogeneous sodium deposition for dendrite -free sodium-metal batteries[J]. ACS Applied Energy Materials, 2022, 5: 10952-10960.
[48] WANG G, ZHANG Y, GUO B, et al. Core -shell C@Sb nanoparticles as a nucleation layer for high-performance sodium metal anodes[J]. Nano Letters, 2020, 20: 4464-4471.
[49] XIANG P, LIU W, CHEN X, et al. Facile one -step preparation of 3D nanoporous Cu/Cu6Sn5 microparticles as anode material for lithium-ion batteries with superior lithium storage properties[J]. Metallurgical andMaterials Transactions A, 2020, 51: 5965 -5973.
[50] XU Y, MENON A S, HARKS P P R M L, et al. Honeycomb -like porous 3D nickel electrodeposition for stable li and na metal anodes[J]. Energy StorageMaterials, 2018, 12: 69-78.
[51] YANG W, YANG W, DONG L B, et al. Hierarchical ZnO nanorod arrays grown on copper foam as an advanced three -dimensional skeleton for dendrite -free sodium metal anodes[J]. Nano Energy, 2021, 80: 105563.
[52] YAN J, ZHI G, KONG D, et al. 3D printed RGO/CNT microlattice aerogel for a dendrite-free sodium metal anode [J]. Journal of Materials Chemistry A, 2020, 8: 19843-19854.
[53] MUBARAK N, REHMAN F, IHSAN-UL-HAQ M, et al. Highly sodiophilic, defect-rich, lignin-derived skeletal carbon nanofiber host for sodium metal batteries[J]. Advanced Energy Materials, 2022, 12: 2103904.
[54] HE X, JIN S, MIAO L, et al. A 3D hydroxylated MXene/carbon nanotubes composite as a scaffold for dendrite -free sodium-metal electrodes[J]. Angewandte Chemie International Edition, 2020, 59: 16705 -16711.
[55] ZHAO Y, GONCHAROVA L V, LUSHINGTON A, et al. Superior stable and long life sodium metal anodes achieved by atomic layer depositio n[J]. Advanced Materials, 2017, 29: 1606663.
[56] WANG H, WANG C, MATIOS E, et al. Critical role of ultrathin graphene films with tunable thickness in enabling highly stable sodium metal anodes[J]. Nano Letters, 2017, 17: 6808-6815.
[57] SHI P, ZHANG S, LU G, et al. Red phosphorous-derived protective layers with high ionic conductivity and mechanical strength on dendrite -free sodium and potassium metal anodes[J]. Advanced Energy Materials, 2021, 11: 2003381.
[58] ZHU M, WANG G, LIU X, et al. Dendrite -free sodium metal anodes enabled by a sodium benzenedithiolate -rich protection layer[J]. Angewandte Chemie International Edition, 2020, 59: 6596 -6600.
[59] CHEN Q, HOU Z, SUN Z, et al. Polymer –inorganic composite prote ctive layer for stable Na metal anodes[J]. ACS Applied Energy Materials, 2020, 3: 2900-2906.
[60] HOU Z, WANG W H, YU Y K, et al. Poly (vinylidene difluoride) coating on Cu current collector for high -performance Na metal anode[J]. Energy StorageMaterials, 2020, 24: 588-593.
[61] YANG J Y, GAO Z H, FERBER T, et al. Guided -formation of a favorable interface for stabilizing Na metal solid -state batteries[J]. Journal of MaterialsChemistry A, 2020, 8: 7828-7835.
[62] ZHAO Y, GONCHAROVA L V, ZHANG Q, et al. Inor ganic-organic coating via molecular layer deposition enables long life sodium metal anode[J]. Nano Letters, 2017, 17: 5653 -5659.
[63] ZHANG S, ZHAO Y, ZHAO F, et al. Gradiently sodiated alucone as an interfacial stabilizing strategy for solid -state Na metal batteries[J]. Advanced Functional Materials 2020, 30: 2001118.
[64] ZHANG D, LI B, WANG S, et al. Simultaneous formation of artificial SEI film and 3D host for stable metallic sodium anodes[J]. ACS Applied Materials& Interfaces, 2017, 9: 40265-40272.
[65] MA M Y, LU Y, YAN Z H, et al. In situ synthesis of a bismuth layer on a sodium metal anode for fast interfacial transport in sodium-oxygen batteries[J]. Batteries & Supercaps, 2019, 2: 663 -667.
