[1] NIELSEN M A, CHUANG I L. Quantum computation and quantum information[J]. Phys.Today, 2001, 54(2): 13-15.
[2] FEYNMAN R P. Simulating physics with computers[J]. International Journal of TheoreticalPhysics, 1982, 21(6): 467-488.
[3] BULUTA I, NORI F. Quantum simulators[J]. Science, 2009, 326(5949): 108-111.
[4] HE K, GENG X, HUANG R, et al. Quantum computation and simulation with superconductingqubits[J]. Chinese Physics B, 2021, 30(8): 080304.
[5] PRESKILL J. Quantum computing in the NISQ era and beyond[J]. Quantum, 2018, 2: 79.
[6] BARENDS R, LAMATA L, KELLY J, et al. Digital quantum simulation of fermionic modelswith a superconducting circuit[J]. Nature Communications, 2015, 6(1): 7654.
[7] DALLAIRE-DEMERS P L, WILHELM F K. Quantum gates and architecture for the quantumsimulation of the Fermi-Hubbard model[J]. Physical Review A, 2016, 94(6): 062304.
[8] REINER J M, MARTHALER M, BRAUMÜLLER J, et al. Emulating the one-dimensionalFermi-Hubbard model by a double chain of qubits[J]. Physical Review A, 2016, 94(3): 032338.
[9] CAI Z. Resource estimation for quantum variational simulations of the Hubbard model[J].Physical Review Applied, 2020, 14(1): 014059.
[10] TAN X, ZHANG D W, LIU Q, et al. Topological Maxwell metal bands in a superconductingqutrit[J]. Physical review letters, 2018, 120(13): 130503.
[11] CAI W, HAN J, MEI F, et al. Observation of topological magnon insulator states in a superconducting circuit[J]. Physical Review Letters, 2019, 123(8): 080501.
[12] TAN X, ZHAO Y, LIU Q, et al. Simulation and manipulation of tunable Weyl-semimetal bandsusing superconducting quantum circuits[J]. Physical Review Letters, 2019, 122(1): 010501.
[13] CAO J, YI X, WANG H F. Band structure and the exceptional ring in a two-dimensional superconducting circuit lattice[J]. Physical Review A, 2020, 102(3): 032619.
[14] ZHANG X, JIANG W, DENG J, et al. Digital quantum simulation of Floquet symmetryprotected topological phases[J]. Nature, 2022, 607(7919): 468-473.
[15] SHIBO X, ZHENG-ZHI S, KE W, et al. Digital Simulation of Projective Non-Abelian Anyonswith 68 Superconducting Qubits[J]. Chinese Physics Letters, 2023, 40(6): 60301-060301.
[16] XIANG Z C, HUANG K, ZHANG Y R, et al. Simulating quantum Hall effects on a superconducting quantum processor[A]. 2022. arXiv: 2207.11797.
[17] SHI Y H, LIU Y, ZHANG Y R, et al. Observing topological zero modes on a 41-qubit superconducting processor[A]. 2022. arXiv: 2211.05341.
[18] LI X G, XU H K, WANG J H, et al. Mapping a topology-disorder phase diagram with a quantumsimulator[A]. 2023. arXiv: 2301.12138.
[19] LEPPÄKANGAS J, BRAUMÜLLER J, HAUCK M, et al. Quantum simulation of the spinboson model with a microwave circuit[J]. Physical Review A, 2018, 97(5): 052321.
[20] MUÑOZ C S, KOCKUM A F, MIRANOWICZ A, et al. Simulating ultrastrong-coupling processes breaking parity conservation in Jaynes-Cummings systems[J]. Physical Review A, 2020,102(3): 033716.
[21] FRISK KOCKUM A, MIRANOWICZ A, DE LIBERATO S, et al. Ultrastrong coupling between light and matter[J]. Nature Reviews Physics, 2019, 1(1): 19-40.
[22] DE FILIPPIS G, DE CANDIA A, CANGEMI L, et al. Quantum phase transitions in the spinboson model: Monte Carlo method versus variational approach à la Feynman[J]. PhysicalReview B, 2020, 101(18): 180408.
