[1] 弗朗诺·巴尔伯, 李东红, 连晓峰. PEM燃料电池:理论与实践[M]. 北京: 机械工业出版社, 2016.
[2] 衣宝廉著. 燃料电池——原理·技术·应用[M]. 北京: 化学工业出版社, 2003.
[3] KARIDURAGANAVAR M Y, NAGARALE R K, KITTUR A A, et al. Ion-exchange membranes: preparative methods for electrodialysis and fuel cell applications[J]. Desalination, 2006, 197(1): 225-246.
[4] SOUZY R, AMEDURI B, BOUTEVIN B, et al. Functional fluoropolymers for fuel cell membranes[J]. Solid State Ionics, 2005, 176(39): 2839-2848.
[5] CINDRELLA L, KANNAN A M, LIN J F, et al. Gas diffusion layer for proton exchange membrane fuel cells—A review[J]. Journal of Power Sources, 2009, 194(1): 146-160.
[6] 王晓丽, 张华民, 张建鲁, 徐海峰, 衣宝廉. 质子交换膜燃料电池气体扩散层的研究进展[J]. 化学进展, 2006, 18(4): 507-513.
[7] LI H, TANG Y, WANG Z, et al. A review of water flooding issues in the proton exchange membrane fuel cell[J]. Journal of Power Sources, 2008, 178(1): 103-117.
[8] WEE J-H, LEE K-Y, KIM S H. Fabrication methods for low-Pt-loading electrocatalysts in proton exchange membrane fuel cell systems[J]. Journal of Power Sources, 2007, 165(2): 667-677.
[9] XIE J, XU F, WOOD D L, et al. Influence of ionomer content on the structure and performance of PEFC membrane electrode assemblies[J]. Electrochimica Acta, 2010, 55(24): 7404-7412.
[10] EUDY L, POST M. Fuel cell buses in U.S. transit fleets: current status 2020[R]. United States, 2021.
[11] 中国汽车工程学会. 节能与新能源汽车技术路线图 2.0[M]. 北京: 机械工业出版社, 2020.
[12] 中商产业研究院. 2022年中国氢燃料电池汽车行业市场前景及投资研究预测报告[R], 2022.
[13] YANG Z, JIAO K, LIU Z, et al. Investigation of performance heterogeneity of PEMFC stack based on 1+1D and flow distribution models[J]. Energy Conversion and Management, 2020, 207: 112502.
[14] PERRY M L, PATTERSON T, REISER C. Systems strategies to mitigate carbon corrosion in fuel cells[J]. ECS Transactions, 2006, 3(1): 783.
[15] LIANG D, DOU M, HOU M, et al. Behavior of a unit proton exchange membrane fuel cell in a stack under fuel starvation[J]. Journal of Power Sources, 2011, 196(13): 5595-5598.
[16] LIU B, CHEN H, ZHANG T, et al. A vehicular proton exchange membrane fuel cell system co-simulation modeling method based on the stack internal distribution parameters monitoring[J]. Energy Conversion and Management, 2019, 197: 111898.
[17] ZHANG G, JIAO K. Three-dimensional multi-phase simulation of PEMFC at high current density utilizing Eulerian-Eulerian model and two-fluid model[J]. Energy Conversion and Management, 2018, 176: 409-421.
[18] CHEN H, ZHAO X, QU B, et al. An evaluation method of gas distribution quality in dynamic process of proton exchange membrane fuel cell[J]. Applied Energy, 2018, 232: 26-35.
[19] ZHANG G, XIE B, BAO Z, et al. Multi-phase simulation of proton exchange membrane fuel cell with 3D fine mesh flow field[J]. International Journal of Energy Research, 2018, 42(15): 4697-4709.
[20] ZHANG G, YUAN H, WANG Y, et al. Three-dimensional simulation of a new cooling strategy for proton exchange membrane fuel cell stack using a non-isothermal multiphase model[J]. Applied Energy, 2019, 255: 113865.
[21] ZHANG G, XIE X, XIE B, et al. Large-scale multi-phase simulation of proton exchange membrane fuel cell[J]. International Journal of Heat and Mass Transfer, 2019, 130: 555-563.
[22] LIANG D, SHEN Q, HOU M, et al. Study of the cell reversal process of large area proton exchange membrane fuel cells under fuel starvation[J]. Journal of Power Sources, 2009, 194(2): 847-853.
[23] DOU M, HOU M, LIANG D, et al. Behaviors of proton exchange membrane fuel cells under oxidant starvation[J]. Journal of Power Sources, 2011, 196(5): 2759-2762.
[24] TANIGUCHI A, AKITA T, YASUDA K, et al. Analysis of degradation in PEMFC caused by cell reversal during air starvation[J]. International Journal of Hydrogen Energy, 2008, 33(9): 2323-2329.
[25] GERARD M, POIROT-CROUVEZIER J-P, HISSEL D, et al. Oxygen starvation analysis during air feeding faults in PEMFC[J]. International Journal of Hydrogen Energy, 2010, 35(22): 12295-12307.
[26] REISER C A, BREGOLI L, PATTERSON T W, et al. A reverse-current decay mechanism for fuel cells[J]. Electrochemical and Solid State Letters, 2005, 8(6): A273-A276.
[27] PATTERSON T W, DARLING R M. Damage to the cathode catalyst of a PEM fuel cell caused by localized fuel starvation[J]. Electrochemical and Solid State Letters, 2006, 9(4): A183-A185.
[28] LIU Z, BRADY B, CARTER R, et al. Characterization of carbon corrosion-induced structural damage of PEM fuel cell cathode electrodes caused by local fuel starvation[J]. Journal of The Electrochemical Society, 2008, 155(10): B979-B984.
[29] TANIGUCHI A, AKITA T, YASUDA K, et al. Analysis of electrocatalyst degradation in PEMFC caused by cell reversal during fuel starvation[J]. Journal of Power Sources, 2004, 130(1): 42-49.
[30] RALPH T R, HOGARTH M P. Catalysis for low temperature fuel cells[J]. Platinum metals rev, 2002, 46(3): 117-135.