[66] TIAN H J, SHAO H Z, CHEN Y, et al. Ultra -stable sodium metal-iodine batteries enabled by an in-situ solid electrolyte interphase[J]. Nano Energy, 2019, 57: 692-702.
[67] LI P R, XU T H, DING P, et al. Highly reversible Na and K metal anodes enabled by carbon paper protection[J]. Energy Storage Materials, 2018, 15: 8-13.
[68] ZHANG L, XIA X, ZHONG Y, et al. Exploring self-healing liquid Na-K alloy for dendrite-free electrochemical energy storage[J]. Advance d Materials, 2018, 30: 1804011.
[69] TIAN H Z, SEH Z W, YAN K, et al. Theoretical investigation of 2D laye redmaterials as protective films for lithium and sodium metal anodes[J]. Advanced Energy Materials, 2017, 7: 1602528.
[70] SNYDACKER D H, HEGDE V I, WOLVERTON C. Electrochemically stable coating materials for Li, Na, and Mg metal anodes in durable high en ergy batteries[J]. Journal of The Electrochemical Society, 2017, 164: A3582 -A3589.
[71] IERMAKOVA D I, DUGAS R, PALACIN M R, et al. On the comparative stability of Li and Na metal anode interfaces in conventional alkyl carbonate electrolytes[J]. Journal of The Electrochemical Society, 2015, 162: A7060 -A7066.
[72] SEH Z W, SUN J, SUN Y, et al. A highly reversible room-temperature sodium metal anode[J]. ACS Central Science, 2015, 1: 449 -455.
[73] WANG S Y, CHEN Y W, JIE Y L, et al. Stable sodium metal batteri es viamanipulation of electrolyte solvation structure[J]. Small Methods, 2020, 4: 1900856.
[74] WANG C, THENUWARA A C, LUO J, et al. Extending the low -temperature operation of sodium metal batteries combining linear and cyclic ether-based electrolyte solutions[J]. Nature Communications, 2022, 13: 4934.
[75] ZHENG J M, LOCHALA J A, KWOK A, et al. Research progress towards understanding the unique interfaces between concentrated electrolytes and electrodes for energy storage applications[J]. Advanced Science , 2017, 4: 1700032.
[76] CAO R G, MISHRA K, LI X L, et al. Enabling room temperature sodium metal batteries[J]. Nano Energy, 2016, 30: 825 -830.
[77] LEE J, LEE Y, LEE J, et al. Ultraconcentrated sodium bis(fluorosulfonyl)imide -based electrolytes for high-performance sodium metal batteries[J]. ACS Applied Materials & Interfaces, 2017, 9: 3723-3732.
[78] RAKOV D A, CHEN F, FERDOUSI S A, et al. Engineering high -energydensity sodium battery anodes for improved cycling with superconcentra ted ionic-liquid electrolytes[J]. Nature Materials, 2020, 19: 1096-1101.
[79] WANG H, TONG Z Q, YANG R, et al. Electrochemically stable sodium metaltellurium/carbon nanorods batteries[J]. Advanced Energy Materials, 2019, 9: 1903046.
[80] CHEN X, QIN L, SUN J, et al. Phase transfer-mediated degradation of etherbased localized high-concentration electrolytes in alkali metal batteries[J].
[81] ZHENG J, CHEN S, ZHAO W, et al. Extremely stable sodium metal batteries enabled by localized high-concentration electrolytes[J]. ACS Energy Letters, 2018, 3: 315-321.
[82] GUO X F, YANG Z, ZHU Y F, et al. High -voltage, highly reversible sodium batteries enabled by fluorine -rich electrode/electrolyte interphases[J]. Small Methods, 2022, 6: e2200209.
[83] FAN J J, DAI P, SHI C G, et al. Synergistic dual-additive electrolyte for interphase modification to boost cyclability of layered cathode for sodium ion batteries[J]. Advanced Functional Materials, 2021, 31: 2010500.
[84] WANG H, WANG C, MATIOS E, et al. Facile stabiliz ation of the sodium metal anode with additives: Unexpected key role of sodium polysulfide and adverse effect of sodium nitrate[J]. Angewandte Chemie International Edition, 2018, 57: 7734-7737.
