中文版 | English
题名

质子交换膜燃料电池中铱基催化剂抗反极研究

其他题名
VOLTAGE REVERSAL TOLERANCE ANALYSIS OF IRIDIUM BASED CATALYSTS IN PROTON EXCHANGE MEMBRANE FUEL CELLS
姓名
姓名拼音
LIAO Jianhua
学号
11930757
学位类型
博士
学位专业
080104 工程力学
学科门类/专业学位类别
08 工学
导师
王海江
导师单位
机械与能源工程系
论文答辩日期
2023-05-18
论文提交日期
2023-06-27
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

质子交换膜燃料电池(PEMFC)具有功率密度高、无电解质泄露风险、可于室温下快速启停、清洁和无二氧化碳排放等优点,已成为潜力巨大、被广泛关注的新型车载动力电源。然而,PEMFC的高成本和低耐久性阻碍了其大规模商业化应用,阳极燃料不足引起的电池反极是PEMFC性能衰减的主要因素。因此,通过克服PEMFC中的反极问题来解决阳极材料耐久性差的问题,是促进其大规模商业应用的关键。在这项研究中,我们研究了一种氧化铱(IrOX)基水电解催化剂,并将其添加到膜电极(MEA)中,以提高PEMFC的抗反极性能。本论文主要研究了三种提高PEMFC耐久性的IrOX基阳极催化剂。

1)负载型IrOX类催化剂。无机金属氧化物,尤其是二氧化钛或掺杂二氧化钛,由于其在恶劣环境中的高稳定性,有希望成为IrOX纳米颗粒(NPs)的载体。然而二氧化钛的电导率相对较低。基于此,开展基于IrOX NPs均匀分散在Nb掺杂的TiO2上,作为阳极高电位条件下的耐腐蚀载体。评估了所制备催化剂的物理化学性质,并通过半电池和全电池测试研究了其电化学活性。在常规三电极体系中,所制备的20 wt.% IrOX/Nb0.1Ti0.9O2-700在电流密度10 mA cm-2下析出氧气的过电位是330 mV。与此同时,在模拟缺氢条件下MEA进行抗反极测试。以IrOX/Nb0.1Ti0.9O2-700作为抗反极阳极(RTA)的MEA表现出最长的抗反极时间(29.1 min)。该研究为优化Ir表面电子结构、提高Ir催化活性稳定性提出了一种新方法。在燃料电池中应用该催化剂,可降低80%Ir载量,从而降低燃料电池的成本。

2)研究质子交换膜燃料电池阳极添加剂铱氧化物(IrOX)的晶体结构和抗反极性能的关系。反极可以通过在阳极催化剂层添加基于析氧电催化剂铱氧化物(IrOX)来克服。阳极材料的晶体结构和抗反极性能研究较少。基于此,开展并探讨非晶态的IrOX在热处理下晶体结构的转变,以研究其在PEMFCs中的抗反极性能。研究发现,热处理导致催化剂颗粒变大,从而降低了析氧反应(OER)活性,然而它表现出更好的抗反极性能(132.2 min)。这表明在PEMFCs的抗反极性能中,活性和稳定性之间的均衡是至关重要的。物理表征说明稳定性和抗反极能力的提高归因于IrOX晶体的结晶度和择优取向,以及非晶态和晶态IrOX的共存。本工作提出了在抗反极阳极催化剂中尝试使用混合相IrOX,并强调了相应的颗粒大小和稳定性对PEMFC长期耐久性的作用。

3IrOX中空纳米球与间质C作为质子交换膜燃料电池的抗反极阳极电催化剂。我们证明了通过引入间质碳(C-IrO2-IrSe)可以同时提高IrO2的稳定性和活性。通过Se的蒸发和C的燃烧制备了C-IrO2-IrSe催化剂。将CIrSe2空心纳米球(IrSe2 HNSs)在400℃空气气氛下加热20 h,生成C-IrO2-IrSe-20。优化后的IrO2-IrSe-20表现出增强的OER活性,显著高于商用IrO2。更重要的是,IrO2-IrSe-20表现出了更好的稳定性,在0.5 M H2SO4中,在电流密度为10 mA cm-2的条件下可以持续23.4 h,是文献报道的最稳定的酸性OER电催化剂之一。与此同时,在模拟缺氢条件下MEA进行抗反极测试。以IrO2-IrSe-20作为抗反极阳极(RTA)的MEA在所有MEA中表现出最长的抗反极时间(206.8 min)。通过引入间质C可以稳定IrO2,从而可以作为一种强酸性OER和抗反极双功能电催化剂。

其他摘要

Proton exchange membrane fuel cells (PEMFCs) are a promising renewable energy source for automotive applications due to their high power density, lack of electrolyte leakage risk, quick start and stop at room temperature, as well as clean and zero carbon dioxide emissions. However, the widespread use of PEMFCs is hindered by their high cost and low durability. The primary factor for performance attenuation in PEMFCs is the cell voltage reversal caused by fuel starvation at the anode. Therefore, overcoming the voltage reversal problem in PEMFCs to enhance their durability is critical for promoting their large-scale commercial application. In this study, we investigated the potential of an iridium oxide (IrOx)-based water electrolysis catalyst incorporated into membrane electrode assemblies (MEAs) to improve the voltage reversal tolerance performance of PEMFC. The thesis comprises three studies on IrOx-based anode catalysts aimed at enhancing the durability of PEMFCs.

Inorganic metal oxides, especially titanium dioxide or doped titanium dioxide, are promising candidates to support IrO2 nanoparticles (NPs) due to their high stability in harsh environments. However, the conductivity of TiO2 is relatively low. Herein, we have fabricated IrOX NPs dispersed on Nb-doped TiO2, a corrosion resistant support under anodic high potential conditions. The physicochemical properties of as-prepared catalysts were evaluated using various spectroscopic techniques and the electrochemical activity was investigated by half-cell and full cell tests. The as-prepared IrOX/Nb0.1Ti0.9O2-700 required an initial overpotential of 330 mV to catalyze water oxidation at 10 mA cm-2 in a conventional three-electrode cell. Meanwhile, the reversal tolerance was analyzed in a MEA setup under simulated hydrogen starvation conditions. The MEA with IrOX/Nb0.1Ti0.9O2-700 as the reversal tolerant anodes (RTAs) exhibited an extended reversal tolerance time of 29.1 minutes among the various MEAs. This study proposed a new method for optimizing the electronic structure of the Ir surface and enhancing the stability of Ir catalytic activity. Furthermore, the application of the catalyst in fuel cells can reduce the Ir loading by 80%, thus decreasing the cost of fuel cells.

Similarly, in another work on voltage reversal tolerance in PEMFCs, we have incorporated IrOX-based electrocatalysts for oxygen evolution reaction (OER) into the anode catalyst layer. The crystal structure and antireversal properties of anode materials have received little attention in previous studies. An amorphous IrOX was prepared and its crystal structure transformation was analyzed under heat treatment to investigate its antireversal performance in PEMFCs. It is found that heat treatment results in larger catalyst particles which consequently lowers OER activity; however, it shows better voltage reverse tolerance (132.2 min). These investigations demonstrate that a balance between activity and durability is crucial for antireversal properties in PEMFCs. Physical characterizations revealed that improved stability and reversal tolerance are attributed to crystallinity and preferred orientation of IrOX crystals as well as the existence of amorphous and crystalline IrOX. This work proposes an attempt to use the mixed phase IrOX in the antireversal anode catalyst and highlights the role of corresponding particle size and durability characteristics for the long-term durability of PEMFCs.