[31] ZHOU F, ANDREASEN S J, KæR S K, et al. Analysis of accelerated degradation of a HT-PEM fuel cell caused by cell reversal in fuel starvation condition[J]. International Journal of Hydrogen Energy, 2015, 40(6): 2833-2839.
[32] MANDAL P, HONG B K, OH J-G, et al. 3D imaging of fuel cell electrode structure degraded under cell voltage reversal conditions using nanoscale X-ray computed tomography[J]. ECS Transactions, 2015, 69(17): 443-453.
[33] TANIGUCHI A, AKITA T, YASUDA K, et al. Analysis of electrocatalyst degradation in PEMFC caused by cell reversal during fuel starvation[J]. Journal of Power Sources, 2004, 130(1-2): 42-49.
[34] HU L, HONG B K, OH J-G, et al. Investigation of hydrogen starvation of polymer electrolyte fuel cells in freezing condition using reference electrode[J]. ECS Transactions, 2017, 80(8): 535-542.
[35] HU L, HONG B K, OH J-G, et al. Robust operation of fuel cell systems in subfreezing conditions: a material-based solution to achieve better anode durability[J]. ACS Applied Energy Materials, 2019, 2(10): 7152-7161.
[36] LIM K H, OH H-S, JANG S-E, et al. Effect of operating conditions on carbon corrosion in polymer electrolyte membrane fuel cells[J]. Journal of Power Sources, 2009, 193(2): 575-579.
[37] ZHANG J, YANG H, FANG J, et al. Synthesis and oxygen reduction activity of shape-controlled Pt3Ni nanopolyhedra[J]. Nano Lett, 2010, 10: 638-644.
[38] YU X, YE S. Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC: Part II: Degradation mechanism and durability enhancement of carbon supported platinum catalyst[J]. Journal of Power Sources, 2007, 172(1): 145-154.
[39] ZHANG S, YUAN X-Z, HIN J N C, et al. A review of platinum-based catalyst layer degradation in proton exchange membrane fuel cells[J]. Journal of Power Sources, 2009, 194(2): 588-600.
[40] HONG B K, MANDAL P, OH J-G, et al. On the impact of water activity on reversal tolerant fuel cell anode performance and durability[J]. Journal of Power Sources, 2016, 328: 280-288.
[41] ROH C-W, KIM H-E, CHOI J, et al. Monodisperse IrOx deposited on Pt/C for reversal tolerant anode in proton exchange membrane fuel cell[J]. Journal of Power Sources, 2019, 443: 227270.
[42] ZHOU X, JI H, LI B, et al. High-repetitive reversal tolerant performance of proton-exchange membrane fuel cell by designing a suitable anode[J]. ACS Omega, 2020, 5: 10099 - 10105.
[43] ZHU Z, YAN X, TANG H, et al. Protic ionic liquid modified electrocatalyst enables robust anode under cell reversal condition[J]. Journal of Power Sources, 2017, 351: 138-144.
[44] SHEN G, LIU J, WU H B, et al. Multi-functional anodes boost the transient power and durability of proton exchange membrane fuel cells[J]. Nature Communications, 2020, 11(1): 1191.
[45] JUNG D-W, PARK S, KIM S-H, et al. Durability of polymer electrolyte membrane fuel cell with Pt/CNTs catalysts in cell reversal conditions by hydrogen starvation[J]. Fuel Cells, 2011, 11(6): 866-874.
[46] PENG Y, CHOI J-Y, BAI K, et al. Pulsed vs. galvanostatic accelerated stress test protocols: Comparing predictions for anode reversal tolerance in proton exchange membrane fuel cells[J]. Journal of Power Sources, 2021, 500: 229986.
[47] TAN X, SHEN J, SEMAGINA N, et al. Decoupling structure-sensitive deactivation mechanisms of Ir/IrOx electrocatalysts toward oxygen evolution reaction[J]. Journal of Catalysis, 2019, 371: 57-70.
[48] ZAGO M, BARICCI A, BISELLO A, et al. Experimental analysis of recoverable performance loss induced by platinum oxide formation at the polymer electrolyte membrane fuel cell cathode[J]. Journal of Power Sources, 2020, 455: 227990.
[49] 衣宝廉, 侯明. 车用燃料电池耐久性的解决策略[J]. 汽车安全与节能学报, 2011, 2(02): 91-100.
[50] HU Z, LI J, XU L, et al. Multi-objective energy management optimization and parameter sizing for proton exchange membrane hybrid fuel cell vehicles[J]. Energy Conversion and Management, 2016, 129: 108-121.
[51] XU L, REIMER U, LI J, et al. Design of durability test protocol for vehicular fuel cell systems operated in power-follow mode based on statistical results of on-road data[J]. Journal of Power Sources, 2018, 377: 59-69.
[52] ZHAO D, XU L, HUANGFU Y, et al. Semi-physical modeling and control of a centrifugal compressor for the air feeding of a PEM fuel cell[J]. Energy Conversion and Management, 2017, 154: 380-386.
[53] JIA F, GUO L, LIU H. Mitigation strategies for hydrogen starvation under dynamic loading in proton exchange membrane fuel cells[J]. Energy Conversion and Management, 2017, 139: 175-181.
[54] KNIGHTS S D, DE VAAL J W, LAURITZEN M V, et al. Electrochemical fuel cell stack having a plurality of integrated voltage reversal protection diodes[Z]. Google Patents. 2007
[55] TANIGUCHI A, AKITA T, YASUDA K, et al. Analysis of electrocatalyst degradation in PEMFC caused by cell reversal during fuel starvation[J]. Journal of Power Sources, 2004, 130(1-2): 42-49.
[56] MANDAL P, LITSTER S. Investigation and mitigation of degradation in polymer electrolyte fuel cell due to cell reversal using oxygen evolution catalyst; proceedings of the ECS Meeting Abstracts, F, 2016 [C]. IOP Publishing.
[57] JUNG J, PARK B, KIM J J N R L. Durability test with fuel starvation using a Pt/CNF catalyst in PEMFC[J]. Nanoscale Res Lett, 2012, 7(1): 1-8.