[85] ZHAO Y, LIANG J, SUN Q, et al. In situ formation of highly controllable and stable Na 3PS4 as a protective layer for Na metal anode[J]. Journal of MaterialsChemistry A, 2019, 7: 4119-4125.
[86] WANG W, ZHANG R P, ZUO P J, et al. An interphase -enhanced liquid Na-K anode for dendrite -free alkali metal batteries ena bled by SiCl 4 electrolyte additive[J]. Energy Storage Materials, 2021, 37: 199-206.
[87] ZHENG X, FU H, HU C, et al. Toward a stable sodium metal anode in carbonate electrolyte: a compact, inorganic alloy interface[J]. The Journal of Physical Chemistry Letters, 2019, 10: 707-714.
[88] CHEN X, SHEN X, HOU T Z, et al. Ion -solvent chemistry-inspired cationadditive strategy to stabilize electrolytes for sodium -metal batteries[J]. Chem, 2020, 6: 2242-2256.
[89] SHI Q, ZHONG Y, WU M, et al. High-performance sodium metal anodes enabled by a bifunctional potassium salt[J]. Angewandte Chemie International Edition, 2018, 57: 9069 -9072.
[90] ZHAO S, WANG C, DU D, et al. Bifunctional effects of cation additive on Na-O2 batteries[J]. Angewandte Chemie International Edit ion, 2021, 133: 3242-3248.
[91] YI Q, LU Y, SUN X, et al. Fluorinated ether based electrolyte enabling sodium-metal batteries with exceptional cycling stability[J]. ACS AppliedMaterials & Interfaces, 2019, 11: 46965 -46972.
[92] XIA L, XIA Y, WANG C, et al. 5 V-class electrolytes based on fluorinated solvents for Li-ion batteries with excellent cyclability[J]. ChemElectroChem, 2015, 2: 1707-1712.
[93] ZHENG X Y, GU Z Y, LIU X Y, et al. Bridging the immiscibility of an all -fluoride fire extinguishant with highly -fluorinated electrolytes toward safe sodium metal batteries[J]. Energy & Env ironmental Science, 2020, 13: 1788 -1798.
[94] PU J, ZHONG C, LIU J, et al. Advanced in situ technology for Li/Na metal anodes: an in-depth mechanistic understanding[J]. Energy & Environmental Science, 2021, 14: 3872-3911.
[95] LIU Q, ZHANG L, SUN H, et al. In situ observation of sodium dendrite growth and concurrent mechanical property measurements using an environmental transmission electron microscopy -atomic force microscopy (ETEM-AFM) platform[J]. ACS Energy Letters, 2020, 5: 2546 -2559.
[96] LI X K, ZHAO L Z, LI P, et al. In-situ electron microscopy observation of electrochemical sodium plating and stripping dynamics on carbon nanofiber current collectors[J]. Nano Energy, 2017, 42: 122 -128.
[97] BAYLEY P M, TREASE N M, GREY C P J J O T A C S. Insights int o electrochemical sodium metal deposition as probed with in situ 2 3Na NMR[J]. Journal of the American Chemical Society, 2016, 138: 1955 -1961.
[98] WENZEL S, LEICHTWEISS T, WEBER D A, et al. Interfacial reactivity benchmarking of the sodium ion conductors Na 3PS4 and sodium β-alumina for protected sodium metal anodes and sodium all-solid-state batteries[J]. ACS Applied Materials & Interfaces, 2016, 8: 28216-28224.
[99] ZHAO Y, GONCHAROVA L V, ZHANG Q, et al. Inorganic –organic coating via molecular layer deposition enables long life sodium metal anode[J]. Nano Letters, 2017, 17: 5653 -5659.
[100]SUN H, ZHU G, XU X, et al. A safe and non -flammable sodium metal battery based on an ionic liquid electrolyte[J]. Nature Communications, 2019, 10: 3302.
[101]FANG Y, LUAN D, LOU X W D. Recent advances on mixed metal sulfides for advanced sodium-ion batteries[J]. Advanced Materials, 2020, 32: e2002976.
[102]SUN B, XIONG P,.MAITRA U, et al. Design strategies to enable the efficient use of sodium metal anodes in high -energy batteries[J]. Advanced Materials, 2020, 32: e1903891.