Finally, we have demonstrated high activity and stability of IrO2 simultaneously by introducing interstitial carbon (C-IrO2-IrSe). The C-IrO2-IrSe catalyst was prepared through the combined evaporation of Se and combustion of C. Specifically, the C-supported IrSe2 hollow nanospheres (IrSe2 HNSs) were heated for 20 h at 400 ℃ in air atmosphere to generate C-IrO2-IrSe-20. The optimized C-IrO2-IrSe-20 exhibits substantially higher OER activity than that of commercial IrO2. More importantly, C-IrO2-IrSe-20 shows improved stability, which can endure up to 23.4 h at current densities of 10 mA cm-2 in 0.5 M H2SO4, representing one of the most stable acidic OER electrocatalysts reported in the literature. Meanwhile, reversal tolerance was analyzed in a membrane electrode assembly (MEA) setup under a simulated hydrogen starvation condition. The MEA with the C-IrO2-IrSe-20 as the reversal tolerant anodes exhibited the longest reversal tolerance time (206.8 min) compared to all the other MEAs tested. Therefore, experimental results demonstrate that IrO2 can be stabilized by introducing interstitial C and thus can be used as a robust acidic OER and reversal tolerant bifunctional electrocatalyst.

关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2023-06
参考文献列表

[1] 弗朗诺·巴尔伯, 李东红, 连晓峰. PEM燃料电池:理论与实践[M]. 北京: 机械工业出版社, 2016.
[2] 衣宝廉著. 燃料电池——原理·技术·应用[M]. 北京: 化学工业出版社, 2003.
[3] KARIDURAGANAVAR M Y, NAGARALE R K, KITTUR A A, et al. Ion-exchange membranes: preparative methods for electrodialysis and fuel cell applications[J]. Desalination, 2006, 197(1): 225-246.
[4] SOUZY R, AMEDURI B, BOUTEVIN B, et al. Functional fluoropolymers for fuel cell membranes[J]. Solid State Ionics, 2005, 176(39): 2839-2848.
[5] CINDRELLA L, KANNAN A M, LIN J F, et al. Gas diffusion layer for proton exchange membrane fuel cells—A review[J]. Journal of Power Sources, 2009, 194(1): 146-160.
[6] 王晓丽, 张华民, 张建鲁, 徐海峰, 衣宝廉. 质子交换膜燃料电池气体扩散层的研究进展[J]. 化学进展, 2006, 18(4): 507-513.
[7] LI H, TANG Y, WANG Z, et al. A review of water flooding issues in the proton exchange membrane fuel cell[J]. Journal of Power Sources, 2008, 178(1): 103-117.
[8] WEE J-H, LEE K-Y, KIM S H. Fabrication methods for low-Pt-loading electrocatalysts in proton exchange membrane fuel cell systems[J]. Journal of Power Sources, 2007, 165(2): 667-677.
[9] XIE J, XU F, WOOD D L, et al. Influence of ionomer content on the structure and performance of PEFC membrane electrode assemblies[J]. Electrochimica Acta, 2010, 55(24): 7404-7412.
[10] EUDY L, POST M. Fuel cell buses in U.S. transit fleets: current status 2020[R]. United States, 2021.
[11] 中国汽车工程学会. 节能与新能源汽车技术路线图 2.0[M]. 北京: 机械工业出版社, 2020.
[12] 中商产业研究院. 2022年中国氢燃料电池汽车行业市场前景及投资研究预测报告[R], 2022.
[13] YANG Z, JIAO K, LIU Z, et al. Investigation of performance heterogeneity of PEMFC stack based on 1+1D and flow distribution models[J]. Energy Conversion and Management, 2020, 207: 112502.
[14] PERRY M L, PATTERSON T, REISER C. Systems strategies to mitigate carbon corrosion in fuel cells[J]. ECS Transactions, 2006, 3(1): 783.
[15] LIANG D, DOU M, HOU M, et al. Behavior of a unit proton exchange membrane fuel cell in a stack under fuel starvation[J]. Journal of Power Sources, 2011, 196(13): 5595-5598.
[16] LIU B, CHEN H, ZHANG T, et al. A vehicular proton exchange membrane fuel cell system co-simulation modeling method based on the stack internal distribution parameters monitoring[J]. Energy Conversion and Management, 2019, 197: 111898.
[17] ZHANG G, JIAO K. Three-dimensional multi-phase simulation of PEMFC at high current density utilizing Eulerian-Eulerian model and two-fluid model[J]. Energy Conversion and Management, 2018, 176: 409-421.
[18] CHEN H, ZHAO X, QU B, et al. An evaluation method of gas distribution quality in dynamic process of proton exchange membrane fuel cell[J]. Applied Energy, 2018, 232: 26-35.
[19] ZHANG G, XIE B, BAO Z, et al. Multi-phase simulation of proton exchange membrane fuel cell with 3D fine mesh flow field[J]. International Journal of Energy Research, 2018, 42(15): 4697-4709.
[20] ZHANG G, YUAN H, WANG Y, et al. Three-dimensional simulation of a new cooling strategy for proton exchange membrane fuel cell stack using a non-isothermal multiphase model[J]. Applied Energy, 2019, 255: 113865.
[21] ZHANG G, XIE X, XIE B, et al. Large-scale multi-phase simulation of proton exchange membrane fuel cell[J]. International Journal of Heat and Mass Transfer, 2019, 130: 555-563.
[22] LIANG D, SHEN Q, HOU M, et al. Study of the cell reversal process of large area proton exchange membrane fuel cells under fuel starvation[J]. Journal of Power Sources, 2009, 194(2): 847-853.
[23] DOU M, HOU M, LIANG D, et al. Behaviors of proton exchange membrane fuel cells under oxidant starvation[J]. Journal of Power Sources, 2011, 196(5): 2759-2762.
[24] TANIGUCHI A, AKITA T, YASUDA K, et al. Analysis of degradation in PEMFC caused by cell reversal during air starvation[J]. International Journal of Hydrogen Energy, 2008, 33(9): 2323-2329.
[25] GERARD M, POIROT-CROUVEZIER J-P, HISSEL D, et al. Oxygen starvation analysis during air feeding faults in PEMFC[J]. International Journal of Hydrogen Energy, 2010, 35(22): 12295-12307.
[26] REISER C A, BREGOLI L, PATTERSON T W, et al. A reverse-current decay mechanism for fuel cells[J]. Electrochemical and Solid State Letters, 2005, 8(6): A273-A276.
[27] PATTERSON T W, DARLING R M. Damage to the cathode catalyst of a PEM fuel cell caused by localized fuel starvation[J]. Electrochemical and Solid State Letters, 2006, 9(4): A183-A185.
[28] LIU Z, BRADY B, CARTER R, et al. Characterization of carbon corrosion-induced structural damage of PEM fuel cell cathode electrodes caused by local fuel starvation[J]. Journal of The Electrochemical Society, 2008, 155(10): B979-B984.