[58] KNIGHTS S D, TAYLOR J L, WILKINSON D P, et al. Supported catalysts for the anode of a voltage reversal tolerant fuel cell[Z]. Google Patents. 2009
[59] KNIGHTS S D, WILKINSON D P, CAMPBELL S A, et al. Solid polymer fuel cell with improved voltage reversal tolerance[Z]. Google Patents. 2005
[60] ABBOTT D F, LEBEDEV D, WALTAR K, et al. Iridium oxide for the oxygen evolution reaction: correlation between particle size, morphology, and the surface hydroxo layer from operando XAS[J]. Chemistry of Materials, 2016, 28(18): 6591-6604.
[61] MCCRORY C C, JUNG S, PETERS J C, et al. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction[J]. Journal of the American Chemical Society, 2013, 135(45): 16977-16987.
[62] REIER T, OEZASLAN M, STRASSER P J A C. Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: a comparative study of nanoparticles and bulk materials[J]. ACS Catalysis, 2012, 2(8): 1765-1772.
[63] ATANASOSKI R T, ATANASOSKA L L, CULLEN D A. Efficient oxygen evolution reaction catalysts for cell reversal and start/stop tolerance[M]. Electrocatalysis in Fuel Cells. Springer. 2013: 637-663.
[64] FUJII K, ITO M, SATO Y, et al. Performance and durability of carbon black-supported Pd catalyst covered with silica layers in membrane-electrode assemblies of proton exchange membrane fuel cells[J]. Journal of Power Sources, 2015, 279: 100-106.
[65] TAKENAKA S, MATSUMORI H, MATSUNE H, et al. Highly durable Pt cathode catalysts for polymer electrolyte fuel cells; coverage of carbon black-supported Pt catalysts with silica layers[J]. Applied Catalysis A: General, 2011, 409: 248-256.
[66] RODGERS M P, BONVILLE L J, KUNZ H R, et al. Fuel cell perfluorinated sulfonic acid membrane degradation correlating accelerated stress testing and lifetime[J]. Chemical Reviews, 2012, 112(11): 6075-6103.
[67] WONG K H, KJEANG E J C. Mitigation of chemical membrane degradation in fuel cells: understanding the effect of cell voltage and iron ion redox cycle[J]. ChemElectroChem, 2015, 8(6): 1072-1082.
[68] SUEN N-T, HUNG S-F, QUAN Q, et al. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives[J]. Chemical Society Reviews, 2017, 46(2): 337-365.
[69] ROSSMEISL J, QU Z W, ZHU H, et al. Electrolysis of water on oxide surfaces[J]. Journal of Electroanalytical Chemistry, 2007, 607(1): 83-89.
[70] YU J, HE Q, YANG G, et al. Recent advances and prospective in ruthenium-based materials for electrochemical water splitting[J]. ACS Catalysis, 2019, 9(11): 9973-10011.
[71] SHAN J, ZHENG Y, SHI B, et al. Regulating electrocatalysts via surface and interface engineering for acidic water electrooxidation[J]. ACS Energy Letters, 2019, 4(11): 2719-2730.
[72] WU H, WANG Y, SHI Z, et al. Recent developments of iridium-based catalysts for the oxygen evolution reaction in acidic water electrolysis[J]. Journal of Materials Chemistry A, 2022, 10(25): 13170-13189.
[73] DANG Q, LIN H, FAN Z, et al. Iridium metallene oxide for acidic oxygen evolution catalysis[J]. Nature Communications, 2021, 12(1): 6007.
[74] NONG H N, REIER T, OH H-S, et al. A unique oxygen ligand environment facilitates water oxidation in hole-doped IrNiOx core–shell electrocatalysts[J]. Nature Catalysis, 2018, 1(11): 841-851.
[75] CHEN Z, GUO L, PAN L, et al. Advances in oxygen evolution electrocatalysts for proton exchange membrane water electrolyzers[J]. Advanced Energy Materials, 2022, 12(14): 2103670.
[76] ZHANG R, DUBOUIS N, BEN OSMAN M, et al. A dissolution/precipitation equilibrium on the surface of iridium-based perovskites controls their activity as oxygen evolution reaction catalysts in acidic media[J]. Angewandte Chemie International Edition, 2019, 58(14): 4571-4575.
[77] KUZNETSOV D A, NAEEM M A, KUMAR P V, et al. Tailoring lattice oxygen binding in ruthenium pyrochlores to enhance oxygen evolution activity[J]. Journal of the American Chemical Society, 2020, 142(17): 7883-7888.
[78] AN L, WEI C, LU M, et al. Recent Development of Oxygen Evolution Electrocatalysts in Acidic Environment[J]. Advanced Materials, 2021, 33(20): 2006328.
[79] ZAGALSKAYA A, ALEXANDROV V. Role of defects in the interplay between adsorbate evolving and lattice oxygen mechanisms of the oxygen evolution reaction in RuO2 and IrO2[J]. ACS Catalysis, 2020, 10(6): 3650-3657.
[80] YAO Y, HU S, CHEN W, et al. Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis[J]. Nature Catalysis, 2019, 2(4): 304-313.
[81] KASIAN O, GEIGER S, LI T, et al. Degradation of iridium oxides via oxygen evolution from the lattice: correlating atomic scale structure with reaction mechanisms[J]. Energy & Environmental Science, 2019, 12(12): 3548-3555.
[82] SCHWEINAR K, GAULT B, MOUTON I, et al. Lattice oxygen exchange in rutile IrO2 during the oxygen evolution reaction[J]. The Journal of Physical Chemistry Letters, 2020, 11(13): 5008-5014.
[83] CZIOSKA S, BOUBNOV A, ESCALERA-LóPEZ D, et al. Increased Ir–Ir interaction in iridium oxide during the oxygen evolution reaction at high potentials probed by operando spectroscopy[J]. ACS Catalysis, 2021, 11(15): 10043-10057.
[84] CHEREVKO S, ZERADJANIN A R, TOPALOV A A, et al. Dissolution of noble metals during oxygen evolution in acidic media[J]. ChemCatChem, 2014, 6(8): 2219-2223.
[85] SCHALENBACH M, KASIAN O, LEDENDECKER M, et al. The electrochemical dissolution of noble metals in alkaline media[J]. Electrocatalysis, 2018, 9(2): 153-161.