[103]WU Y, XING F, XU R, et al. Spatially confining and chemically bonding amorphous red phosphorus in the nitrogen doped porous carbon tubes leading to superior sodium storage performance[J]. Journ al of Materials Chemistry A, 2019, 7: 8581-8588.
[104]HOU Z, YU Y, WANG W, et al. Lithiophilic Ag nanoparticle layer on Cu current collector toward stable Li metal anode[J]. ACS Applied Materials & Interfaces, 2019, 11: 8148-8154.
[105]LU K, GAO S, LI G, et al. Regulating interfacial Na -ion flux via artificial layers with fast ionic conductivity for stable and high -rate Na metal batteries [J]. ACS Materials Letters, 2019, 1: 303-309.
[106]HOU Z, WANG W, YU Y, et al. Poly(vinylidene difluoride) coating on Cu current collector for high-performance Na metal anode[J]. Energy StorageMaterials, 2020, 24: 588-593.
[107]LUO J, LU X,.MATIOS E, et al. Tunable MXene -derived 1D/2D hybrid nanoarchitectures as a stable matrix for dendrite -free and ultrahigh capacity sodium metal anode[J]. Nano Letters, 2020, 20: 7700 -7708.
[108]YANG H, ZHANG L, WANG H, et al. Regulating Na deposition by constructing a Au sodiophilic interphase on CNT modified carbon cloth for flexible sodium metal anode [J]. Journa l of Colloid and Interface Science, 2022, 611: 317-326.
[109]GO W, KIM M H, PARK J, et al. Nanocrevasse -rich carbon fibers for stable lithium and sodium metal anodes[J]. Nano Letters, 2019, 19: 1504 -1511.
[110]SUN B, LI P, ZHANG J, et al. Dendrite -free sodium-metal anodes for highenergy sodium-metal batteries[J]. Advanced Materials, 2018, 30: e1801334.
[111]WANG Z, ZHANG X, ZHOU S, et al. Lightweight, thin, and flexible silver nanopaper electrodes for high-capacity dendrite-free sodium metal anodes[J]. Advanced Functional Materials, 2018, 28: 1804038.
[112]HOU Z, WANG W, CHEN Q, et al. Hybrid protective layer for stable sodium metal anodes at high utilization[J]. ACS Applied Materials & Interfaces, 2019, 11: 37693-37700.
[113]LIANG S, CHENG Y J, ZHU J, et al. A chronicle review of nonsilicon (Sn, Sb, Ge)-based lithium/sodium-ion battery alloying anodes[J]. Small Methods, 2020, 4: 2000218.
[114]TANG S, ZHANG Y Y, ZHANG X G, et al. Stable Na plating and stripping electrochemistry promoted by in situ construction of an alloy-based sodiophilic interphase[J]. Advanced Materials, 2019, 31: e1807495.
[115]BAGGETTO L, JUMAS J C, GORKA J, et al. Predictions of particle size and lattice diffusion pathway requirements for sodium-ion anodes using eta -Cu6Sn5 thin films as a model system[J]. Physical Chemistry Chemical Physics, 2013, 15: 10885-10894.
[116]WANG T S, LIU Y C, LU Y X, et al. Dendrite -free Na metal plating/stripping onto 3D porous Cu hosts[J]. Energy Storage Materials, 2018, 15: 274-281.
[117]YANG C, LIN C, LIN S, et al. Cu 0 . 0 2Ti 0 . 9 4Nb2 . 0 4O7 : an advanced anodematerial for lithium-ion batteries of electric vehicles[J]. Journal of Power Sources, 2016, 328: 336-344.
[118]SUDAGAR J, LIAN J, SHA W. Electroless nickel, alloy, composite and nano coatings-a critical review[J]. Journal of Alloys and Compounds, 2013, 571: 183-204.
[119]AGARWALA R C, AGARWALA V. Electroless alloy/composite coatings: A review[J]. Sadhana -Academy Proceedings in Engineering Sciences, 2003, 28: 475-493.
[120]PARK C, YOO B, LEE J. Characteristics of electroless Sn plating electrolyte using a choline chloride -based ionic liquid[J]. Korean Journal of Metals andMaterials, 2018, 56: 645-651.
[121]ZHAO J, CUI G F. Study on adsorption and complexation behavior of thiourea on copper surface[J]. International Journal of Electrochemical Science, 2011, 6: 4048-4058.