[29] TANIGUCHI A, AKITA T, YASUDA K, et al. Analysis of electrocatalyst degradation in PEMFC caused by cell reversal during fuel starvation[J]. Journal of Power Sources, 2004, 130(1): 42-49.
[30] RALPH T R, HOGARTH M P. Catalysis for low temperature fuel cells[J]. Platinum metals rev, 2002, 46(3): 117-135.
[31] ZHOU F, ANDREASEN S J, KæR S K, et al. Analysis of accelerated degradation of a HT-PEM fuel cell caused by cell reversal in fuel starvation condition[J]. International Journal of Hydrogen Energy, 2015, 40(6): 2833-2839.
[32] MANDAL P, HONG B K, OH J-G, et al. 3D imaging of fuel cell electrode structure degraded under cell voltage reversal conditions using nanoscale X-ray computed tomography[J]. ECS Transactions, 2015, 69(17): 443-453.
[33] TANIGUCHI A, AKITA T, YASUDA K, et al. Analysis of electrocatalyst degradation in PEMFC caused by cell reversal during fuel starvation[J]. Journal of Power Sources, 2004, 130(1-2): 42-49.
[34] HU L, HONG B K, OH J-G, et al. Investigation of hydrogen starvation of polymer electrolyte fuel cells in freezing condition using reference electrode[J]. ECS Transactions, 2017, 80(8): 535-542.
[35] HU L, HONG B K, OH J-G, et al. Robust operation of fuel cell systems in subfreezing conditions: a material-based solution to achieve better anode durability[J]. ACS Applied Energy Materials, 2019, 2(10): 7152-7161.
[36] LIM K H, OH H-S, JANG S-E, et al. Effect of operating conditions on carbon corrosion in polymer electrolyte membrane fuel cells[J]. Journal of Power Sources, 2009, 193(2): 575-579.
[37] ZHANG J, YANG H, FANG J, et al. Synthesis and oxygen reduction activity of shape-controlled Pt3Ni nanopolyhedra[J]. Nano Lett, 2010, 10: 638-644.
[38] YU X, YE S. Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC: Part II: Degradation mechanism and durability enhancement of carbon supported platinum catalyst[J]. Journal of Power Sources, 2007, 172(1): 145-154.
[39] ZHANG S, YUAN X-Z, HIN J N C, et al. A review of platinum-based catalyst layer degradation in proton exchange membrane fuel cells[J]. Journal of Power Sources, 2009, 194(2): 588-600.
[40] HONG B K, MANDAL P, OH J-G, et al. On the impact of water activity on reversal tolerant fuel cell anode performance and durability[J]. Journal of Power Sources, 2016, 328: 280-288.
[41] ROH C-W, KIM H-E, CHOI J, et al. Monodisperse IrOx deposited on Pt/C for reversal tolerant anode in proton exchange membrane fuel cell[J]. Journal of Power Sources, 2019, 443: 227270.
[42] ZHOU X, JI H, LI B, et al. High-repetitive reversal tolerant performance of proton-exchange membrane fuel cell by designing a suitable anode[J]. ACS Omega, 2020, 5: 10099 - 10105.
[43] ZHU Z, YAN X, TANG H, et al. Protic ionic liquid modified electrocatalyst enables robust anode under cell reversal condition[J]. Journal of Power Sources, 2017, 351: 138-144.
[44] SHEN G, LIU J, WU H B, et al. Multi-functional anodes boost the transient power and durability of proton exchange membrane fuel cells[J]. Nature Communications, 2020, 11(1): 1191.
[45] JUNG D-W, PARK S, KIM S-H, et al. Durability of polymer electrolyte membrane fuel cell with Pt/CNTs catalysts in cell reversal conditions by hydrogen starvation[J]. Fuel Cells, 2011, 11(6): 866-874.
[46] PENG Y, CHOI J-Y, BAI K, et al. Pulsed vs. galvanostatic accelerated stress test protocols: Comparing predictions for anode reversal tolerance in proton exchange membrane fuel cells[J]. Journal of Power Sources, 2021, 500: 229986.
[47] TAN X, SHEN J, SEMAGINA N, et al. Decoupling structure-sensitive deactivation mechanisms of Ir/IrOx electrocatalysts toward oxygen evolution reaction[J]. Journal of Catalysis, 2019, 371: 57-70.
[48] ZAGO M, BARICCI A, BISELLO A, et al. Experimental analysis of recoverable performance loss induced by platinum oxide formation at the polymer electrolyte membrane fuel cell cathode[J]. Journal of Power Sources, 2020, 455: 227990.
[49] 衣宝廉, 侯明. 车用燃料电池耐久性的解决策略[J]. 汽车安全与节能学报, 2011, 2(02): 91-100.
[50] HU Z, LI J, XU L, et al. Multi-objective energy management optimization and parameter sizing for proton exchange membrane hybrid fuel cell vehicles[J]. Energy Conversion and Management, 2016, 129: 108-121.
[51] XU L, REIMER U, LI J, et al. Design of durability test protocol for vehicular fuel cell systems operated in power-follow mode based on statistical results of on-road data[J]. Journal of Power Sources, 2018, 377: 59-69.
[52] ZHAO D, XU L, HUANGFU Y, et al. Semi-physical modeling and control of a centrifugal compressor for the air feeding of a PEM fuel cell[J]. Energy Conversion and Management, 2017, 154: 380-386.
[53] JIA F, GUO L, LIU H. Mitigation strategies for hydrogen starvation under dynamic loading in proton exchange membrane fuel cells[J]. Energy Conversion and Management, 2017, 139: 175-181.
[54] KNIGHTS S D, DE VAAL J W, LAURITZEN M V, et al. Electrochemical fuel cell stack having a plurality of integrated voltage reversal protection diodes[Z]. Google Patents. 2007
[55] TANIGUCHI A, AKITA T, YASUDA K, et al. Analysis of electrocatalyst degradation in PEMFC caused by cell reversal during fuel starvation[J]. Journal of Power Sources, 2004, 130(1-2): 42-49.
[56] MANDAL P, LITSTER S. Investigation and mitigation of degradation in polymer electrolyte fuel cell due to cell reversal using oxygen evolution catalyst; proceedings of the ECS Meeting Abstracts, F, 2016 [C]. IOP Publishing.
[57] JUNG J, PARK B, KIM J J N R L. Durability test with fuel starvation using a Pt/CNF catalyst in PEMFC[J]. Nanoscale Res Lett, 2012, 7(1): 1-8.
[58] KNIGHTS S D, TAYLOR J L, WILKINSON D P, et al. Supported catalysts for the anode of a voltage reversal tolerant fuel cell[Z]. Google Patents. 2009
[59] KNIGHTS S D, WILKINSON D P, CAMPBELL S A, et al. Solid polymer fuel cell with improved voltage reversal tolerance[Z]. Google Patents. 2005
[60] ABBOTT D F, LEBEDEV D, WALTAR K, et al. Iridium oxide for the oxygen evolution reaction: correlation between particle size, morphology, and the surface hydroxo layer from operando XAS[J]. Chemistry of Materials, 2016, 28(18): 6591-6604.
[61] MCCRORY C C, JUNG S, PETERS J C, et al. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction[J]. Journal of the American Chemical Society, 2013, 135(45): 16977-16987.
