[1] Song W, Liang X, Li S, et al. Retinal Projection Near‐Eye Displays with Huygens’ Metasurfaces[J]. Advanced Optical Materials, 2202348.
[2] Luo C J, Liang K L, Chu C W, et al. Micro LED sensor eye-tracking for augmented reality glasses with embedded micro display[C]//2022 29th International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD). IEEE, 2022: 17-20.
[3] Yin K, Hsiang E L, Zou J, et al. Advanced liquid crystal devices for augmented reality and virtual reality displays: principles and applications[J]. Light: Science & Applications, 2022, 11(1): 161.
[4] Anwar A R, Sajjad M T, Johar M A, et al. Recent Progress in Micro‐LED‐Based Display Technologies[J]. Laser & Photonics Reviews, 2022, 16(6): 2100427.
[5] Zhou X, Tian P, Sher C W, et al. Growth, transfer printing and colour conversion techniques towards full-colour micro-LED display[J]. Progress in Quantum Electronics, 2020, 71: 100263.
[6] Zhu G, Liu Y, Ming R, et al. Mass transfer, detection and repair technologies in micro-LED displays[J]. Science China Materials, 2022, 65(8): 2128-2153.
[7] Gong Z. Layer-scale and chip-scale transfer techniques for functional devices and systems: A review[J]. Nanomaterials, 2021, 11(4): 842.
[8] Asano K, Hatakeyama F, Yatsuzuka K. Fundamental study of an electrostatic chuck for silicon wafer handling[J]. IEEE Transactions on Industry Applications, 2002, 38(3): 840-845.
[9] Guo J, Elgeneidy K, Xiang C, et al. Soft pneumatic grippers embedded with stretchable electroadhesion[J]. Smart Materials and Structures, 2018, 27(5): 055006.
[10] Guo J, Leng J, Rossiter J. Electroadhesion technologies for robotics: A comprehensive review[J]. IEEE Transactions on Robotics, 2019, 36(2): 313-327.
[11] Feng W, Hu Y, Li X R, et al. Robot end effector based on electrostatic adsorption for manipulating garment fabrics[J]. Textile Research Journal, 2022, 92(5-6): 691-705.
[12] Schaler E W, Ruffatto D, Glick P, et al. An electrostatic gripper for flexible objects[C]//2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2017: 1172-1179.
[13] Mastrangelo M, Caruso F, Carbone G, et al. Electroadhesion zipping with soft grippers on curved objects[J]. Extreme Mechanics Letters, 2023: 101999.
[14] Chen Z, Yan S, Danesh C. MicroLED technologies and applications: characteristics, fabrication, progress, and challenges[J]. Journal of Physics D: Applied Physics, 2021, 54(12): 123001.
[15] 赵强,郭恒,秦快,李年谱.LED显示“屏”到“器”的封装技术演进[J].中国照明电器,2021(02):1-5.
[16] Wu M H, Fang Y H, Chao C H. Electric-programmable magnetic module and picking-up and placement process for electronic devices: U.S. Patent 9,607,907[P]. 2017-3-28.
[17] Cok R S, Meitl M, Rotzoll R, et al. Inorganic light‐emitting diode displays using micro‐transfer printing[J]. Journal of the Society for Information Display, 2017, 25(10): 589-609.
[18] Bai W, Yang H, Ma Y, et al. Flexible transient optical waveguides and surface‐wave biosensors constructed from monocrystalline silicon[J]. Advanced Materials, 2018, 30(32): 1801584.
[19] Bai J, Niu P, Cao S, et al. The Adhesive Force Measurement between Single μLED and Substrate Based on Atomic Force Microscope[J]. Applied Sciences, 2022, 12(19): 9480.
[20] Choi M, Jang B, Lee W, et al. Stretchable active matrix inorganic light‐emitting diode display enabled by overlay‐aligned roll‐transfer printing[J]. Advanced Functional Materials, 2017, 27(11): 1606005.