[122]FUJIWARA Y. Sn deposition onto Cu and alloy layer growth by a contact immersion process[J]. Thin Solid Films, 2003, 425: 121 -126.
[123]FUJIWARA Y, SHIBASAKI K, TAKAHASHI M, et al. Cu-Sn alloy microtube assembly fabricated by electroless plating on polyester nonwoven fabric and its lithiation-delithiation performance[J]. Applied Surface Science, 2019, 493: 112-124.
[124]WANG G, AUBIN M, MEHTA A, et al. Stabilization o f Sn anode through structural reconstruction of a Cu -Sn intermetallic coating layer[J]. AdvancedMaterials, 2020, 32: 2003684.
[125]LI K, ZHANG J, LIN D, et al. Evolution of the electrochemical interface in sodium ion batteries with ether electrolytes[J]. Nature Communications, 2019, 10: 725.
[126]DOI K, YAMADA Y, OKOSHI M, et al. Reversible sodium metal electrodes: is fluorine an essential interphasial component?[J]. Angewandte Chemie International Edition, 2019, 58: 8024 -8028.
[127]MARCINIUK L L, HAMMER P, PASTORE H O, et al. Sodium titanate as basic catalyst in transesterification reactions[J]. Fuel, 2014, 118: 48 -54.
[128]LU X, LUO J M,.MATIOS E, et al. Enabling high-performance sodium metal anodes via a sodiophilic structure constructed by hierarchi cal Sb2MoO6microspheres[J]. Nano Energy, 2020, 69: 104446.
[129]CUI X Y, WANG Y J, WU H D, et al. A carbon foam with sodiophilic surface for highly reversible, ultra -long cycle sodium metal anode[J]. Advanced Science, 2021, 8: 2003178.
[130]HU X, JOO P H, WANG H, et al. Nip the sodium dendrites in the bud on planar doped graphene in liquid/gel electrolytes[J]. Advanced FunctionalMaterials, 2019, 29: 1807974.
[131]LIU S, BAI M, TANG X, et al. Enabling high -performance sodium metal anode via a presodiate d alloy-induced interphase[J]. Chemical Engineering Journal, 2021, 417: 128997.
[132]LI Y, OU C, ZHU J, et al. Ultrahigh and durable volumetric lithium/sodium storage enabled by a highly dense graphene -encapsulated nitrogen -doped carbon@Sn compact monolith[J]. Nano Letters, 2020, 20: 2034 -2046.
[133]XU Y, WANG C,.MATIOS E, et al. Sodium deposition with a controlled location and orientation for dendrite -free sodium metal batteries[J]. Advanced Energy Materials, 2020, 10: 2002308.
[134]XIE Y, HU J, HAN Z, et al. Encapsulating sodium deposition into carbon rhombic dodecahedron guided by sodiophilic sites for dendrite -free Na metal batteries[J]. Energy Storage Materials, 2020, 30: 1-8.
[135]YE L, LIAO M, ZHAO T, et al. A sodiophilic inter phase-mediated, dendrite -free anode with ultrahigh specific capacity for sodium-metal batteries[J]. Angewandte Chemie International Edition, 2019, 58: 17054 -17060.
[136]WANG L, SHANG J, HUANG Q, et al. Smoothing the sodium-metal anode with a self-regulating alloy interface for high-energy and sustainable sodiummetal batteries[J]. Advanced Materials, 2021, 33: e2102802.
[137]JIN Q, LU H, ZHANG Z, et al. Synergistic manipulation of Na +flux and surface-preferred effect enabling high -areal-capacity and dendrite-free sodium metal battery[J]. Advanced Science, 2022, 9: e2103845.
[138]PI Y, GAN Z, LI Z, et al. Methanol-derived high-performance Na 3V2 (PO4 ) 3 /C: From kilogram-scale synthesis to pouch cell safety detection[J]. Nanoscale, 2020, 12: 21165-21171.
[139]NAVEED A, YANG H, SHAO Y, et al. A highly reversible Zn anode with intrinsically safe organic electrolyte for long -cycle-life batteries[J]. Advanced Materials, 2019, 31: e1900668.
[140]HOU Z, LU Z, CHEN Q, et al. Realizing wide -temperature Zn metal anodes through concurrent interface stability regulation and solvation structure modulation[J]. Energy Storage Materials, 2021, 42: 517-525.
