中文版 | English
题名

超导量子比特频率调制的优化

姓名
姓名拼音
LIANG Yongqi
学号
12032898
学位类型
硕士
学位专业
070205 凝聚态物理
学科门类/专业学位类别
07 理学
导师
陈远珍
导师单位
物理系
论文答辩日期
2023-06-01
论文提交日期
2023-06-26
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

超导量子线路具有灵活的可设计性、良好的可扩展性以及可操控性,因此以 其为基础的超导量子计算是目前主流的量子计算技术路线之一。扩展超导量子线 路的一个重要环节是实现可控的量子比特之间的耦合。超导量子比特之间可以通 过片上电容等器件直接耦合。但在这类耦合方案中,由于器件参数在样品制备时 就已经固定下来,因此缺乏可调性,对量子线路的功能有较大的限制。为此,研 究者开发了多种具有更好可调性的间接耦合方案,当前一种被广泛采用的方式是 利用频率可调的超导量子比特作为耦合器。通过改变耦合器的频率,不但可以对 被耦合的两个量子比特之间的等效耦合强度进行调制,还能实现一些直接耦合方 案不能或难以实现的更为复杂的耦合形式,例如比特之间的红、蓝边带(red、blue sideband)耦合,这些耦合对于特定的量子计算和量子模拟功能非常关键。 本论文研究了利用 Transmon 类型的耦合器实现超导量子比特之间可控的 blue(red) sideband 耦合的可行性。我们首先建立了体系的等效电路模型,然后利 用数值模拟方法寻找和优化对耦合器频率进行调制的方式和参数,并在一维超导 量子比特链样品上进行了实验,实现了可以同时开关且强度独立可调的 blue sideband 和 red sideband 耦合。基于这一技术,在由三个超导量子比特和两个耦合器组 成的体系的态空间中,我们构造了一个四能级演化环路,并通过改变 sideband 驱 动信号来调制环路中的相位,从而观测到 Aharonov-Bohm 干涉现象。这一技术对 于利用超导量子线路开展诸如人造规范场和一些代表性的凝聚态物理模型的量子 模拟具有重要价值。