[62] REIER T, OEZASLAN M, STRASSER P J A C. Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: a comparative study of nanoparticles and bulk materials[J]. ACS Catalysis, 2012, 2(8): 1765-1772.
[63] ATANASOSKI R T, ATANASOSKA L L, CULLEN D A. Efficient oxygen evolution reaction catalysts for cell reversal and start/stop tolerance[M]. Electrocatalysis in Fuel Cells. Springer. 2013: 637-663.
[64] FUJII K, ITO M, SATO Y, et al. Performance and durability of carbon black-supported Pd catalyst covered with silica layers in membrane-electrode assemblies of proton exchange membrane fuel cells[J]. Journal of Power Sources, 2015, 279: 100-106.
[65] TAKENAKA S, MATSUMORI H, MATSUNE H, et al. Highly durable Pt cathode catalysts for polymer electrolyte fuel cells; coverage of carbon black-supported Pt catalysts with silica layers[J]. Applied Catalysis A: General, 2011, 409: 248-256.
[66] RODGERS M P, BONVILLE L J, KUNZ H R, et al. Fuel cell perfluorinated sulfonic acid membrane degradation correlating accelerated stress testing and lifetime[J]. Chemical Reviews, 2012, 112(11): 6075-6103.
[67] WONG K H, KJEANG E J C. Mitigation of chemical membrane degradation in fuel cells: understanding the effect of cell voltage and iron ion redox cycle[J]. ChemElectroChem, 2015, 8(6): 1072-1082.
[68] SUEN N-T, HUNG S-F, QUAN Q, et al. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives[J]. Chemical Society Reviews, 2017, 46(2): 337-365.
[69] ROSSMEISL J, QU Z W, ZHU H, et al. Electrolysis of water on oxide surfaces[J]. Journal of Electroanalytical Chemistry, 2007, 607(1): 83-89.
[70] YU J, HE Q, YANG G, et al. Recent advances and prospective in ruthenium-based materials for electrochemical water splitting[J]. ACS Catalysis, 2019, 9(11): 9973-10011.
[71] SHAN J, ZHENG Y, SHI B, et al. Regulating electrocatalysts via surface and interface engineering for acidic water electrooxidation[J]. ACS Energy Letters, 2019, 4(11): 2719-2730.
[72] WU H, WANG Y, SHI Z, et al. Recent developments of iridium-based catalysts for the oxygen evolution reaction in acidic water electrolysis[J]. Journal of Materials Chemistry A, 2022, 10(25): 13170-13189.
[73] DANG Q, LIN H, FAN Z, et al. Iridium metallene oxide for acidic oxygen evolution catalysis[J]. Nature Communications, 2021, 12(1): 6007.
[74] NONG H N, REIER T, OH H-S, et al. A unique oxygen ligand environment facilitates water oxidation in hole-doped IrNiOx core–shell electrocatalysts[J]. Nature Catalysis, 2018, 1(11): 841-851.
[75] CHEN Z, GUO L, PAN L, et al. Advances in oxygen evolution electrocatalysts for proton exchange membrane water electrolyzers[J]. Advanced Energy Materials, 2022, 12(14): 2103670.
[76] ZHANG R, DUBOUIS N, BEN OSMAN M, et al. A dissolution/precipitation equilibrium on the surface of iridium-based perovskites controls their activity as oxygen evolution reaction catalysts in acidic media[J]. Angewandte Chemie International Edition, 2019, 58(14): 4571-4575.
[77] KUZNETSOV D A, NAEEM M A, KUMAR P V, et al. Tailoring lattice oxygen binding in ruthenium pyrochlores to enhance oxygen evolution activity[J]. Journal of the American Chemical Society, 2020, 142(17): 7883-7888.
[78] AN L, WEI C, LU M, et al. Recent Development of Oxygen Evolution Electrocatalysts in Acidic Environment[J]. Advanced Materials, 2021, 33(20): 2006328.
[79] ZAGALSKAYA A, ALEXANDROV V. Role of defects in the interplay between adsorbate evolving and lattice oxygen mechanisms of the oxygen evolution reaction in RuO2 and IrO2[J]. ACS Catalysis, 2020, 10(6): 3650-3657.
[80] YAO Y, HU S, CHEN W, et al. Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis[J]. Nature Catalysis, 2019, 2(4): 304-313.
[81] KASIAN O, GEIGER S, LI T, et al. Degradation of iridium oxides via oxygen evolution from the lattice: correlating atomic scale structure with reaction mechanisms[J]. Energy & Environmental Science, 2019, 12(12): 3548-3555.
[82] SCHWEINAR K, GAULT B, MOUTON I, et al. Lattice oxygen exchange in rutile IrO2 during the oxygen evolution reaction[J]. The Journal of Physical Chemistry Letters, 2020, 11(13): 5008-5014.
[83] CZIOSKA S, BOUBNOV A, ESCALERA-LóPEZ D, et al. Increased Ir–Ir interaction in iridium oxide during the oxygen evolution reaction at high potentials probed by operando spectroscopy[J]. ACS Catalysis, 2021, 11(15): 10043-10057.
[84] CHEREVKO S, ZERADJANIN A R, TOPALOV A A, et al. Dissolution of noble metals during oxygen evolution in acidic media[J]. ChemCatChem, 2014, 6(8): 2219-2223.
[85] SCHALENBACH M, KASIAN O, LEDENDECKER M, et al. The electrochemical dissolution of noble metals in alkaline media[J]. Electrocatalysis, 2018, 9(2): 153-161.
[86] MINGUZZI A, LUGARESI O, ACHILLI E, et al. Observing the oxidation state turnover in heterogeneous iridium-based water oxidation catalysts[J]. Chemical Science, 2014, 5(9): 3591-3597.
[87] SANCHEZ CASALONGUE H G, NG M L, KAYA S, et al. In situ observation of surface species on iridium oxide nanoparticles during the oxygen evolution reaction[J]. Angewandte Chemie International Edition, 2014, 53(28): 7169-7172.
[88] CHEREVKO S, GEIGER S, KASIAN O, et al. Oxygen evolution activity and stability of iridium in acidic media. Part 1. – Metallic iridium[J]. Journal of Electroanalytical Chemistry, 2016, 773: 69-78.
[89] CHEREVKO S, GEIGER S, KASIAN O, et al. Oxygen evolution activity and stability of iridium in acidic media. Part 2. – Electrochemically grown hydrous iridium oxide[J]. Journal of Electroanalytical Chemistry, 2016, 774: 102-110.
[90] KASIAN O, GROTE J-P, GEIGER S, et al. The common intermediates of oxygen evolution and dissolution reactions during water electrolysis on iridium[J]. Angewandte Chemie International Edition, 2018, 57(9): 2488-2491.
[91] ZAGALSKAYA A, ALEXANDROV V. Mechanistic study of IrO2 dissolution during the electrocatalytic oxygen evolution reaction[J]. The Journal of Physical Chemistry Letters, 2020, 11(7): 2695-2700.
[92] NAITO T, SHINAGAWA T, NISHIMOTO T, et al. Recent advances in understanding oxygen evolution reaction mechanisms over iridium oxide[J]. Inorganic Chemistry Frontiers, 2021, 8(11): 2900-2917.
[93] PFEIFER V, JONES T E, VELASCO VéLEZ J J, et al. The electronic structure of iridium oxide electrodes active in water splitting[J]. Physical Chemistry Chemical Physics, 2016, 18(4): 2292-2296.