[21] Bibl A, Higginson J A, Law H S, et al. Method of transferring a micro device: U.S. Patent 8,333,860[P]. 2012-12-18.
[22] Bibl A, Higginson J A, Hu H H, et al. Method of transferring and bonding an array of micro devices: U.S. Patent 9,773,750[P]. 2017-9-26.
[23] Gracias D H, Tien J, Breen T L, et al. Forming electrical networks in three dimensions by self-assembly[J]. science, 2000, 289(5482): 1170-1172.
[24] Cho S, Lee D, Kwon S. Fluidic self-assembly transfer technology for micro-LED display[C]//2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII). IEEE, 2019: 402-404.
[25] Tang S K Y, Derda R, Mazzeo A D, et al. Reconfigurable Self‐Assembly of Mesoscale Optical Components at a Liquid–Liquid Interface[J]. Advanced Materials, 2011, 23(21): 2413-2418.
[26] Schuele P J, Sasaki K, Ulmer K, et al. Display with surface mount emissive elements: U.S. Patent 9,825,202[P]. 2017-11-21.
[27] Zhan C, Schuele P J, Crowder M A, et al. Fluidic assembly top-contact LED disk: U.S. Patent 10,115,862[P]. 2018-10-30.
[28] Schuele P J, Zhan C, Sasaki K, et al. Emissive display substrate for surface mount micro-LED fluidic assembly: U.S. Patent 10,643,981[P]. 2020-5-5.
[29] Zheng W, Jacobs H O. Self‐assembly process to integrate and connect semiconductor dies on surfaces with single‐angular orientation and contact‐pad registration[J]. Advanced Materials, 2006, 18(11): 1387-1392.
[30] Sasaki K, Schuele P J. Encapsulated emissive element for fluidic assembly: U.S. Patent 10,777,714[P]. 2020-9-15.
[31] Voronenkov V, Bochkareva N, Gorbunov R, et al. Laser slicing: A thin film lift-off method for GaN-on-GaN technology[J]. Results in Physics, 2019, 13: 102233.
[32] Bornemann S, Yulianto N, Spende H, et al. Femtosecond Laser Lift‐Off with Sub‐Bandgap Excitation for Production of Free‐Standing GaN Light‐Emitting Diode Chips[J]. Advanced Engineering Materials, 2020, 22(2): 1901192.
[33] Park J, Sin Y G, Kim J H, et al. Dependence of adhesion strength between GaN LEDs and sapphire substrate on power density of UV laser irradiation[J]. Applied Surface Science, 2016, 384: 353-359.
[34] 付国义. 面向亚毫米器件操作的真空吸附式作业工具的研制[D]. 哈尔滨工业大学, 2007.
[35] Rong W, Fan Z, Wang L, et al. A vacuum microgripping tool with integrated vibration releasing capability[J]. Review of Scientific Instruments, 2014, 85(8): 085002.
[36] Graule M A, Chirarattananon P, Fuller S B, et al. Perching and takeoff of a robotic insect on overhangs using switchable electrostatic adhesion[J]. Science, 2016, 352(6288): 978-982.
[37] Diller S, Majidi C, Collins S H. A lightweight, low-power electroadhesive clutch and spring for exoskeleton actuation[C]//2016 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2016: 682-689.
[38] Cao J, Qin L, Liu J, et al. Untethered soft robot capable of stable locomotion using soft electrostatic actuators[J]. Extreme Mechanics Letters, 2018, 21: 9-16.
[39] Sirin O, Ayyildiz M, Persson B N J, et al. Electroadhesion with application to touchscreens[J]. Soft matter, 2019, 15(8): 1758-1775.
[40] Jiang H, Hawkes E W, Fuller C, et al. A robotic device using gecko-inspired adhesives can grasp and manipulate large objects in microgravity[J]. Science Robotics, 2017, 2(7): eaan4545.