[86] MINGUZZI A, LUGARESI O, ACHILLI E, et al. Observing the oxidation state turnover in heterogeneous iridium-based water oxidation catalysts[J]. Chemical Science, 2014, 5(9): 3591-3597.
[87] SANCHEZ CASALONGUE H G, NG M L, KAYA S, et al. In situ observation of surface species on iridium oxide nanoparticles during the oxygen evolution reaction[J]. Angewandte Chemie International Edition, 2014, 53(28): 7169-7172.
[88] CHEREVKO S, GEIGER S, KASIAN O, et al. Oxygen evolution activity and stability of iridium in acidic media. Part 1. – Metallic iridium[J]. Journal of Electroanalytical Chemistry, 2016, 773: 69-78.
[89] CHEREVKO S, GEIGER S, KASIAN O, et al. Oxygen evolution activity and stability of iridium in acidic media. Part 2. – Electrochemically grown hydrous iridium oxide[J]. Journal of Electroanalytical Chemistry, 2016, 774: 102-110.
[90] KASIAN O, GROTE J-P, GEIGER S, et al. The common intermediates of oxygen evolution and dissolution reactions during water electrolysis on iridium[J]. Angewandte Chemie International Edition, 2018, 57(9): 2488-2491.
[91] ZAGALSKAYA A, ALEXANDROV V. Mechanistic study of IrO2 dissolution during the electrocatalytic oxygen evolution reaction[J]. The Journal of Physical Chemistry Letters, 2020, 11(7): 2695-2700.
[92] NAITO T, SHINAGAWA T, NISHIMOTO T, et al. Recent advances in understanding oxygen evolution reaction mechanisms over iridium oxide[J]. Inorganic Chemistry Frontiers, 2021, 8(11): 2900-2917.
[93] PFEIFER V, JONES T E, VELASCO VéLEZ J J, et al. The electronic structure of iridium oxide electrodes active in water splitting[J]. Physical Chemistry Chemical Physics, 2016, 18(4): 2292-2296.
[94] PFEIFER V, JONES T E, VELASCO VéLEZ J J, et al. The electronic structure of iridium and its oxides[J]. Surface and Interface Analysis, 2016, 48(5): 261-273.
[95] OOKA H, WANG Y, YAMAGUCHI A, et al. Legitimate intermediates of oxygen evolution on iridium oxide revealed by in situ electrochemical evanescent wave spectroscopy[J]. Physical Chemistry Chemical Physics, 2016, 18(22): 15199-15204.
[96] MO Y, STEFAN I C, CAI W-B, et al. In situ iridium LIII-edge X-ray absorption and surface enhanced raman spectroscopy of electrodeposited iridium oxide films in aqueous electrolytes[J]. The Journal of Physical Chemistry B, 2002, 106(14): 3681-3686.
[97] LEBEDEV D, EZHOV R, HERAS-DOMINGO J, et al. Atomically dispersed iridium on indium tin oxide efficiently catalyzes water oxidation[J]. ACS Central Science, 2020, 6(7): 1189-1198.
[98] PEARCE P E, YANG C, IADECOLA A, et al. Revealing the reactivity of the iridium trioxide intermediate for the oxygen evolution reaction in acidic media[J]. Chemistry of Materials, 2019, 31(15): 5845-5855.
[99] GEIGER S, KASIAN O, LEDENDECKER M, et al. The stability number as a metric for electrocatalyst stability benchmarking[J]. Nature Catalysis, 2018, 1(7): 508-515.
[100] DANILOVIC N, SUBBARAMAN R, CHANG K-C, et al. Activity–stability trends for the oxygen evolution reaction on monometallic oxides in acidic environments[J]. The Journal of Physical Chemistry Letters, 2014, 5(14): 2474-2478.
[101] HAN B, RISCH M, LEE Y-L, et al. Activity and stability trends of perovskite oxides for oxygen evolution catalysis at neutral pH[J]. ChemElectroChem, 2015, 17(35): 22576-22580.
[102] FRYDENDAL R, PAOLI E A, KNUDSEN B P, et al. Benchmarking the stability of oxygen evolution reaction catalysts: the importance of monitoring mass losses[J]. ChemElectroChem, 2014, 1(12): 2075-2081.
[103] BENHANGI P H, GYENGE E, ALFANTAZI A. MnO2-based bifunctional oxygen catalyst for rechargeable metal/air batteries: the effect of K+ intercalation; proceedings of the ECS Meeting Abstracts, F, 2014 [C]. IOP Publishing.
[104] BOCKRIS J O M, SHAMSHUL HUQ A. The mechanism of the electrolytic evolution of oxygen on platinum[J]. Journal of The Electrochemical Society, 1956, 237(1209): 277-296.
[105] DAMJANOVIC A, WONG M J J O T E S. On the mechanism of oxygen evolution at iridium electrodes[J]. Journal of The Electrochemical Society, 1967, 114(6): 592-593.
[106] FAULKNER L R, BARD A J. Electrochemical methods: fundamentals and applications[M]. John Wiley and Sons, 2002.
[107] GYENGE E J E A. Electrooxidation of borohydride on platinum and gold electrodes: implications for direct borohydride fuel cells[J]. Electrochimica Acta, 2004, 49(6): 965-978.
[108] LIANG X, SHI L, LIU Y, et al. Activating inert, nonprecious perovskites with iridium dopants for efficient oxygen evolution reaction under acidic conditions[J]. Angewandte Chemie International Edition, 2019, 58(23): 7631-7635.
[109] RETUERTO M, PASCUAL L, CALLE-VALLEJO F, et al. Na-doped ruthenium perovskite electrocatalysts with improved oxygen evolution activity and durability in acidic media[J]. Nature Communications, 2019, 10(1): 2041.
[110] MIAO X, ZHANG L, WU L, et al. Quadruple perovskite ruthenate as a highly efficient catalyst for acidic water oxidation[J]. Nature Communications, 2019, 10(1): 3809.
[111] WILLINGER E, MASSUé C, SCHLöGL R, et al. Identifying key structural features of IrOx water splitting catalysts[J]. Journal of the American Chemical Society, 2017, 139(34): 12093-12101.