[94] PFEIFER V, JONES T E, VELASCO VéLEZ J J, et al. The electronic structure of iridium and its oxides[J]. Surface and Interface Analysis, 2016, 48(5): 261-273.
[95] OOKA H, WANG Y, YAMAGUCHI A, et al. Legitimate intermediates of oxygen evolution on iridium oxide revealed by in situ electrochemical evanescent wave spectroscopy[J]. Physical Chemistry Chemical Physics, 2016, 18(22): 15199-15204.
[96] MO Y, STEFAN I C, CAI W-B, et al. In situ iridium LIII-edge X-ray absorption and surface enhanced raman spectroscopy of electrodeposited iridium oxide films in aqueous electrolytes[J]. The Journal of Physical Chemistry B, 2002, 106(14): 3681-3686.
[97] LEBEDEV D, EZHOV R, HERAS-DOMINGO J, et al. Atomically dispersed iridium on indium tin oxide efficiently catalyzes water oxidation[J]. ACS Central Science, 2020, 6(7): 1189-1198.
[98] PEARCE P E, YANG C, IADECOLA A, et al. Revealing the reactivity of the iridium trioxide intermediate for the oxygen evolution reaction in acidic media[J]. Chemistry of Materials, 2019, 31(15): 5845-5855.
[99] GEIGER S, KASIAN O, LEDENDECKER M, et al. The stability number as a metric for electrocatalyst stability benchmarking[J]. Nature Catalysis, 2018, 1(7): 508-515.
[100] DANILOVIC N, SUBBARAMAN R, CHANG K-C, et al. Activity–stability trends for the oxygen evolution reaction on monometallic oxides in acidic environments[J]. The Journal of Physical Chemistry Letters, 2014, 5(14): 2474-2478.
[101] HAN B, RISCH M, LEE Y-L, et al. Activity and stability trends of perovskite oxides for oxygen evolution catalysis at neutral pH[J]. ChemElectroChem, 2015, 17(35): 22576-22580.
[102] FRYDENDAL R, PAOLI E A, KNUDSEN B P, et al. Benchmarking the stability of oxygen evolution reaction catalysts: the importance of monitoring mass losses[J]. ChemElectroChem, 2014, 1(12): 2075-2081.
[103] BENHANGI P H, GYENGE E, ALFANTAZI A. MnO2-based bifunctional oxygen catalyst for rechargeable metal/air batteries: the effect of K+ intercalation; proceedings of the ECS Meeting Abstracts, F, 2014 [C]. IOP Publishing.
[104] BOCKRIS J O M, SHAMSHUL HUQ A. The mechanism of the electrolytic evolution of oxygen on platinum[J]. Journal of The Electrochemical Society, 1956, 237(1209): 277-296.
[105] DAMJANOVIC A, WONG M J J O T E S. On the mechanism of oxygen evolution at iridium electrodes[J]. Journal of The Electrochemical Society, 1967, 114(6): 592-593.
[106] FAULKNER L R, BARD A J. Electrochemical methods: fundamentals and applications[M]. John Wiley and Sons, 2002.
[107] GYENGE E J E A. Electrooxidation of borohydride on platinum and gold electrodes: implications for direct borohydride fuel cells[J]. Electrochimica Acta, 2004, 49(6): 965-978.
[108] LIANG X, SHI L, LIU Y, et al. Activating inert, nonprecious perovskites with iridium dopants for efficient oxygen evolution reaction under acidic conditions[J]. Angewandte Chemie International Edition, 2019, 58(23): 7631-7635.
[109] RETUERTO M, PASCUAL L, CALLE-VALLEJO F, et al. Na-doped ruthenium perovskite electrocatalysts with improved oxygen evolution activity and durability in acidic media[J]. Nature Communications, 2019, 10(1): 2041.
[110] MIAO X, ZHANG L, WU L, et al. Quadruple perovskite ruthenate as a highly efficient catalyst for acidic water oxidation[J]. Nature Communications, 2019, 10(1): 3809.
[111] WILLINGER E, MASSUé C, SCHLöGL R, et al. Identifying key structural features of IrOx water splitting catalysts[J]. Journal of the American Chemical Society, 2017, 139(34): 12093-12101.
[112] GAO J, XU C-Q, HUNG S-F, et al. Breaking Long-Range Order in Iridium Oxide by Alkali Ion for Efficient Water Oxidation[J]. Journal of the American Chemical Society, 2019, 141(7): 3014-3023.
[113] LEE S, LEE Y-J, LEE G, et al. Activated chemical bonds in nanoporous and amorphous iridium oxides favor low overpotential for oxygen evolution reaction[J]. Nature Communications, 2022, 13(1): 3171.
[114] SHAN J, GUO C, ZHU Y, et al. Charge-redistribution-enhanced nanocrystalline Ru@IrOx electrocatalysts for oxygen evolution in acidic media[J]. Chem, 2019, 5(2): 445-459.
[115] YAN X, DONG C-L, HUANG Y-C, et al. Probing the active sites of carbon-encapsulated cobalt nanoparticles for oxygen reduction[J]. Small Methods, 2019, 3(9): 1800439.
[116] TACKETT B M, SHENG W, KATTEL S, et al. Reducing iridium loading in oxygen evolution reaction electrocatalysts using core–shell particles with nitride cores[J]. ACS Catalysis, 2018, 8(3): 2615-2621.
[117] JIANG B, GUO Y, KIM J, et al. Mesoporous metallic iridium nanosheets[J]. Journal of the American Chemical Society, 2018, 140(39): 12434-12441.
[118] WU G, ZHENG X, CUI P, et al. A general synthesis approach for amorphous noble metal nanosheets[J]. Nature Communications, 2019, 10(1): 4855.
[119] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
[120] ZHANG X, LAI Z, MA Q, et al. Novel structured transition metal dichalcogenide nanosheets[J]. Chemical Society Reviews, 2018, 47(9): 3301-3338.
[121] ZU L, QIAN X, ZHAO S, et al. Self-Assembly of Ir-Based Nanosheets with Ordered Interlayer Space for Enhanced Electrocatalytic Water Oxidation[J]. Journal of the American Chemical Society, 2022, 144(5): 2208-2217.
[122] ZU L, QIAN X, ZHAO S, et al. Active origin of ordered mesoporous Ir-based electrocatalysts for acidic water oxidation[J]. Joule, 2022
[123] LIU J, GUO C, VASILEFF A, et al. Nanostructured 2D materials: prospective catalysts for electrochemical CO2 reduction[J]. Small Methods, 2017, 1(1-2): 1600006.
[124] LI Z, ZHAI L, GE Y, et al. Wet-chemical synthesis of two-dimensional metal nanomaterials for electrocatalysis[J]. National Science Review, 2021, 9(5)
[125] WU X, FENG B, LI W, et al. Metal-support interaction boosted electrocatalysis of ultrasmall iridium nanoparticles supported on nitrogen doped graphene for highly efficient water electrolysis in acidic and alkaline media[J]. Nano Energy, 2019, 62: 117-126.
[126] CHEN H, ZHANG M, WANG Y, et al. Crystal phase engineering of electrocatalysts for energy conversions[J]. Nano Research, 2022, 15(12): 10194-10217.