[23] O’MALLEY P J, BABBUSH R, KIVLICHAN I D, et al. Scalable quantum simulation ofmolecular energies[J]. Physical Review X, 2016, 6(3): 031007.
[24] KANDALA A, MEZZACAPO A, TEMME K, et al. Hardware-efficient variational quantumeigensolver for small molecules and quantum magnets[J]. Nature, 2017, 549(7671): 242-246.
[25] COLLESS J I, RAMASESH V V, DAHLEN D, et al. Computation of molecular spectra on aquantum processor with an error-resilient algorithm[J]. Physical Review X, 2018, 8(1): 011021.
[26] QUANTUM G A, COLLABORATORS*†, ARUTE F, et al. Hartree-Fock on a superconductingqubit quantum computer[J]. Science, 2020, 369(6507): 1084-1089.
[27] ZHANG P, DONG H, GAO Y, et al. Many-body Hilbert space scarring on a superconductingprocessor[J]. Nature Physics, 2023, 19(1): 120-125.
[28] WANG D W, SONG C, FENG W, et al. Synthesis of antisymmetric spin exchange interactionand chiral spin clusters in superconducting circuits[J]. Nature Physics, 2019, 15(4): 382-386.
[29] GUO Q, CHENG C, SUN Z H, et al. Observation of energy-resolved many-body localization[J]. Nature Physics, 2021, 17(2): 234-239.
[30] GUO Q, CHENG C, LI H, et al. Stark many-body localization on a superconducting quantumprocessor[J]. Physical review letters, 2021, 127(24): 240502.
[31] YE Y, GE Z Y, WU Y, et al. Propagation and localization of collective excitations on a 24-qubitsuperconducting processor[J]. Physical review letters, 2019, 123(5): 050502.
[32] YAN Z, ZHANG Y R, GONG M, et al. Strongly correlated quantum walks with a 12-qubitsuperconducting processor[J]. Science, 2019, 364(6442): 753-756.
[33] GONG M, WANG S, ZHA C, et al. Quantum walks on a programmable two-dimensional 62-qubit superconducting processor[J]. Science, 2021, 372(6545): 948-952.
[34] GUO X Y, GE Z Y, LI H, et al. Observation of Bloch oscillations and Wannier-Stark localizationon a superconducting quantum processor[J]. npj Quantum Information, 2021, 7(1): 51.
[35] WALLRAFF A, SCHUSTER D, BLAIS A, et al. Sideband transitions and two-tone spectroscopy of a superconducting qubit strongly coupled to an on-chip cavity[J]. Physical ReviewLetters, 2007, 99(5): 050501.
[36] MA X, VIENNOT J J, KOTLER S, et al. Non-classical energy squeezing of a macroscopicmechanical oscillator[J]. Nature Physics, 2021, 17(3): 322-326.
[37] LEEK P J, FILIPP S, MAURER P, et al. Using sideband transitions for two-qubit operations insuperconducting circuits[J]. Physical Review B, 2009, 79(18): 180511.
[38] LEEK P J, BAUR M, FINK J, et al. Cavity quantum electrodynamics with separate photonstorage and qubit readout modes[J]. Physical Review Letters, 2010, 104(10): 100504.
[39] LU Y, CHAKRAM S, LEUNG N, et al. Universal stabilization of a parametrically coupledqubit[J]. Physical Review etters, 2017, 119(15): 150502.
[40] PETRESCU A, LE CALONNEC C, LEROUX C, et al. Accurate methods for the analysis ofstrong-drive effects in parametric gates[J]. Physical Review Applied, 2023, 19(4): 044003.
[41] ROY T, LI Z, KAPIT E, et al. Two-Qutrit Quantum Algorithms on a Programmable Superconducting Processor[J]. Physical Review Applied, 2023, 19(6): 064024.
[42] LI Z, ROY T, PEREZ D R, et al. Autonomous error correction of a single logical qubit usingtwo transmons[A]. 2023. arXiv: 2302.06707.