[112] GAO J, XU C-Q, HUNG S-F, et al. Breaking Long-Range Order in Iridium Oxide by Alkali Ion for Efficient Water Oxidation[J]. Journal of the American Chemical Society, 2019, 141(7): 3014-3023.
[113] LEE S, LEE Y-J, LEE G, et al. Activated chemical bonds in nanoporous and amorphous iridium oxides favor low overpotential for oxygen evolution reaction[J]. Nature Communications, 2022, 13(1): 3171.
[114] SHAN J, GUO C, ZHU Y, et al. Charge-redistribution-enhanced nanocrystalline Ru@IrOx electrocatalysts for oxygen evolution in acidic media[J]. Chem, 2019, 5(2): 445-459.
[115] YAN X, DONG C-L, HUANG Y-C, et al. Probing the active sites of carbon-encapsulated cobalt nanoparticles for oxygen reduction[J]. Small Methods, 2019, 3(9): 1800439.
[116] TACKETT B M, SHENG W, KATTEL S, et al. Reducing iridium loading in oxygen evolution reaction electrocatalysts using core–shell particles with nitride cores[J]. ACS Catalysis, 2018, 8(3): 2615-2621.
[117] JIANG B, GUO Y, KIM J, et al. Mesoporous metallic iridium nanosheets[J]. Journal of the American Chemical Society, 2018, 140(39): 12434-12441.
[118] WU G, ZHENG X, CUI P, et al. A general synthesis approach for amorphous noble metal nanosheets[J]. Nature Communications, 2019, 10(1): 4855.
[119] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
[120] ZHANG X, LAI Z, MA Q, et al. Novel structured transition metal dichalcogenide nanosheets[J]. Chemical Society Reviews, 2018, 47(9): 3301-3338.
[121] ZU L, QIAN X, ZHAO S, et al. Self-Assembly of Ir-Based Nanosheets with Ordered Interlayer Space for Enhanced Electrocatalytic Water Oxidation[J]. Journal of the American Chemical Society, 2022, 144(5): 2208-2217.
[122] ZU L, QIAN X, ZHAO S, et al. Active origin of ordered mesoporous Ir-based electrocatalysts for acidic water oxidation[J]. Joule, 2022
[123] LIU J, GUO C, VASILEFF A, et al. Nanostructured 2D materials: prospective catalysts for electrochemical CO2 reduction[J]. Small Methods, 2017, 1(1-2): 1600006.
[124] LI Z, ZHAI L, GE Y, et al. Wet-chemical synthesis of two-dimensional metal nanomaterials for electrocatalysis[J]. National Science Review, 2021, 9(5)
[125] WU X, FENG B, LI W, et al. Metal-support interaction boosted electrocatalysis of ultrasmall iridium nanoparticles supported on nitrogen doped graphene for highly efficient water electrolysis in acidic and alkaline media[J]. Nano Energy, 2019, 62: 117-126.
[126] CHEN H, ZHANG M, WANG Y, et al. Crystal phase engineering of electrocatalysts for energy conversions[J]. Nano Research, 2022, 15(12): 10194-10217.
[127] QIAO S, HE Q, ZHOU Q, et al. Interfacial electronic interaction enabling exposed Pt(110) facets with high specific activity in hydrogen evolution reaction[J]. Nano Research, 2023, 16(1): 174-180.
[128] FAN Z, JI Y, SHAO Q, et al. Extraordinary acidic oxygen evolution on new phase 3R-iridium oxide[J]. Joule, 2021, 5(12): 3221-3234.
[129] OH H-S, NONG H N, REIER T, et al. Electrochemical catalyst–support effects and their stabilizing role for IrOx nanoparticle catalysts during the oxygen evolution reaction[J]. Journal of the American Chemical Society, 2016, 138(38): 12552-12563.
[130] SEITZ L C, DICKENS C F, NISHIO K, et al. A highly active and stable IrOX/SrIrO3 catalyst for the oxygen evolution reaction[J]. Science, 2016, 353(6303): 1011-1014.
[131] WANG L, LETTENMEIER P, GOLLA-SCHINDLER U, et al. Nanostructured Ir-supported on Ti4O7 as a cost-effective anode for proton exchange membrane (PEM) electrolyzers[J]. Physical Chemistry Chemical Physics, 2016, 18(6): 4487-4495.
[132] KARIMI F, PEPPLEY B A. Metal carbide and oxide supports for iridium-based oxygen evolution reaction electrocatalysts for polymer-electrolyte-membrane water electrolysis[J]. Electrochimica Acta, 2017, 246: 654-670.
[133] HARTIG-WEISS A, MILLER M, BEYER H, et al. Iridium oxide catalyst supported on antimony-doped tin oxide for high oxygen evolution reaction activity in acidic media[J]. ACS Applied Nano Materials, 2020, 3(3): 2185-2196.
[134] SPöRI C, KWAN J T H, BONAKDARPOUR A, et al. The stability challenges of oxygen evolving catalysts: towards a common fundamental understanding and mitigation of catalyst degradation[J]. Angewandte Chemie International Edition, 2017, 56(22): 5994-6021.
[135] LI R, WANG H, HU F, et al. IrW nanochannel support enabling ultrastable electrocatalytic oxygen evolution at 2 A cm−2 in acidic media[J]. Nature Communications, 2021, 12(1): 3540.
[136] XU J, LIAN Z, WEI B, et al. Strong electronic coupling between ultrafine iridium–ruthenium nanoclusters and conductive, acid-stable tellurium nanoparticle support for efficient and durable oxygen evolution in acidic and neutral media[J]. ACS Catalysis, 2020, 10(6): 3571-3579.
[137] GöRLIN M, FERREIRA DE ARAúJO J, SCHMIES H, et al. Tracking catalyst redox states and reaction dynamics in Ni–Fe oxyhydroxide oxygen evolution reaction electrocatalysts: the role of catalyst support and electrolyte pH[J]. Journal of the American Chemical Society, 2017, 139(5): 2070-2082.
[138] MAGKOEV T T. Formation and modification of metal oxide substrates for controlled molecular adsorption and transformation on their surface[J]. Russian Journal of Physical Chemistry A, 2021, 95(6): 1081-1092.
