中文版 | English
题名

基于静电吸附的LED晶粒转移技术

其他题名
LED PARTICLE TRANSFER TECHNOLOGY BASED ON ELECTROSTATIC ADHESION
姓名
姓名拼音
YIN Jintao
学号
12032725
学位类型
硕士
学位专业
0801Z1 智能制造与机器人
学科门类/专业学位类别
08 工学
导师
王宏强
导师单位
机械与能源工程系
论文答辩日期
2023-05-13
论文提交日期
2023-06-27
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

Mini LEDMicro LED等新型显示技术以其高亮度、高清晰度、低能耗等优势,正逐渐取代LCDOLED等传统显示技术。在新型LED屏幕生产过程中,需要将小尺寸的LED晶粒大批量地转移到电路基板上,目前这一工艺尚无兼顾成本、效率、质量等方面的成熟市场化方案。本文结合静电吸附结构简单、易于微缩、控制简单等特点,提出一种基于静电吸附的LED晶粒批量转移技术,通过调控吸附电极的静电力,实现LED晶粒的批量与选择性吸附,并通过检测吸附过程的电流变化感知LED晶粒的吸附释放状态。

本文分析静电吸附在微小LED晶粒转移中的力分布、响应时间、击穿电压、可靠性等特点,从静电吸附的机理出发分析影响静电吸附力的因素。设计单电极、共面平行双电极及三电极吸附构型,利用COMSOL静电模块仿真计算电极构型对LED晶粒的吸附力并确定是否满足抓取LED晶粒的最小吸附力。对共面平行电极构型进行不同电极参数下的静电吸附力仿真分析,为电极优化提供参考。通过分析吸附LED晶粒过程中吸附电极的电容及电荷变化,提出基于电流反馈检测LED晶粒吸附状态的方法。

对静电吸附电极的制作工艺以及微缩化阵列化连接方式进行研究,并优化造成静电击穿的因素。设计静电吸附力测试系统进行不同参数下静电吸附力的测试,得到电极间隙越窄、介电层厚度越薄、电压越高静电吸附力越大的结论,并探究吸附电极表面粗糙度对静电吸附力的影响。设计静电吸附响应时间测试系统,用于测试静电吸附力产生及衰减的响应时间,测得静电吸附力响应时间为5.24ms,衰减时间为0.21ms。对于静电吸附力的稳定性以及吸附电极的击穿电压等可靠性进行测试,100组相同条件下吸附力测试离散系数为2.83%。综合以上各种因素,设计转移平台,利用静电吸附单元阵列对10×10LED晶粒进行选择性图案转移。