[43] LI Z, ROY T, PéREZ D R, et al. Hardware efficient autonomous error correction with linearcouplers in superconducting circuits[A]. 2023. arXiv: 2303.01110.
[44] ROTH M, GANZHORN M, MOLL N, et al. Analysis of a parametrically driven exchange-typegate and a two-photon excitation gate between superconducting qubits[J]. Physical Review A,2017, 96(6): 062323.
[45] KWON S, TOMONAGA A, LAKSHMI BHAI G, et al. Gate-based superconducting quantumcomputing[J]. Journal of Applied Physics, 2021, 129(4): 041102.
[46] NAKAMURA Y, CHEN C D, TSAI J S. Spectroscopy of energy-level splitting between twomacroscopic quantum states of charge coherently superposed by Josephson coupling[J]. Physical Review Letters, 1997, 79(12): 2328.
[47] KOCH J, TERRI M Y, GAMBETTA J, et al. Charge-insensitive qubit design derived from theCooper pair box[J]. Physical Review A, 2007, 76(4): 042319.
[48] TINKHAM M. Introduction to superconductivity[M]. Courier Corporation, 2004.
[49] SHORE B W, KNIGHT P L. The Jaynes-Cummings model[J]. Journal of Modern Optics, 1993,40(7): 1195-1238.
[50] YAN F, KRANTZ P, SUNG Y, et al. Tunable coupling scheme for implementing high-fidelitytwo-qubit gates[J]. Physical Review Applied, 2018, 10(5): 054062.
[51] POZAR D M. Microwave engineering[M]. John wiley & sons, 2011.
[52] GARG R, BAHL I, BOZZI M. Microstrip lines and slotlines[M]. Artech house, 2013.
[53] AMBEGAOKAR V, BARATOFF A. Tunneling between superconductors[J]. Physical ReviewLetters, 1963, 10(11): 486.
[54] KHALIL M S, STOUTIMORE M, WELLSTOOD F, et al. An analysis method for asymmetricresonator transmission applied to superconducting devices[J]. Journal of Applied Physics, 2012,111(5): 054510.
[55] MEGRANT A, NEILL C, BARENDS R, et al. Planar superconducting resonators with internalquality factors above one million[J]. Applied Physics Letters, 2012, 100(11): 113510.
[56] KRANTZ P, KJAERGAARD M, YAN F, et al. A quantum engineer’s guide to superconductingqubits[J]. Applied Physics eviews, 2019, 6(2): 021318.
[57] CHU Y, KHAREL P, RENNINGER W H, et al. Quantum acoustics with superconducting qubits[J]. Science, 2017, 358(6360): 199-202.
[58] VIOLA L, LLOYD S. Dynamical suppression of decoherence in two-state quantum systems[J]. Physical Review A, 1998, 58(4): 2733.
[59] ROL M A, CIORCIARO L, MALINOWSKI F K, et al. Time-domain characterization andcorrection of on-chip distortion of control pulses in a quantum processor[J]. Applied PhysicsLetters, 2020, 116(5): 054001.
[60] VIDAL J, MOSSERI R, DOUÇOT B. Aharonov-Bohm cages in two-dimensional structures[J]. Physical review letters, 1998, 81(26): 5888.
[61] MARTINEZ J G C, CHIU C S, SMITHAM B M, et al. Interaction-induced escape from anAharonov-Bohm cage[A]. 2023. arXiv: 2303.02170.
[62] BERMUDEZ A, SCHAETZ T, PORRAS D. Synthetic gauge fields for vibrational excitationsof trapped ions[J]. Physical Review Letters, 2011, 107(15): 150501.
[63] MUKHERJEE S, DI LIBERTO M, ÖHBERG P, et al. Experimental observation of AharonovBohm cages in photonic lattices[J]. Physical Review Letters, 2018, 121(7): 075502.
[64] JOHANSSON J R, NATION P D, NORI F. QuTiP: An open-source Python framework forthe dynamics of open quantum systems[J]. Computer Physics Communications, 2012, 183(8):1760-1772
修改评论