[141]BIOVIA D S J R. Materials studio[J]. 2017.
[142]SUN H, REN P, FRIED J R. The compass force field: Parameterization and validation for phosphazenes[J]. Computational and Theoretical Polymer Science, 1998, 8: 229-246.
[143]BORODIN O, OLGUIN M, GANESH P, et al. Competitive lithium solvation of linear and cyclic carbonates from quantum chemistry[J]. Physical Chemistry Chemical Physics, 2016, 18: 164 -175.
[144]KAZEMABAD M, VERLIEFDE A, CORNELISSEN E R, et al. Crown ether containing polyelectrolyte multilayer membranes for lithium recovery[J]. Journal of Membrane Science, 2020, 595: 117432.
[145]IANNAZZO D, ESPRO C, FERLAZZO A, et al. Electrochemical and fluorescent properties of crown ether functionalized graphene quantum dots for potassium and sodium ions detection[J]. Nanomaterials, 2021, 11: 2897.
[146]PEDERSEN C J, FRENSDORFF H K Macrocyclic polyethers and their complexes[J]. Angewandte Chemie International Edition, 1972, 11: 16 -25.
[147]YAHMIN Y, PRANOWO H D, ARMUNANTO R. Theoretical study on 15 -crown-5 complex with some metal cations[J]. Indonesian J ournal of Chemistry, 2012, 12: 135-140.
[148]WANG X, MAI W, GUAN X, et al. Recent advances of electroplating additives enabling lithium metal anodes to applicable battery techniques[J]. Energy & Environmental Materials, 2020, 4: 284-292.
[149]MENG R, LI H, LU Z, et al. Tuning Zn-ion solvation chemistry with chelating ligands toward stable aqueous Zn anodes[J]. Advanced Materials, 2022, 34: 2200677.
[150]YU Z, RUDNICKI P E, ZHANG Z W, et al. Rational solvent molecule tuning for high-performance lithium me tal battery electrolytes[J]. Nature Energy, 2022, 7: 94-106.
[151]LI Y, XU P, MOU J, et al. Single cobalt atoms decorated n -doped carbon polyhedron enabled dendrite -free sodium metal anode[J]. Small Methods, 2021, 5: e2100833.
[152]ZHANG Q, LU Y Y, ZHOU M, et al. Achieving a stable Na metal anode with a 3D carbon fibre scaffold[J]. Inorganic Chemistry Frontiers, 2018, 5: 864 -869.
[153]YUAN L, HU J G, DING Z Y, et al. Electrochemical deposition of bright nickel on titanium matrix from ammoniacal solution in the presence of thiourea[J]. International Journal of Electrochemical Science, 2017, 12: 7312 -7325.
[154]MA M Y, CAI H R, XU C L, et al. Engineering solid electrolyte interface at nano-scale for high-performance hard carbon in sodium-ion batteries[J]. Advanced Functional Materials, 2021, 31: 2100278.
[155]XU Z L, YOON G, PARK K Y, et al. Tailoring sodium intercalation in graphite for high energy and power sodium ion batteries[J]. Nature Communications, 2019, 10: 2598.
[156]LUKATSKAYA M R, FELDBLYUM J I, MACKANIC D G, et al. Concentrated mixed cation acetate "water-in-salt" solutions as green and low-cost high voltage electrolytes for aqueous batteries[J]. Energy & Environmental Science, 2018, 11: 2876-2883.
[157]REN X D, ZOU L F, CAO X, et al. Enablin g high-voltage lithium-metal batteries under practical conditions[J]. Joule, 2019, 3: 1662 -1676.
[158]ZHANG G Z, DENG X L, LI J W, et al. A bifunctional fluorinated ether co -solvent for dendrite -free and long-term lithium metal batteries[J]. Nano Energy, 2022, 95: 107014.
[159]MOON H, MANDAI T, TATARA R, et al. Solvent activity in electrolyte solutions controls electrochemical reactions in Li-ion and Li-sulfur batteries[J]. Journal of Physical Chemistry C, 2015, 119: 3957 -3970.
[160]PARISI M, PAPPALARDO S. Ten-membered rings or larger with one or more oxygen atoms[M]. Comprehensive heterocyclic chemistry iii. Elsevier. 2008: 667-750.