[139] YIN J, JIN J, LU M, et al. Iridium single atoms coupling with oxygen vacancies boosts oxygen evolution reaction in acid media[J]. Journal of the American Chemical Society, 2020, 142(43): 18378-18386.
[140] SHI Z, WANG Y, LI J, et al. Confined Ir single sites with triggered lattice oxygen redox: Toward boosted and sustained water oxidation catalysis[J]. Joule, 2021, 5(8): 2164-2176.
[141] NONG H N, OH H-S, REIER T, et al. Oxide-supported IrNiOx core–shell particles as efficient, cost-effective, and stable catalysts for electrochemical water splitting[J]. Angewandte Chemie International Edition, 2015, 54(10): 2975-2979.
[142] NONG H N, GAN L, WILLINGER E, et al. IrOx core-shell nanocatalysts for cost- and energy-efficient electrochemical water splitting[J]. Chemical Science, 2014, 5(8): 2955-2963.
[143] BöHM D, BEETZ M, SCHUSTER M, et al. Efficient OER catalyst with low Ir volume density obtained by homogeneous deposition of Iridium oxide nanoparticles on macroporous antimony-doped tin oxide support[J]. Advanced Functional Materials, 2020, 30(1): 1906670.
[144] DELGADO S, LAKHTARIA P, SOUSA E, et al. Towards stable and highly active IrO2 catalysts supported on doped tin oxides for the oxygen evolution reaction in acidic media[J]. E3S Web Conf, 2022, 334: 03001.
[145] OAKTON E, LEBEDEV D, POVIA M, et al. IrO2-TiO2: A high-surface-area, active, and stable electrocatalyst for the oxygen evolution reaction[J]. ACS Catalysis, 2017, 7(4): 2346-2352.
[146] ZHANG H, HAAS H, LEOW A, et al. Reversal tolerant membrane electrode assembly for a fuel cell[Z]. Google Patents. 2015
[147] KNIGHTS S, TAYLOR J, WILKINSON D, et al. Supported catalysts for the anode of a voltage reversal tolerant fuel cell[Z]. Google Patents. 2004
[148] ZHANG J, OWEJAN J E. Ionic layer with oxygen evolution reaction catalyst for electrode protection[Z]. Google Patents. 2016
[149] HE Q, SESSIONS D. Polarity reversal tolerant electrical circuit for ESD protection[Z]. Google Patents. 2003
[150] KUNDU S, MCDERMID S, YANG A S-W, et al. Solid polymer electrolyte fuel cell with improved voltage reversal tolerance[Z]. Google Patents. 2013
[151] Chapter 1: Introduction[M]. Fuel Cell Fundamentals. 2016: 1-24.
[152] 胡会利, 李宁. 电化学测量[M]. 北京: 国防工业出版社, 2007.
[153] WU J, YUAN X Z, MARTIN J J, et al. A review of PEM fuel cell durability: Degradation mechanisms and mitigation strategies[J]. Journal of Power Sources, 2008, 184(1): 104-119.
[154] MAASS S, FINSTERWALDER F, FRANK G, et al. Carbon support oxidation in PEM fuel cell cathodes[J]. Journal of Power Sources, 2008, 176(2): 444-451.
[155] ROZAIN C, MAYOUSSE E, GUILLET N, et al. Influence of iridium oxide loadings on the performance of PEM water electrolysis cells: Part II – Advanced oxygen electrodes[J]. Applied Catalysis B: Environmental, 2016, 182: 123-131.
[156] ZHANG J. PEM fuel cell electrocatalysts and catalyst layers: fundamentals and applications[M]. Springer Science & Business Media, 2008.
[157] ARAI T, TAKASHI O, AMEMIYA K, et al. Study of oxide supports for PEFC catalyst[J]. SAE International Journal of Alternative Powertrains, 2017, 6(1): 145-150.
[158] PERRY M L, PATTERSON T W, REISER C. Systems strategies to mitigate carbon corrosion in fuel cells[J]. ECS Transactions, 2006, 3(1): 783-795.
[159] ATANASOSKI R T, ATANASOSKA L L, CULLEN D A. Efficient Oxygen Evolution Reaction Catalysts for Cell Reversal and Start/Stop Tolerance[M]//SHAO M. Electrocatalysis in Fuel Cells: A Non- and Low- Platinum Approach. London; Springer London. 2013: 637-663.
[160] ATANASOSKI R T, CULLEN D A, VERNSTROM G D, et al. A materials-based mitigation strategy for SU/SD in PEM fuel cells: properties and performance-specific testing of IrRu OER catalysts[J]. ECS Electrochemistry Letters, 2013, 2(3): F25-F28.
[161] MANDAL P, HONG B K, OH J-G, et al. Understanding the voltage reversal behavior of automotive fuel cells[J]. Journal of Power Sources, 2018, 397: 397-404.
[162] RALPH T R, HUDSON S, WILKINSON D P. Electrocatalyst stability in PEMFCs and the role of fuel starvation and cell reversal tolerant anodes[J]. ECS Transactions, 2006, 1(8): 67-84.
[163] ADAMS R, SHRINER R L. platinum oxide as a catalyst in the reduction of organic compounds. iii. preparation and properties of the oxide of platinum obtained by the fusion of chloroplatinic acid with sodium nitrate[J]. Journal of the American Chemical Society, 1923, 45: 2171-2179.
[164] LIU Y, WANG C, LEI Y, et al. Investigation of high-performance IrO2 electrocatalysts prepared by Adams method[J]. International Journal of Hydrogen Energy, 2018, 43(42): 19460-19467.
[165] LIM J, PARK D, JEON S S, et al. Ultrathin IrO2 nanoneedles for electrochemical water oxidation[J]. Advanced Functional Materials, 2018, 28(4): 1704796.
[166] JANG I, HWANG I, TAK Y. Attenuated degradation of a PEMFC cathode during fuel starvation by using carbon-supported IrO2[J]. Electrochimica Acta, 2013, 90: 148-156.
[167] LABI T, VAN SCHALKWYK F, ANDERSEN S M, et al. Increasing fuel cell durability during prolonged and intermittent fuel starvation using supported IrOx[J]. Journal of Power Sources, 2021, 490: 229568.