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2023-06
参考文献列表

[1] NIELSEN M A, CHUANG I L. Quantum computation and quantum information[J]. Phys.Today, 2001, 54(2): 13-15.
[2] FEYNMAN R P. Simulating physics with computers[J]. International Journal of TheoreticalPhysics, 1982, 21(6): 467-488.
[3] BULUTA I, NORI F. Quantum simulators[J]. Science, 2009, 326(5949): 108-111.
[4] HE K, GENG X, HUANG R, et al. Quantum computation and simulation with superconductingqubits[J]. Chinese Physics B, 2021, 30(8): 080304.
[5] PRESKILL J. Quantum computing in the NISQ era and beyond[J]. Quantum, 2018, 2: 79.
[6] BARENDS R, LAMATA L, KELLY J, et al. Digital quantum simulation of fermionic modelswith a superconducting circuit[J]. Nature Communications, 2015, 6(1): 7654.
[7] DALLAIRE-DEMERS P L, WILHELM F K. Quantum gates and architecture for the quantumsimulation of the Fermi-Hubbard model[J]. Physical Review A, 2016, 94(6): 062304.
[8] REINER J M, MARTHALER M, BRAUMÜLLER J, et al. Emulating the one-dimensionalFermi-Hubbard model by a double chain of qubits[J]. Physical Review A, 2016, 94(3): 032338.
[9] CAI Z. Resource estimation for quantum variational simulations of the Hubbard model[J].Physical Review Applied, 2020, 14(1): 014059.
[10] TAN X, ZHANG D W, LIU Q, et al. Topological Maxwell metal bands in a superconductingqutrit[J]. Physical review letters, 2018, 120(13): 130503.
[11] CAI W, HAN J, MEI F, et al. Observation of topological magnon insulator states in a superconducting circuit[J]. Physical Review Letters, 2019, 123(8): 080501.
[12] TAN X, ZHAO Y, LIU Q, et al. Simulation and manipulation of tunable Weyl-semimetal bandsusing superconducting quantum circuits[J]. Physical Review Letters, 2019, 122(1): 010501.
[13] CAO J, YI X, WANG H F. Band structure and the exceptional ring in a two-dimensional superconducting circuit lattice[J]. Physical Review A, 2020, 102(3): 032619.
[14] ZHANG X, JIANG W, DENG J, et al. Digital quantum simulation of Floquet symmetryprotected topological phases[J]. Nature, 2022, 607(7919): 468-473.
[15] SHIBO X, ZHENG-ZHI S, KE W, et al. Digital Simulation of Projective Non-Abelian Anyonswith 68 Superconducting Qubits[J]. Chinese Physics Letters, 2023, 40(6): 60301-060301.
[16] XIANG Z C, HUANG K, ZHANG Y R, et al. Simulating quantum Hall effects on a superconducting quantum processor[A]. 2022. arXiv: 2207.11797.
[17] SHI Y H, LIU Y, ZHANG Y R, et al. Observing topological zero modes on a 41-qubit superconducting processor[A]. 2022. arXiv: 2211.05341.
[18] LI X G, XU H K, WANG J H, et al. Mapping a topology-disorder phase diagram with a quantumsimulator[A]. 2023. arXiv: 2301.12138.
[19] LEPPÄKANGAS J, BRAUMÜLLER J, HAUCK M, et al. Quantum simulation of the spinboson model with a microwave circuit[J]. Physical Review A, 2018, 97(5): 052321.
[20] MUÑOZ C S, KOCKUM A F, MIRANOWICZ A, et al. Simulating ultrastrong-coupling processes breaking parity conservation in Jaynes-Cummings systems[J]. Physical Review A, 2020,102(3): 033716.
[21] FRISK KOCKUM A, MIRANOWICZ A, DE LIBERATO S, et al. Ultrastrong coupling between light and matter[J]. Nature Reviews Physics, 2019, 1(1): 19-40.
[22] DE FILIPPIS G, DE CANDIA A, CANGEMI L, et al. Quantum phase transitions in the spinboson model: Monte Carlo method versus variational approach à la Feynman[J]. PhysicalReview B, 2020, 101(18): 180408.
[23] O’MALLEY P J, BABBUSH R, KIVLICHAN I D, et al. Scalable quantum simulation ofmolecular energies[J]. Physical Review X, 2016, 6(3): 031007.
[24] KANDALA A, MEZZACAPO A, TEMME K, et al. Hardware-efficient variational quantumeigensolver for small molecules and quantum magnets[J]. Nature, 2017, 549(7671): 242-246.
[25] COLLESS J I, RAMASESH V V, DAHLEN D, et al. Computation of molecular spectra on aquantum processor with an error-resilient algorithm[J]. Physical Review X, 2018, 8(1): 011021.
[26] QUANTUM G A, COLLABORATORS*†, ARUTE F, et al. Hartree-Fock on a superconductingqubit quantum computer[J]. Science, 2020, 369(6507): 1084-1089.
[27] ZHANG P, DONG H, GAO Y, et al. Many-body Hilbert space scarring on a superconductingprocessor[J]. Nature Physics, 2023, 19(1): 120-125.
[28] WANG D W, SONG C, FENG W, et al. Synthesis of antisymmetric spin exchange interactionand chiral spin clusters in superconducting circuits[J]. Nature Physics, 2019, 15(4): 382-386.
[29] GUO Q, CHENG C, SUN Z H, et al. Observation of energy-resolved many-body localization[J]. Nature Physics, 2021, 17(2): 234-239.
[30] GUO Q, CHENG C, LI H, et al. Stark many-body localization on a superconducting quantumprocessor[J]. Physical review letters, 2021, 127(24): 240502.
[31] YE Y, GE Z Y, WU Y, et al. Propagation and localization of collective excitations on a 24-qubitsuperconducting processor[J]. Physical review letters, 2019, 123(5): 050502.
[32] YAN Z, ZHANG Y R, GONG M, et al. Strongly correlated quantum walks with a 12-qubitsuperconducting processor[J]. Science, 2019, 364(6442): 753-756.
[33] GONG M, WANG S, ZHA C, et al. Quantum walks on a programmable two-dimensional 62-qubit superconducting processor[J]. Science, 2021, 372(6545): 948-952.