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2023-06
参考文献列表

[1] Song W, Liang X, Li S, et al. Retinal Projection Near‐Eye Displays with Huygens’ Metasurfaces[J]. Advanced Optical Materials, 2202348.
[2] Luo C J, Liang K L, Chu C W, et al. Micro LED sensor eye-tracking for augmented reality glasses with embedded micro display[C]//2022 29th International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD). IEEE, 2022: 17-20.
[3] Yin K, Hsiang E L, Zou J, et al. Advanced liquid crystal devices for augmented reality and virtual reality displays: principles and applications[J]. Light: Science & Applications, 2022, 11(1): 161.
[4] Anwar A R, Sajjad M T, Johar M A, et al. Recent Progress in Micro‐LED‐Based Display Technologies[J]. Laser & Photonics Reviews, 2022, 16(6): 2100427.
[5] Zhou X, Tian P, Sher C W, et al. Growth, transfer printing and colour conversion techniques towards full-colour micro-LED display[J]. Progress in Quantum Electronics, 2020, 71: 100263.
[6] Zhu G, Liu Y, Ming R, et al. Mass transfer, detection and repair technologies in micro-LED displays[J]. Science China Materials, 2022, 65(8): 2128-2153.
[7] Gong Z. Layer-scale and chip-scale transfer techniques for functional devices and systems: A review[J]. Nanomaterials, 2021, 11(4): 842.
[8] Asano K, Hatakeyama F, Yatsuzuka K. Fundamental study of an electrostatic chuck for silicon wafer handling[J]. IEEE Transactions on Industry Applications, 2002, 38(3): 840-845.
[9] Guo J, Elgeneidy K, Xiang C, et al. Soft pneumatic grippers embedded with stretchable electroadhesion[J]. Smart Materials and Structures, 2018, 27(5): 055006.
[10] Guo J, Leng J, Rossiter J. Electroadhesion technologies for robotics: A comprehensive review[J]. IEEE Transactions on Robotics, 2019, 36(2): 313-327.
[11] Feng W, Hu Y, Li X R, et al. Robot end effector based on electrostatic adsorption for manipulating garment fabrics[J]. Textile Research Journal, 2022, 92(5-6): 691-705.
[12] Schaler E W, Ruffatto D, Glick P, et al. An electrostatic gripper for flexible objects[C]//2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2017: 1172-1179.
[13] Mastrangelo M, Caruso F, Carbone G, et al. Electroadhesion zipping with soft grippers on curved objects[J]. Extreme Mechanics Letters, 2023: 101999.
[14] Chen Z, Yan S, Danesh C. MicroLED technologies and applications: characteristics, fabrication, progress, and challenges[J]. Journal of Physics D: Applied Physics, 2021, 54(12): 123001.
[15] 赵强,郭恒,秦快,李年谱.LED显示“屏”到“器”的封装技术演进[J].中国照明电器,2021(02):1-5.
[16] Wu M H, Fang Y H, Chao C H. Electric-programmable magnetic module and picking-up and placement process for electronic devices: U.S. Patent 9,607,907[P]. 2017-3-28.
[17] Cok R S, Meitl M, Rotzoll R, et al. Inorganic light‐emitting diode displays using micro‐transfer printing[J]. Journal of the Society for Information Display, 2017, 25(10): 589-609.
[18] Bai W, Yang H, Ma Y, et al. Flexible transient optical waveguides and surface‐wave biosensors constructed from monocrystalline silicon[J]. Advanced Materials, 2018, 30(32): 1801584.
[19] Bai J, Niu P, Cao S, et al. The Adhesive Force Measurement between Single μLED and Substrate Based on Atomic Force Microscope[J]. Applied Sciences, 2022, 12(19): 9480.
[20] Choi M, Jang B, Lee W, et al. Stretchable active matrix inorganic light‐emitting diode display enabled by overlay‐aligned roll‐transfer printing[J]. Advanced Functional Materials, 2017, 27(11): 1606005.
[21] Bibl A, Higginson J A, Law H S, et al. Method of transferring a micro device: U.S. Patent 8,333,860[P]. 2012-12-18.
[22] Bibl A, Higginson J A, Hu H H, et al. Method of transferring and bonding an array of micro devices: U.S. Patent 9,773,750[P]. 2017-9-26.
[23] Gracias D H, Tien J, Breen T L, et al. Forming electrical networks in three dimensions by self-assembly[J]. science, 2000, 289(5482): 1170-1172.
[24] Cho S, Lee D, Kwon S. Fluidic self-assembly transfer technology for micro-LED display[C]//2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII). IEEE, 2019: 402-404.
[25] Tang S K Y, Derda R, Mazzeo A D, et al. Reconfigurable Self‐Assembly of Mesoscale Optical Components at a Liquid–Liquid Interface[J]. Advanced Materials, 2011, 23(21): 2413-2418.
[26] Schuele P J, Sasaki K, Ulmer K, et al. Display with surface mount emissive elements: U.S. Patent 9,825,202[P]. 2017-11-21.
[27] Zhan C, Schuele P J, Crowder M A, et al. Fluidic assembly top-contact LED disk: U.S. Patent 10,115,862[P]. 2018-10-30.
[28] Schuele P J, Zhan C, Sasaki K, et al. Emissive display substrate for surface mount micro-LED fluidic assembly: U.S. Patent 10,643,981[P]. 2020-5-5.
[29] Zheng W, Jacobs H O. Self‐assembly process to integrate and connect semiconductor dies on surfaces with single‐angular orientation and contact‐pad registration[J]. Advanced Materials, 2006, 18(11): 1387-1392.
[30] Sasaki K, Schuele P J. Encapsulated emissive element for fluidic assembly: U.S. Patent 10,777,714[P]. 2020-9-15.
[31] Voronenkov V, Bochkareva N, Gorbunov R, et al. Laser slicing: A thin film lift-off method for GaN-on-GaN technology[J]. Results in Physics, 2019, 13: 102233.