[168] KUMAR A, RAMANI V. Strong metal–support interactions enhance the activity and durability of platinum supported on tantalum-modified titanium dioxide electrocatalysts[J]. ACS Catalysis, 2014, 4: 1516–1525.
[169] LAVACCHI A, BELLINI M, BERRETTI E, et al. Titanium dioxide nanomaterials in electrocatalysis for energy[J]. Current Opinion in Electrochemistry, 2021, 28: 100720.
[170] SAMBANDAM S, VALLURI V, CHANMANEE W, et al. Platinum-carbon black-titanium dioxide nanocomposite electrocatalysts for fuel cell applications[J]. Journal of Chemical Sciences, 2009, 121(5): 655-664.
[171] NGUYEN S T, YANG Y, WANG X. Ethanol electro-oxidation activity of Nb-doped-TiO2 supported PdAg catalysts in alkaline media[J]. Applied Catalysis B: Environmental, 2012, 113-114: 261-270.
[172] HU M, ZHAO R, PAN R, et al. Disclosure of the internal mechanism during activating a proton exchange membrane fuel cell based on the three-step activation method[J]. International Journal of Hydrogen Energy, 2021, 46(3): 3008-3021.
[173] YANG C, HU M, WANG C, et al. A three-step activation method for proton exchange membrane fuel cells[J]. Journal of Power Sources, 2012, 197: 180-185.
[174] HAO C, LV H, MI C, et al. Investigation of mesoporous niobium-doped TiO2 as an oxygen evolution catalyst support in an SPE water electrolyzer[J]. ACS Sustainable Chemistry & Engineering, 2016, 4: 746-756.
[175] RICCI P C, CARBONARO C M, STAGI L, et al. Anatase-to-rutile phase transition in TiO2 nanoparticles irradiated by visible light[J]. The Journal of Physical Chemistry C, 2013, 117(15): 7850-7857.
[176] ZHANG H, BANFIELD J F. Thermodynamic analysis of phase stability of nanocrystalline titania[J]. Journal of Materials Chemistry, 1998, 8(9): 2073-2076.
[177] ZHANG H, BANFIELD J F. Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates insights from TiO2[J]. Journal of Physical Chemistry B, 2000, 104: 3481-3487.
[178] RADMILOVIC V, GASTEIGER H A, ROSS P N. Structure and chemical composition of a supported Pt-Ru electrocatalyst for methanol oxidation[J]. Journal of Catalysis, 1995, 154: 98-106.
[179] GOJKOVIĆ S L, BABIĆ B M, RADMILOVIĆ V R, et al. Nb-doped TiO2 as a support of Pt and Pt–Ru anode catalyst for PEMFCs[J]. Journal of Electroanalytical Chemistry, 2010, 639(1-2): 161-166.
[180] ELEZOVIĆ N R, BABIĆ B M, GAJIĆ-KRSTAJIĆ L, et al. Synthesis, characterization and electrocatalytical behavior of Nb–TiO2/Pt nanocatalyst for oxygen reduction reaction[J]. Journal of Power Sources, 2010, 195(13): 3961-3968.
[181] SING K S W, EVERETT D H, HAUL R A W, et al. Reporting physisorption data for gas-solid systems with special reference to the determination of surface area and porosity[J]. International union of pure and applied chemistry, 1985, 57(4): 603-619.
[182] MOULDER J F, STICKLE W F, SOBOL W M, et al. Handbook of X-Ray Photoelectron Spectroscopy, F, 1992 [C].
[183] ZANONI R, RIGHINI G, MONTENERO A, et al. XPS analysis of sol-gel processed doped and undoped TiO2 films for sensors[J]. Surface and Interface Analysis, 1994, 22(1-12): 376-379.
[184] KRUSE N, CHENAKIN S. XPS characterization of Au/TiO2 catalysts: Binding energy assessment and irradiation effects[J]. Applied Catalysis A: General, 2011, 391(1): 367-376.
[185] OVER H. Surface chemistry of ruthenium dioxide in heterogeneous catalysis and electrocatalysis: from fundamental to applied research[J]. Chemical Reviews, 2012, 112(6): 3356-3426.
[186] RASTEN E, HAGEN G, TUNOLD R. Electrocatalysis in water electrolysis with solid polymer electrolyte[J]. Electrochimica Acta, 2003, 48(25-26): 3945-3952.
[187] ZHOU X, JI H, LI B, et al. High-repetitive reversal tolerant performance of proton-exchange membrane fuel cell by designing a suitable anode[J]. ACS Omega, 2020, 5(17): 10099-10105.
[188] CHEN W, CAI C, LI S, et al. Thickness effects of anode catalyst layer on reversal tolerant performance in proton exchange membrane fuel cell[J]. International Journal of Hydrogen Energy, 2021, 46(12): 8749-8757.
[189] ZAMAN S, SU Y-Q, DONG C-L, et al. Scalable molten salt synthesis of platinum alloys planted in metal–nitrogen–graphene for efficient oxygen reduction[J]. Angewandte Chemie International Edition, 2022, 61(6): e202115835.
[190] YE S. Reversal-tolerant Catalyst Layers[M]//ZHANG J. PEM fuel cell electrocatalysts and catalyst layers: fundamentals and applications. London; Springer London. 2008: 835-860.
[191] CHEN H, ZHAO X, ZHANG T, et al. The reactant starvation of the proton exchange membrane fuel cells for vehicular applications: A review[J]. Energy Conversion and Management, 2019, 182: 282-298.
[192] LIM K H, LEE W H, JEONG Y, et al. Analysis of carbon corrosion in anode under fuel starvation using on-line mass spectrometry in polymer electrolyte membrane fuel cells[J]. Journal of The Electrochemical Society, 2017, 164(14): F1580-F1586.
[193] HALALAY I C, SWATHIRAJAN S, MERZOUGUI B, et al. Anode materials for mitigating hydrogen starvation effects in PEM fuel cells[J]. Journal of The Electrochemical Society, 2011, 158(3): B313-B321.