[34] GUO X Y, GE Z Y, LI H, et al. Observation of Bloch oscillations and Wannier-Stark localizationon a superconducting quantum processor[J]. npj Quantum Information, 2021, 7(1): 51.
[35] WALLRAFF A, SCHUSTER D, BLAIS A, et al. Sideband transitions and two-tone spectroscopy of a superconducting qubit strongly coupled to an on-chip cavity[J]. Physical ReviewLetters, 2007, 99(5): 050501.
[36] MA X, VIENNOT J J, KOTLER S, et al. Non-classical energy squeezing of a macroscopicmechanical oscillator[J]. Nature Physics, 2021, 17(3): 322-326.
[37] LEEK P J, FILIPP S, MAURER P, et al. Using sideband transitions for two-qubit operations insuperconducting circuits[J]. Physical Review B, 2009, 79(18): 180511.
[38] LEEK P J, BAUR M, FINK J, et al. Cavity quantum electrodynamics with separate photonstorage and qubit readout modes[J]. Physical Review Letters, 2010, 104(10): 100504.
[39] LU Y, CHAKRAM S, LEUNG N, et al. Universal stabilization of a parametrically coupledqubit[J]. Physical Review etters, 2017, 119(15): 150502.
[40] PETRESCU A, LE CALONNEC C, LEROUX C, et al. Accurate methods for the analysis ofstrong-drive effects in parametric gates[J]. Physical Review Applied, 2023, 19(4): 044003.
[41] ROY T, LI Z, KAPIT E, et al. Two-Qutrit Quantum Algorithms on a Programmable Superconducting Processor[J]. Physical Review Applied, 2023, 19(6): 064024.
[42] LI Z, ROY T, PEREZ D R, et al. Autonomous error correction of a single logical qubit usingtwo transmons[A]. 2023. arXiv: 2302.06707.
[43] LI Z, ROY T, PéREZ D R, et al. Hardware efficient autonomous error correction with linearcouplers in superconducting circuits[A]. 2023. arXiv: 2303.01110.
[44] ROTH M, GANZHORN M, MOLL N, et al. Analysis of a parametrically driven exchange-typegate and a two-photon excitation gate between superconducting qubits[J]. Physical Review A,2017, 96(6): 062323.
[45] KWON S, TOMONAGA A, LAKSHMI BHAI G, et al. Gate-based superconducting quantumcomputing[J]. Journal of Applied Physics, 2021, 129(4): 041102.
[46] NAKAMURA Y, CHEN C D, TSAI J S. Spectroscopy of energy-level splitting between twomacroscopic quantum states of charge coherently superposed by Josephson coupling[J]. Physical Review Letters, 1997, 79(12): 2328.
[47] KOCH J, TERRI M Y, GAMBETTA J, et al. Charge-insensitive qubit design derived from theCooper pair box[J]. Physical Review A, 2007, 76(4): 042319.
[48] TINKHAM M. Introduction to superconductivity[M]. Courier Corporation, 2004.
[49] SHORE B W, KNIGHT P L. The Jaynes-Cummings model[J]. Journal of Modern Optics, 1993,40(7): 1195-1238.
[50] YAN F, KRANTZ P, SUNG Y, et al. Tunable coupling scheme for implementing high-fidelitytwo-qubit gates[J]. Physical Review Applied, 2018, 10(5): 054062.
[51] POZAR D M. Microwave engineering[M]. John wiley & sons, 2011.
[52] GARG R, BAHL I, BOZZI M. Microstrip lines and slotlines[M]. Artech house, 2013.
[53] AMBEGAOKAR V, BARATOFF A. Tunneling between superconductors[J]. Physical ReviewLetters, 1963, 10(11): 486.
[54] KHALIL M S, STOUTIMORE M, WELLSTOOD F, et al. An analysis method for asymmetricresonator transmission applied to superconducting devices[J]. Journal of Applied Physics, 2012,111(5): 054510.
[55] MEGRANT A, NEILL C, BARENDS R, et al. Planar superconducting resonators with internalquality factors above one million[J]. Applied Physics Letters, 2012, 100(11): 113510.
[56] KRANTZ P, KJAERGAARD M, YAN F, et al. A quantum engineer’s guide to superconductingqubits[J]. Applied Physics eviews, 2019, 6(2): 021318.
[57] CHU Y, KHAREL P, RENNINGER W H, et al. Quantum acoustics with superconducting qubits[J]. Science, 2017, 358(6360): 199-202.
[58] VIOLA L, LLOYD S. Dynamical suppression of decoherence in two-state quantum systems[J]. Physical Review A, 1998, 58(4): 2733.
[59] ROL M A, CIORCIARO L, MALINOWSKI F K, et al. Time-domain characterization andcorrection of on-chip distortion of control pulses in a quantum processor[J]. Applied PhysicsLetters, 2020, 116(5): 054001.
[60] VIDAL J, MOSSERI R, DOUÇOT B. Aharonov-Bohm cages in two-dimensional structures[J]. Physical review letters, 1998, 81(26): 5888.
[61] MARTINEZ J G C, CHIU C S, SMITHAM B M, et al. Interaction-induced escape from anAharonov-Bohm cage[A]. 2023. arXiv: 2303.02170.
[62] BERMUDEZ A, SCHAETZ T, PORRAS D. Synthetic gauge fields for vibrational excitationsof trapped ions[J]. Physical Review Letters, 2011, 107(15): 150501.
[63] MUKHERJEE S, DI LIBERTO M, ÖHBERG P, et al. Experimental observation of AharonovBohm cages in photonic lattices[J]. Physical Review Letters, 2018, 121(7): 075502.
[64] JOHANSSON J R, NATION P D, NORI F. QuTiP: An open-source Python framework forthe dynamics of open quantum systems[J]. Computer Physics Communications, 2012, 183(8):1760-1772

所在学位评定分委会
物理学
国内图书分类号
O469
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544097
专题理学院_物理系
推荐引用方式
GB/T 7714
梁咏棋,梁咏棋. 超导量子比特频率调制的优化[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032898-梁咏棋-物理系.pdf(8916KB)学位论文--限制开放CC BY-NC-SA请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[梁咏棋]的文章
[梁咏棋]的文章
百度学术
百度学术中相似的文章
[梁咏棋]的文章
[梁咏棋]的文章
必应学术
必应学术中相似的文章
[梁咏棋]的文章
[梁咏棋]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。