[161]ZHENG X, WENG S, LUO W, et al. Deciphering the role of fluoroethylene carbonate towards highly reversible sodium metal anodes[J]. Research, 2022, 2022: 9754612.
[162]LIU X Y, ZHENG X Y, DAI Y M, et al. Fluoride -rich solid-electrolyte -interface enabling stable sodium metal batteries in high -safe electrolytes[J]. Advanced Functional Materials, 2021, 31: 2103522.
[163]ESHETU G G, DIEMANT T, HEKMATFAR M, et al. Impact of the electrolyte salt anion on the solid electrolyte interphase formation in sodium ion batteries[J]. Nano Energy, 2019, 55: 327 -340.
[164]LUO J, WANG C, WANG H, et al. Pillared MXene with ultral arge interlayer spacing as a stable matrix for high performance sodium metal anodes[J]. Advanced Functional Materials, 2018, 29: 1805946.
[165]WANG S Y, LIU Y, LU K, et al. Engineering RGO/MXene hybrid film as an anode host for stable sodium-metal batteries[J]. Energy & Fuels, 2021, 35: 4587-4595.
[166]TAI Z X, LIU Y J, YU Z P, et al. Noncollapsing 3D solid -electrolyte interphase for high -rate rechargeable sodium metal batteries[J]. Nano Energy,2022, 94: 106947.
[167]LI T J, SUN J C, GAO S Z, et al. Superior sodium metal anodes enabled by sodiophilic carbonized coconut framework with 3D tubular structure[J]. Advanced Energy Materials, 2021, 11: 2003699.
[168]XU P, LI X, YAN M Y, et al. A highly reversible sodium metal anode by mitigating electrodeposition overpotential[J]. Journal of Materials Chemistry A, 2021, 9: 22892-22900.
[169]LIU S Y, BAI M, TANG X Y, et al. Enabling high -performance sodium metal anode via a presodiated alloy -induced interphase[J]. Chemical Engineering Journal, 2021, 417:
[170]FANG Y, LIAN R, LI H, et al. Induction of planar sodium growth on MXene (Ti 3C2Tx )-modified carbon cloth hosts for flexible sodium metal anodes[J]. ACS Nano, 2020, 14: 8744-8753.
[171]CAO K S, MA Q L, TIETZ F, et al. A robust, highly reversible, mixed conducting sodium metal anode[J]. Science Bulletin, 2021, 66: 179 -186.
[172]YAN K, ZHAO S, ZHANG J, et al. Dendrite -free sodium metal batteries enabled by the release of contact strain on flexible a nd sodiophilic matrix[J]. Nano Letters, 2020, 20: 6112-6119.
[173]ZHANG J L, WANG W H, SHI R Y, et al. Three -dimensional carbon felt host for stable sodium metal anode[J]. Carbon, 2019, 155: 50 -55.
[174]CHU C X, WANG N N, LI L L, et al. Uniform nucleatio n of sodium in 3D carbon nanotube framework via oxygen doping for long -life and efficient Na metal anodes[J]. Energy Storage Materials, 2019, 23: 137-143.
[175]ZHENG X, LI P, CAO Z, et al. Boosting the reversibility of sodium metal anode via heteroatom-doped hollow carbon fibers[J]. Small, 2019, 15: e1902688.
[176]YANG L, WANG W, HU M, et al. Ultrahigh rate binder-free Na 3V2 (PO4 ) 3 /carbon cathode for sodium-ion battery[J]. Journal of Energy Chemistry, 2018, 27: 1439-1445.
[177]JIANG R, HONG L, LIU Y, et a l. An acetamide additive stabilizing ultra -low concentration electrolyte for long -cycling and high-rate sodium metal battery[J]. Energy Storage Materials, 2021, 42: 370-379.
[178]ZHANG W, ZHANG J, LIU X, et al. In -situ polymerized gel polymer electrolytes with high room-temperature ionic conductivity and regulated Na +solvation structure for sodium metal batteries[J]. Advanced FunctionalMaterials, 2022, 32: 2201205.
[179]COHN A P, METKE T, DONOHUE J, et al. Rethinking sodium-ion anodes as nucleation layers for anode -free batteries[J]. Journal of Materials Chemistry A, 2018, 6: 23875-23884.
[180]LU Q, OMAR A, HANTUSCH M, et al. Dendrite -free and corrosion-resistant sodium metal anode for enhanced sodium batteries[J]. Applied Surface Science, 2022, 600: 154168.