[194] ZAMAN S, TIAN X, SU Y-Q, et al. Direct integration of ultralow-platinum alloy into nanocarbon architectures for efficient oxygen reduction in fuel cells[J]. Science Bulletin, 2021, 66(21): 2207-2216.
[195] REIER T, WEIDINGER I, HILDEBRANDT P, et al. Electrocatalytic oxygen evolution reaction on iridium oxide model film catalysts: influence of oxide type and catalyst substrate interactions[J]. ECS Transactions, 2013, 58(2): 39-51.
[196] MOORE C E, EASTCOTT J, CIMENTI M, et al. Novel methodology for ex situ characterization of iridium oxide catalysts in voltage reversal tolerant proton exchange membrane fuel cell anodes[J]. Journal of Power Sources, 2019, 417: 53-60.
[197] LIANG Y, LI Y, WANG H, et al. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction[J]. Nat Mater, 2011, 10(10): 780-786.
[198] ABBOTT D F, LEBEDEV D, WALTAR K, et al. Iridium oxide for the oxygen evolution reaction: correlation between particle size, morphology, and the surface hydroxo layer from operando XAS[J]. Chemistry of Materials, 2016, 28(18): 6591-6604.
[199] ZAMAN S, WANG M, LIU H, et al. Carbon-based catalyst supports for oxygen reduction in proton-exchange membrane fuel cells[J]. Trends in Chemistry, 2022, 4(10): 886-906.
[200] PEUCKERT M. XPS study on thermally and electrochemically prepared oxidic adlayers on iridium[J]. Surface Science, 1984, 144(2): 451-464.
[201] SANJINéS R, ARUCHAMY A, LéVY F. Thermal stability of sputtered iridium oxide films[J]. Journal of The Electrochemical Society, 1989, 136(6): 1740-1743.
[202] OUATTARA L, FIERRO S, FREY O, et al. Electrochemical comparison of IrO2 prepared by anodic oxidation of pure iridium and IrO2 prepared by thermal decomposition of H2IrCl6 precursor solution[J]. Journal of Applied Electrochemistry, 2009, 39(8): 1361-1367.
[203] BERNICKE M, ORTEL E, REIER T, et al. Iridium oxide coatings with templated porosity as highly active oxygen evolution catalysts: structure-activity relationships[J]. ChemSusChem, 2015, 8(11): 1908-1915.
[204] HU J-M, MENG H-M, ZHANG J-Q, et al. Effect of crystallite orientation of IrO2 rutile on the corrosion characteristics of IrO2+Ta2O5 oxide coatings[J]. Journal of materials science letters, 2001, 20(14): 1353-1355.
[205] YAN Z, ZHAO Y, ZHANG Z, et al. A study on the performance of IrO2–Ta2O5 coated anodes with surface treated Ti substrates[J]. Electrochimica Acta, 2015, 157: 345-350.
[206] ZHANG X, GUO L, LIU H. Recovery mechanisms in proton exchange membrane fuel cells after accelerated stress tests[J]. Journal of Power Sources, 2015, 296: 327-334.
[207] VOS J G, WEZENDONK T A, JEREMIASSE A W, et al. MnOx/IrOx as selective oxygen evolution electrocatalyst in acidic chloride solution[J]. Journal of the American Chemical Society, 2018, 140(32): 10270-10281.
[208] ZHU J, XIE M, CHEN Z, et al. Pt-Ir-Pd trimetallic nanocages as a dual catalyst for efficient oxygen reduction and evolution reactions in acidic media[J]. Advanced Energy Materials, 2020, 10(16): 1904114.
[209] ZHANG R, DUBOUIS N, BEN OSMAN M, et al. A dissolution/precipitation equilibrium on the surface of iridium-based perovskites controls their activity as oxygen evolution reaction catalysts in acidic media[J]. Angewandte Chemie International Edition, 2019, 58(14): 4571-4575.
[210] GRIMAUD A, DEMORTIèRE A, SAUBANèRE M, et al. Activation of surface oxygen sites on an iridium-based model catalyst for the oxygen evolution reaction[J]. Nature Energy, 2016, 2(1): 16189.
[211] HE J, ZHOU X, XU P, et al. Promoting electrocatalytic water oxidation through tungsten-modulated oxygen vacancies on hierarchical FeNi-layered double hydroxide[J]. Nano Energy, 2021, 80: 105540.
[212] SU J, GE R, JIANG K, et al. Assembling ultrasmall copper-doped ruthenium oxide nanocrystals into hollow porous polyhedra: highly robust electrocatalysts for oxygen evolution in acidic media[J]. Advanced Materials, 2018, 30(29): 1801351.
[213] SUN W, SONG Y, GONG X-Q, et al. An efficiently tuned d-orbital occupation of IrO2 by doping with Cu for enhancing the oxygen evolution reaction activity[J]. Chemical Science, 2015, 6(8): 4993-4999.
[214] ZAMAN W Q, WANG Z, SUN W, et al. Ni–Co codoping breaks the limitation of single-metal-doped IrO2 with higher oxygen evolution reaction performance and less iridium[J]. ACS Energy Letters, 2017, 2(12): 2786-2793.
[215] KRESSE G, FURTHMüLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, 1996, 54(16): 11169-11186.
[216] PERDEW J P, CHEVARY J A, VOSKO S H, et al. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation[J]. Physical Review B, 1992, 46(11): 6671-6687.
[217] PERDEW J P, CHEVARY J A, VOSKO S H, et al. Erratum: atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation[J]. Physical Review B, 1993, 48(7): 4978-4978.
[218] CHASE M. NIST-JANAF Thermochemical Tables, 4th Edition[Z]. American Institute of Physics, -1. 1998
[219] CHEN J, CUI P, ZHAO G, et al. Low-coordinate iridium oxide confined on graphitic carbon nitride for highly efficient oxygen evolution[J]. Angewandte Chemie International Edition, 2019, 58(36): 12540-12544.
[220] DAIANE FERREIRA DA SILVA C, CLAUDEL F, MARTIN V, et al. Oxygen evolution reaction activity and stability benchmarks for supported and unsupported IrOx electrocatalysts[J]. ACS Catalysis, 2021, 11(7): 4107-4116.
修改评论