[127] QIAO S, HE Q, ZHOU Q, et al. Interfacial electronic interaction enabling exposed Pt(110) facets with high specific activity in hydrogen evolution reaction[J]. Nano Research, 2023, 16(1): 174-180.
[128] FAN Z, JI Y, SHAO Q, et al. Extraordinary acidic oxygen evolution on new phase 3R-iridium oxide[J]. Joule, 2021, 5(12): 3221-3234.
[129] OH H-S, NONG H N, REIER T, et al. Electrochemical catalyst–support effects and their stabilizing role for IrOx nanoparticle catalysts during the oxygen evolution reaction[J]. Journal of the American Chemical Society, 2016, 138(38): 12552-12563.
[130] SEITZ L C, DICKENS C F, NISHIO K, et al. A highly active and stable IrOX/SrIrO3 catalyst for the oxygen evolution reaction[J]. Science, 2016, 353(6303): 1011-1014.
[131] WANG L, LETTENMEIER P, GOLLA-SCHINDLER U, et al. Nanostructured Ir-supported on Ti4O7 as a cost-effective anode for proton exchange membrane (PEM) electrolyzers[J]. Physical Chemistry Chemical Physics, 2016, 18(6): 4487-4495.
[132] KARIMI F, PEPPLEY B A. Metal carbide and oxide supports for iridium-based oxygen evolution reaction electrocatalysts for polymer-electrolyte-membrane water electrolysis[J]. Electrochimica Acta, 2017, 246: 654-670.
[133] HARTIG-WEISS A, MILLER M, BEYER H, et al. Iridium oxide catalyst supported on antimony-doped tin oxide for high oxygen evolution reaction activity in acidic media[J]. ACS Applied Nano Materials, 2020, 3(3): 2185-2196.
[134] SPöRI C, KWAN J T H, BONAKDARPOUR A, et al. The stability challenges of oxygen evolving catalysts: towards a common fundamental understanding and mitigation of catalyst degradation[J]. Angewandte Chemie International Edition, 2017, 56(22): 5994-6021.
[135] LI R, WANG H, HU F, et al. IrW nanochannel support enabling ultrastable electrocatalytic oxygen evolution at 2 A cm−2 in acidic media[J]. Nature Communications, 2021, 12(1): 3540.
[136] XU J, LIAN Z, WEI B, et al. Strong electronic coupling between ultrafine iridium–ruthenium nanoclusters and conductive, acid-stable tellurium nanoparticle support for efficient and durable oxygen evolution in acidic and neutral media[J]. ACS Catalysis, 2020, 10(6): 3571-3579.
[137] GöRLIN M, FERREIRA DE ARAúJO J, SCHMIES H, et al. Tracking catalyst redox states and reaction dynamics in Ni–Fe oxyhydroxide oxygen evolution reaction electrocatalysts: the role of catalyst support and electrolyte pH[J]. Journal of the American Chemical Society, 2017, 139(5): 2070-2082.
[138] MAGKOEV T T. Formation and modification of metal oxide substrates for controlled molecular adsorption and transformation on their surface[J]. Russian Journal of Physical Chemistry A, 2021, 95(6): 1081-1092.
[139] YIN J, JIN J, LU M, et al. Iridium single atoms coupling with oxygen vacancies boosts oxygen evolution reaction in acid media[J]. Journal of the American Chemical Society, 2020, 142(43): 18378-18386.
[140] SHI Z, WANG Y, LI J, et al. Confined Ir single sites with triggered lattice oxygen redox: Toward boosted and sustained water oxidation catalysis[J]. Joule, 2021, 5(8): 2164-2176.
[141] NONG H N, OH H-S, REIER T, et al. Oxide-supported IrNiOx core–shell particles as efficient, cost-effective, and stable catalysts for electrochemical water splitting[J]. Angewandte Chemie International Edition, 2015, 54(10): 2975-2979.
[142] NONG H N, GAN L, WILLINGER E, et al. IrOx core-shell nanocatalysts for cost- and energy-efficient electrochemical water splitting[J]. Chemical Science, 2014, 5(8): 2955-2963.
[143] BöHM D, BEETZ M, SCHUSTER M, et al. Efficient OER catalyst with low Ir volume density obtained by homogeneous deposition of Iridium oxide nanoparticles on macroporous antimony-doped tin oxide support[J]. Advanced Functional Materials, 2020, 30(1): 1906670.
[144] DELGADO S, LAKHTARIA P, SOUSA E, et al. Towards stable and highly active IrO2 catalysts supported on doped tin oxides for the oxygen evolution reaction in acidic media[J]. E3S Web Conf, 2022, 334: 03001.
[145] OAKTON E, LEBEDEV D, POVIA M, et al. IrO2-TiO2: A high-surface-area, active, and stable electrocatalyst for the oxygen evolution reaction[J]. ACS Catalysis, 2017, 7(4): 2346-2352.
[146] ZHANG H, HAAS H, LEOW A, et al. Reversal tolerant membrane electrode assembly for a fuel cell[Z]. Google Patents. 2015
[147] KNIGHTS S, TAYLOR J, WILKINSON D, et al. Supported catalysts for the anode of a voltage reversal tolerant fuel cell[Z]. Google Patents. 2004
[148] ZHANG J, OWEJAN J E. Ionic layer with oxygen evolution reaction catalyst for electrode protection[Z]. Google Patents. 2016
[149] HE Q, SESSIONS D. Polarity reversal tolerant electrical circuit for ESD protection[Z]. Google Patents. 2003
[150] KUNDU S, MCDERMID S, YANG A S-W, et al. Solid polymer electrolyte fuel cell with improved voltage reversal tolerance[Z]. Google Patents. 2013
[151] Chapter 1: Introduction[M]. Fuel Cell Fundamentals. 2016: 1-24.
[152] 胡会利, 李宁. 电化学测量[M]. 北京: 国防工业出版社, 2007.
[153] WU J, YUAN X Z, MARTIN J J, et al. A review of PEM fuel cell durability: Degradation mechanisms and mitigation strategies[J]. Journal of Power Sources, 2008, 184(1): 104-119.
[154] MAASS S, FINSTERWALDER F, FRANK G, et al. Carbon support oxidation in PEM fuel cell cathodes[J]. Journal of Power Sources, 2008, 176(2): 444-451.
[155] ROZAIN C, MAYOUSSE E, GUILLET N, et al. Influence of iridium oxide loadings on the performance of PEM water electrolysis cells: Part II – Advanced oxygen electrodes[J]. Applied Catalysis B: Environmental, 2016, 182: 123-131.
[156] ZHANG J. PEM fuel cell electrocatalysts and catalyst layers: fundamentals and applications[M]. Springer Science & Business Media, 2008.
[157] ARAI T, TAKASHI O, AMEMIYA K, et al. Study of oxide supports for PEFC catalyst[J]. SAE International Journal of Alternative Powertrains, 2017, 6(1): 145-150.
[158] PERRY M L, PATTERSON T W, REISER C. Systems strategies to mitigate carbon corrosion in fuel cells[J]. ECS Transactions, 2006, 3(1): 783-795.
[159] ATANASOSKI R T, ATANASOSKA L L, CULLEN D A. Efficient Oxygen Evolution Reaction Catalysts for Cell Reversal and Start/Stop Tolerance[M]//SHAO M. Electrocatalysis in Fuel Cells: A Non- and Low- Platinum Approach. London; Springer London. 2013: 637-663.