[181]XU Z, YANG J, ZHANG T, et al. Stable Na metal anode enabled by a reinforced multistructural SEI layer[J]. Advanced Functional Materials, 2019, 29: 1901924.
[182]CAO L, LI D, POLLARD T, et al. Fluorinated interphase enables reve rsible aqueous zinc battery chemistries[J]. Nature Nanotechnology, 2021, 16: 902 -910.
[183]YANG Q, LI Q, LIU Z, et al. Dendrites in Zn -based batteries[J]. AdvancedMaterials, 2020, 32: e2001854.
[184]HOU Z, GAO Y, ZHOU R, et al. Unraveling the rate -dependent stability of metal anodes and its implication in designing cycling protocol[J]. Advanced Functional Materials, 2022, 32: 2107584.
[185]HAN D, CUI C, ZHANG K, et al. A non -flammable hydrous organic electrolyte for sustainable zinc batteries[J]. Nature Sustainability, 2022, 5: 205-213.
[186]GUAN K L, TAO L, YANG R, et al. Anti-corrosion for reversible zinc anode via a hydrophobic interface in aqueous zinc batteries[J]. Advanced EnergyMaterials, 2022, 12: 2103557.
[187]HAO J, LI B, LI X, et al. An in -depth study of Zn metal surface chemistry for advanced aqueous Zn-ion batteries[J]. Advanced Materials, 2020, 32: e2003021.
[188]KUROTU T. Simultaneous determination of Zn (ii) and Ni(ii) in the presence of crown-ether by DC polarography[J]. Fresenius Journal of Analytical Chemistry, 1992, 344: 554-555.
[189]LEE S, KANG I, KIM J, et al. Real-time visualization of Zn metal plating/stripping in aqueous batteries with high areal capacities[J]. Journal of Power Sources, 2020, 472: 228334.
[190]XIN W, MIAO L, ZHANG L, et al. Turning the byproduct Zn 4 (OH) 6SO4·xH2O into a uniform solid electrolyte interphase to stabilize aqueous Zn anode[J]. ACS Materials Letters, 2021, 3: 1819-1825.
[191]ZHANG P, ZHU J, WANG M, et al. Lithium dendrite suppression and cycling efficiency of lithium anode[J]. Electrochemistry Communications, 2018, 87: 27-30.
[192]LEE Y, MA B, BAI P. Concentration polarization and metal dendrite initiation in isolated electrolyte microchannels[J]. Energy & Environmental Science, 2020, 13: 3504-3513.
[193]SUO L, HU Y S, LI H, et al. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries[J]. Nature Communications, 2013, 4: 1481.
[194]LANDESFEIND J, GASTEIGER H A. Temperature and concentration dependence of the ionic transport properties of lithium-ion battery electrolytes[J]. Journal of The Electrochemical Society, 2019, 166: A3079 -A3097.
[195]EHRL A, LANDESFEIND J, WALL W A, et al. Determination of transport parameters in liquid binary lithium ion battery electrolytes[J]. Journal of The Electrochemical Society, 2017, 164: A826 -A836.
[196]CHEN Q, ZHUANG W, HOU Z, et al. A dual-function additive to regulate nucleation behavior and interfacial chemistry for ultra -stable Na metal anodes beyond one year[J]. Advanced Functional Materials, 2022, 33: 2210206.
[197]BAI P, LI J, BRUSHETT F R, et al. Transition of lithium growth mechanisms in liquid electrolytes[J]. Energy & Environmental Science, 2016, 9: 3221 -3229.
[198]MA B, BAI P. Fast charging limits of ideally stable metal anodes in liquid electrolytes[J]. Advanced Energy Materials, 2022, 12: 2102967.
[199]NYMAN A, BEHM M, LINDBERGH G. Electrochemical characterisation and modelling of the mass transport phenomena in LiPF6 –EC–EMC electrolyte[J]. Electrochimica Acta, 2008, 53: 6356 -6365.
[200]CAI Y, ZHANG Q, LU Y, et al. An ionic liquid electrolyte with enhanced Li +transport ability enables stable Li deposition for high -performance Li-O2batteries[J]. Angewandte Chemi e International Edition, 2021, 60: 25973 -25980.
修改评论