[32] Bornemann S, Yulianto N, Spende H, et al. Femtosecond Laser Lift‐Off with Sub‐Bandgap Excitation for Production of Free‐Standing GaN Light‐Emitting Diode Chips[J]. Advanced Engineering Materials, 2020, 22(2): 1901192.
[33] Park J, Sin Y G, Kim J H, et al. Dependence of adhesion strength between GaN LEDs and sapphire substrate on power density of UV laser irradiation[J]. Applied Surface Science, 2016, 384: 353-359.
[34] 付国义. 面向亚毫米器件操作的真空吸附式作业工具的研制[D]. 哈尔滨工业大学, 2007.
[35] Rong W, Fan Z, Wang L, et al. A vacuum microgripping tool with integrated vibration releasing capability[J]. Review of Scientific Instruments, 2014, 85(8): 085002.
[36] Graule M A, Chirarattananon P, Fuller S B, et al. Perching and takeoff of a robotic insect on overhangs using switchable electrostatic adhesion[J]. Science, 2016, 352(6288): 978-982.
[37] Diller S, Majidi C, Collins S H. A lightweight, low-power electroadhesive clutch and spring for exoskeleton actuation[C]//2016 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2016: 682-689.
[38] Cao J, Qin L, Liu J, et al. Untethered soft robot capable of stable locomotion using soft electrostatic actuators[J]. Extreme Mechanics Letters, 2018, 21: 9-16.
[39] Sirin O, Ayyildiz M, Persson B N J, et al. Electroadhesion with application to touchscreens[J]. Soft matter, 2019, 15(8): 1758-1775.
[40] Jiang H, Hawkes E W, Fuller C, et al. A robotic device using gecko-inspired adhesives can grasp and manipulate large objects in microgravity[J]. Science Robotics, 2017, 2(7): eaan4545.
[41] Germann J, Schubert B, Floreano D. Stretchable electroadhesion for soft robots[C]//2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. Ieee, 2014: 3933-3938.
[42] Mici J, Ko J W, West J, et al. Parallel electrostatic grippers for layered assembly[J]. Additive Manufacturing, 2019, 27: 451-460.
[43] West J D, Mici J, Jaquith J F, et al. Design and optimization of millimeter-scale electroadhesive grippers[J]. Journal of Physics D: Applied Physics, 2020, 53(43): 435302.
[44] Ruffatto III D, Shah J, Spenko M. Increasing the adhesion force of electrostatic adhesives using optimized electrode geometry and a novel manufacturing process[J]. Journal of Electrostatics, 2014, 72(2): 147-155.
[45] Nakamura T, Yamamoto A. Modeling and control of electroadhesion force in DC voltage[J]. Robomech Journal, 2017, 4(1): 1-10.
[46] Shintake J, Rosset S, Schubert B, et al. Versatile soft grippers with intrinsic electroadhesion based on multifunctional polymer actuators[J]. Advanced materials, 2016, 28(2): 231-238.
[47] Hinchet R, Vechev V, Shea H, et al. Dextres: Wearable haptic feedback for grasping in vr via a thin form-factor electrostatic brake[C]//Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology. 2018: 901-912.
[48] Beyeler F, Neild A, Oberti S, et al. Monolithically fabricated microgripper with integrated force sensor for manipulating microobjects and biological cells aligned in an ultrasonic field[J]. Journal of microelectromechanical systems, 2007, 16(1): 7-15.
[49] 盛蔡茂.氮化镓GaN的特性及其应用现状与发展[J].科学技术创新,2018(31):48-49.
[50] 黄心汉.微装配机器人:关键技术、发展与应用[J].智能系统学报,2020,15(03):413-424.
[51] Meyer D J, Peshkin M A, Colgate J E. Fingertip friction modulation due to electrostatic attraction[C]//2013 world haptics conference (WHC). IEEE, 2013: 43-48.
[52] Vezzoli E, Amberg M, Giraud F, et al. Electrovibration modeling analysis[C]//Haptics: Neuroscience, Devices, Modeling, and Applications: 9th International Conference, EuroHaptics 2014, Versailles, France, June 24-26, 2014, Proceedings, Part II 9. Springer Berlin Heidelberg, 2014: 369-376.
[53] Guo J, Tailor M, Bamber T, et al. Investigation of relationship between interfacial electroadhesive force and surface texture[J]. Journal of Physics D: Applied Physics, 2015, 49(3): 035303.
[54] Qin S, McTeer A. Wafer dependence of Johnsen–Rahbek type electrostatic chuck for semiconductor processes[J]. Journal of Applied Physics, 2007, 102(6): 064901.
[55] Yamamoto A, Nagasawa S, Yamamoto H, et al. Electrostatic` tactile display with thin film slider and its application to tactile tele-presentation systems[C]//Proceedings of the ACM symposium on Virtual reality software and technology. 2004: 209-216.
[56] Kanno S, Kato K, Yoshioka K, et al. Prediction of clamping pressure in a Johnsen-Rahbek-type electrostatic chuck based on circuit simulation[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2006, 24(1): 216-223.
[57] Nakamura T, Yamamoto A. Multi-finger electrostatic passive haptic feedback on a visual display[C]//2013 World Haptics Conference (WHC). IEEE, 2013: 37-42.
[58] 黄晓琴.麦克斯韦应力张量方法及其应用[J].南京师大学报(自然科学版),1995(01):41-43.
[59] 龙非池,王慧.基于Schwarz-Christoffel变换的平板电容器电场电荷分布仿真[J].物理与工程,2007(06):25-27.
[60] 李小兰.多层PCB用基板材料的技术动向[J].覆铜板资讯,2011(3):36-40.

所在学位评定分委会
力学 ; 机械
国内图书分类号
TH9
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544102
专题工学院_机械与能源工程系
推荐引用方式
GB/T 7714
尹金涛. 基于静电吸附的LED晶粒转移技术[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032725-尹金涛-机械与能源工程(6423KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[尹金涛]的文章
百度学术
百度学术中相似的文章
[尹金涛]的文章
必应学术
必应学术中相似的文章
[尹金涛]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。