[41] Germann J, Schubert B, Floreano D. Stretchable electroadhesion for soft robots[C]//2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. Ieee, 2014: 3933-3938.
[42] Mici J, Ko J W, West J, et al. Parallel electrostatic grippers for layered assembly[J]. Additive Manufacturing, 2019, 27: 451-460.
[43] West J D, Mici J, Jaquith J F, et al. Design and optimization of millimeter-scale electroadhesive grippers[J]. Journal of Physics D: Applied Physics, 2020, 53(43): 435302.
[44] Ruffatto III D, Shah J, Spenko M. Increasing the adhesion force of electrostatic adhesives using optimized electrode geometry and a novel manufacturing process[J]. Journal of Electrostatics, 2014, 72(2): 147-155.
[45] Nakamura T, Yamamoto A. Modeling and control of electroadhesion force in DC voltage[J]. Robomech Journal, 2017, 4(1): 1-10.
[46] Shintake J, Rosset S, Schubert B, et al. Versatile soft grippers with intrinsic electroadhesion based on multifunctional polymer actuators[J]. Advanced materials, 2016, 28(2): 231-238.
[47] Hinchet R, Vechev V, Shea H, et al. Dextres: Wearable haptic feedback for grasping in vr via a thin form-factor electrostatic brake[C]//Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology. 2018: 901-912.
[48] Beyeler F, Neild A, Oberti S, et al. Monolithically fabricated microgripper with integrated force sensor for manipulating microobjects and biological cells aligned in an ultrasonic field[J]. Journal of microelectromechanical systems, 2007, 16(1): 7-15.
[49] 盛蔡茂.氮化镓GaN的特性及其应用现状与发展[J].科学技术创新,2018(31):48-49.
[50] 黄心汉.微装配机器人:关键技术、发展与应用[J].智能系统学报,2020,15(03):413-424.
[51] Meyer D J, Peshkin M A, Colgate J E. Fingertip friction modulation due to electrostatic attraction[C]//2013 world haptics conference (WHC). IEEE, 2013: 43-48.
[52] Vezzoli E, Amberg M, Giraud F, et al. Electrovibration modeling analysis[C]//Haptics: Neuroscience, Devices, Modeling, and Applications: 9th International Conference, EuroHaptics 2014, Versailles, France, June 24-26, 2014, Proceedings, Part II 9. Springer Berlin Heidelberg, 2014: 369-376.
[53] Guo J, Tailor M, Bamber T, et al. Investigation of relationship between interfacial electroadhesive force and surface texture[J]. Journal of Physics D: Applied Physics, 2015, 49(3): 035303.
[54] Qin S, McTeer A. Wafer dependence of Johnsen–Rahbek type electrostatic chuck for semiconductor processes[J]. Journal of Applied Physics, 2007, 102(6): 064901.
[55] Yamamoto A, Nagasawa S, Yamamoto H, et al. Electrostatic` tactile display with thin film slider and its application to tactile tele-presentation systems[C]//Proceedings of the ACM symposium on Virtual reality software and technology. 2004: 209-216.
[56] Kanno S, Kato K, Yoshioka K, et al. Prediction of clamping pressure in a Johnsen-Rahbek-type electrostatic chuck based on circuit simulation[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2006, 24(1): 216-223.
[57] Nakamura T, Yamamoto A. Multi-finger electrostatic passive haptic feedback on a visual display[C]//2013 World Haptics Conference (WHC). IEEE, 2013: 37-42.
[58] 黄晓琴.麦克斯韦应力张量方法及其应用[J].南京师大学报(自然科学版),1995(01):41-43.
[59] 龙非池,王慧.基于Schwarz-Christoffel变换的平板电容器电场电荷分布仿真[J].物理与工程,2007(06):25-27.
[60] 李小兰.多层PCB用基板材料的技术动向[J].覆铜板资讯,2011(3):36-40.
修改评论