[160] ATANASOSKI R T, CULLEN D A, VERNSTROM G D, et al. A materials-based mitigation strategy for SU/SD in PEM fuel cells: properties and performance-specific testing of IrRu OER catalysts[J]. ECS Electrochemistry Letters, 2013, 2(3): F25-F28.
[161] MANDAL P, HONG B K, OH J-G, et al. Understanding the voltage reversal behavior of automotive fuel cells[J]. Journal of Power Sources, 2018, 397: 397-404.
[162] RALPH T R, HUDSON S, WILKINSON D P. Electrocatalyst stability in PEMFCs and the role of fuel starvation and cell reversal tolerant anodes[J]. ECS Transactions, 2006, 1(8): 67-84.
[163] ADAMS R, SHRINER R L. platinum oxide as a catalyst in the reduction of organic compounds. iii. preparation and properties of the oxide of platinum obtained by the fusion of chloroplatinic acid with sodium nitrate[J]. Journal of the American Chemical Society, 1923, 45: 2171-2179.
[164] LIU Y, WANG C, LEI Y, et al. Investigation of high-performance IrO2 electrocatalysts prepared by Adams method[J]. International Journal of Hydrogen Energy, 2018, 43(42): 19460-19467.
[165] LIM J, PARK D, JEON S S, et al. Ultrathin IrO2 nanoneedles for electrochemical water oxidation[J]. Advanced Functional Materials, 2018, 28(4): 1704796.
[166] JANG I, HWANG I, TAK Y. Attenuated degradation of a PEMFC cathode during fuel starvation by using carbon-supported IrO2[J]. Electrochimica Acta, 2013, 90: 148-156.
[167] LABI T, VAN SCHALKWYK F, ANDERSEN S M, et al. Increasing fuel cell durability during prolonged and intermittent fuel starvation using supported IrOx[J]. Journal of Power Sources, 2021, 490: 229568.
[168] KUMAR A, RAMANI V. Strong metal–support interactions enhance the activity and durability of platinum supported on tantalum-modified titanium dioxide electrocatalysts[J]. ACS Catalysis, 2014, 4: 1516–1525.
[169] LAVACCHI A, BELLINI M, BERRETTI E, et al. Titanium dioxide nanomaterials in electrocatalysis for energy[J]. Current Opinion in Electrochemistry, 2021, 28: 100720.
[170] SAMBANDAM S, VALLURI V, CHANMANEE W, et al. Platinum-carbon black-titanium dioxide nanocomposite electrocatalysts for fuel cell applications[J]. Journal of Chemical Sciences, 2009, 121(5): 655-664.
[171] NGUYEN S T, YANG Y, WANG X. Ethanol electro-oxidation activity of Nb-doped-TiO2 supported PdAg catalysts in alkaline media[J]. Applied Catalysis B: Environmental, 2012, 113-114: 261-270.
[172] HU M, ZHAO R, PAN R, et al. Disclosure of the internal mechanism during activating a proton exchange membrane fuel cell based on the three-step activation method[J]. International Journal of Hydrogen Energy, 2021, 46(3): 3008-3021.
[173] YANG C, HU M, WANG C, et al. A three-step activation method for proton exchange membrane fuel cells[J]. Journal of Power Sources, 2012, 197: 180-185.
[174] HAO C, LV H, MI C, et al. Investigation of mesoporous niobium-doped TiO2 as an oxygen evolution catalyst support in an SPE water electrolyzer[J]. ACS Sustainable Chemistry & Engineering, 2016, 4: 746-756.
[175] RICCI P C, CARBONARO C M, STAGI L, et al. Anatase-to-rutile phase transition in TiO2 nanoparticles irradiated by visible light[J]. The Journal of Physical Chemistry C, 2013, 117(15): 7850-7857.
[176] ZHANG H, BANFIELD J F. Thermodynamic analysis of phase stability of nanocrystalline titania[J]. Journal of Materials Chemistry, 1998, 8(9): 2073-2076.
[177] ZHANG H, BANFIELD J F. Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates insights from TiO2[J]. Journal of Physical Chemistry B, 2000, 104: 3481-3487.
[178] RADMILOVIC V, GASTEIGER H A, ROSS P N. Structure and chemical composition of a supported Pt-Ru electrocatalyst for methanol oxidation[J]. Journal of Catalysis, 1995, 154: 98-106.
[179] GOJKOVIĆ S L, BABIĆ B M, RADMILOVIĆ V R, et al. Nb-doped TiO2 as a support of Pt and Pt–Ru anode catalyst for PEMFCs[J]. Journal of Electroanalytical Chemistry, 2010, 639(1-2): 161-166.
[180] ELEZOVIĆ N R, BABIĆ B M, GAJIĆ-KRSTAJIĆ L, et al. Synthesis, characterization and electrocatalytical behavior of Nb–TiO2/Pt nanocatalyst for oxygen reduction reaction[J]. Journal of Power Sources, 2010, 195(13): 3961-3968.
[181] SING K S W, EVERETT D H, HAUL R A W, et al. Reporting physisorption data for gas-solid systems with special reference to the determination of surface area and porosity[J]. International union of pure and applied chemistry, 1985, 57(4): 603-619.
[182] MOULDER J F, STICKLE W F, SOBOL W M, et al. Handbook of X-Ray Photoelectron Spectroscopy, F, 1992 [C].
[183] ZANONI R, RIGHINI G, MONTENERO A, et al. XPS analysis of sol-gel processed doped and undoped TiO2 films for sensors[J]. Surface and Interface Analysis, 1994, 22(1-12): 376-379.
[184] KRUSE N, CHENAKIN S. XPS characterization of Au/TiO2 catalysts: Binding energy assessment and irradiation effects[J]. Applied Catalysis A: General, 2011, 391(1): 367-376.
[185] OVER H. Surface chemistry of ruthenium dioxide in heterogeneous catalysis and electrocatalysis: from fundamental to applied research[J]. Chemical Reviews, 2012, 112(6): 3356-3426.
[186] RASTEN E, HAGEN G, TUNOLD R. Electrocatalysis in water electrolysis with solid polymer electrolyte[J]. Electrochimica Acta, 2003, 48(25-26): 3945-3952.
[187] ZHOU X, JI H, LI B, et al. High-repetitive reversal tolerant performance of proton-exchange membrane fuel cell by designing a suitable anode[J]. ACS Omega, 2020, 5(17): 10099-10105.
[188] CHEN W, CAI C, LI S, et al. Thickness effects of anode catalyst layer on reversal tolerant performance in proton exchange membrane fuel cell[J]. International Journal of Hydrogen Energy, 2021, 46(12): 8749-8757.
[189] ZAMAN S, SU Y-Q, DONG C-L, et al. Scalable molten salt synthesis of platinum alloys planted in metal–nitrogen–graphene for efficient oxygen reduction[J]. Angewandte Chemie International Edition, 2022, 61(6): e202115835.
[190] YE S. Reversal-tolerant Catalyst Layers[M]//ZHANG J. PEM fuel cell electrocatalysts and catalyst layers: fundamentals and applications. London; Springer London. 2008: 835-860.
[191] CHEN H, ZHAO X, ZHANG T, et al. The reactant starvation of the proton exchange membrane fuel cells for vehicular applications: A review[J]. Energy Conversion and Management, 2019, 182: 282-298.
[192] LIM K H, LEE W H, JEONG Y, et al. Analysis of carbon corrosion in anode under fuel starvation using on-line mass spectrometry in polymer electrolyte membrane fuel cells[J]. Journal of The Electrochemical Society, 2017, 164(14): F1580-F1586.
[193] HALALAY I C, SWATHIRAJAN S, MERZOUGUI B, et al. Anode materials for mitigating hydrogen starvation effects in PEM fuel cells[J]. Journal of The Electrochemical Society, 2011, 158(3): B313-B321.
[194] ZAMAN S, TIAN X, SU Y-Q, et al. Direct integration of ultralow-platinum alloy into nanocarbon architectures for efficient oxygen reduction in fuel cells[J]. Science Bulletin, 2021, 66(21): 2207-2216.
[195] REIER T, WEIDINGER I, HILDEBRANDT P, et al. Electrocatalytic oxygen evolution reaction on iridium oxide model film catalysts: influence of oxide type and catalyst substrate interactions[J]. ECS Transactions, 2013, 58(2): 39-51.
[196] MOORE C E, EASTCOTT J, CIMENTI M, et al. Novel methodology for ex situ characterization of iridium oxide catalysts in voltage reversal tolerant proton exchange membrane fuel cell anodes[J]. Journal of Power Sources, 2019, 417: 53-60.
[197] LIANG Y, LI Y, WANG H, et al. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction[J]. Nat Mater, 2011, 10(10): 780-786.
[198] ABBOTT D F, LEBEDEV D, WALTAR K, et al. Iridium oxide for the oxygen evolution reaction: correlation between particle size, morphology, and the surface hydroxo layer from operando XAS[J]. Chemistry of Materials, 2016, 28(18): 6591-6604.
[199] ZAMAN S, WANG M, LIU H, et al. Carbon-based catalyst supports for oxygen reduction in proton-exchange membrane fuel cells[J]. Trends in Chemistry, 2022, 4(10): 886-906.
[200] PEUCKERT M. XPS study on thermally and electrochemically prepared oxidic adlayers on iridium[J]. Surface Science, 1984, 144(2): 451-464.
[201] SANJINéS R, ARUCHAMY A, LéVY F. Thermal stability of sputtered iridium oxide films[J]. Journal of The Electrochemical Society, 1989, 136(6): 1740-1743.
[202] OUATTARA L, FIERRO S, FREY O, et al. Electrochemical comparison of IrO2 prepared by anodic oxidation of pure iridium and IrO2 prepared by thermal decomposition of H2IrCl6 precursor solution[J]. Journal of Applied Electrochemistry, 2009, 39(8): 1361-1367.
[203] BERNICKE M, ORTEL E, REIER T, et al. Iridium oxide coatings with templated porosity as highly active oxygen evolution catalysts: structure-activity relationships[J]. ChemSusChem, 2015, 8(11): 1908-1915.
[204] HU J-M, MENG H-M, ZHANG J-Q, et al. Effect of crystallite orientation of IrO2 rutile on the corrosion characteristics of IrO2+Ta2O5 oxide coatings[J]. Journal of materials science letters, 2001, 20(14): 1353-1355.
[205] YAN Z, ZHAO Y, ZHANG Z, et al. A study on the performance of IrO2–Ta2O5 coated anodes with surface treated Ti substrates[J]. Electrochimica Acta, 2015, 157: 345-350.
[206] ZHANG X, GUO L, LIU H. Recovery mechanisms in proton exchange membrane fuel cells after accelerated stress tests[J]. Journal of Power Sources, 2015, 296: 327-334.
[207] VOS J G, WEZENDONK T A, JEREMIASSE A W, et al. MnOx/IrOx as selective oxygen evolution electrocatalyst in acidic chloride solution[J]. Journal of the American Chemical Society, 2018, 140(32): 10270-10281.
[208] ZHU J, XIE M, CHEN Z, et al. Pt-Ir-Pd trimetallic nanocages as a dual catalyst for efficient oxygen reduction and evolution reactions in acidic media[J]. Advanced Energy Materials, 2020, 10(16): 1904114.
[209] ZHANG R, DUBOUIS N, BEN OSMAN M, et al. A dissolution/precipitation equilibrium on the surface of iridium-based perovskites controls their activity as oxygen evolution reaction catalysts in acidic media[J]. Angewandte Chemie International Edition, 2019, 58(14): 4571-4575.
[210] GRIMAUD A, DEMORTIèRE A, SAUBANèRE M, et al. Activation of surface oxygen sites on an iridium-based model catalyst for the oxygen evolution reaction[J]. Nature Energy, 2016, 2(1): 16189.
[211] HE J, ZHOU X, XU P, et al. Promoting electrocatalytic water oxidation through tungsten-modulated oxygen vacancies on hierarchical FeNi-layered double hydroxide[J]. Nano Energy, 2021, 80: 105540.
[212] SU J, GE R, JIANG K, et al. Assembling ultrasmall copper-doped ruthenium oxide nanocrystals into hollow porous polyhedra: highly robust electrocatalysts for oxygen evolution in acidic media[J]. Advanced Materials, 2018, 30(29): 1801351.
[213] SUN W, SONG Y, GONG X-Q, et al. An efficiently tuned d-orbital occupation of IrO2 by doping with Cu for enhancing the oxygen evolution reaction activity[J]. Chemical Science, 2015, 6(8): 4993-4999.
[214] ZAMAN W Q, WANG Z, SUN W, et al. Ni–Co codoping breaks the limitation of single-metal-doped IrO2 with higher oxygen evolution reaction performance and less iridium[J]. ACS Energy Letters, 2017, 2(12): 2786-2793.
[215] KRESSE G, FURTHMüLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, 1996, 54(16): 11169-11186.
[216] PERDEW J P, CHEVARY J A, VOSKO S H, et al. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation[J]. Physical Review B, 1992, 46(11): 6671-6687.
[217] PERDEW J P, CHEVARY J A, VOSKO S H, et al. Erratum: atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation[J]. Physical Review B, 1993, 48(7): 4978-4978.
[218] CHASE M. NIST-JANAF Thermochemical Tables, 4th Edition[Z]. American Institute of Physics, -1. 1998
[219] CHEN J, CUI P, ZHAO G, et al. Low-coordinate iridium oxide confined on graphitic carbon nitride for highly efficient oxygen evolution[J]. Angewandte Chemie International Edition, 2019, 58(36): 12540-12544.
[220] DAIANE FERREIRA DA SILVA C, CLAUDEL F, MARTIN V, et al. Oxygen evolution reaction activity and stability benchmarks for supported and unsupported IrOx electrocatalysts[J]. ACS Catalysis, 2021, 11(7): 4107-4116.

所在学位评定分委会
力学
国内图书分类号
TK91
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544100
专题工学院_机械与能源工程系
推荐引用方式
GB/T 7714
廖建华. 质子交换膜燃料电池中铱基催化剂抗反极研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930757-廖建华-机械与能源工程(11704KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[廖建华]的文章
百度学术
百度学术中相似的文章
[廖建华]的文章
必应学术
必应学术中相似的文章
[廖建华]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。