[1] Vidian F, Putra D H, Kholis A. A short review and development of rope brake dynamometer for measurement of brake power on small scale engine[J]. Journal of Mechanical Engineering Research and Developments, 2020, 43(2): 144-153.
[2] Chen S, Huang J, Jian K, et al. Analysis of influence of temperature on magnetorheological fluid and transmission performance[J]. Advances in Materials Science and Engineering, 2015, 2015.
[3] Wang N, Liu X, Królczyk G, et al. Effect of temperature on the transmission characteristics of high-torque magnetorheological brakes[J]. Smart Materials and Structures, 2019, 28(5): 057002.
[4] Hinchet R, Shea H. High force density textile electrostatic clutch[J]. Advanced Materials Technologies, 2020, 5(4): 1900895.
[5] Panwar V, Panwar L S, Anoop G, et al. Electronic-ionic polymer composite for high output voltage generation[J]. Composites Part B: Engineering, 2022, 232: 109601.
[6] Chen R, Chen J, Chen Z, et al. An aerodynamic characteristic measurement method for fixed-pitch wind turbine[C]//2009 World Non-Grid-Connected Wind Power and Energy Conference. IEEE, 2009: 1-5.
[7] Li Z, Chen G, Zhang C. Research on position and torque loading system with velocitysensitive and adaptive robust control[J]. Sensors, 2022, 22(4): 1329.
[8] Xiong Q, Liang X, Wei D, et al. So-EAGlove: VR haptic glove rendering softness sensation with force-tunable electrostatic adhesive brakes[J]. IEEE Transactions on Robotics, 2022.
[9] 周腊吾 , 郭 浩 , 赵 晗 , 等 . 测功机系统的研究综述 [J]. 电机与控制应用 , 2020, 47(12): 1-9.
[10] Vidian F, Putra D H, Kholis A. A short review and development of rope brake dynamometer for measurement of brake power on small scale engine[J]. Journal of Mechanical Engineering Research and Developments, 2020, 43(2): 144-153.
[11] Romandoni N, Aminudin A, Faizin K N, et al. Design of water brake dynamometer[C]//Journal of Physics: Conference Series. IOP Publishing, 2021, 1845(1): 012048.
[12] Lytviak O, Loginov V, Komar S, et al. Self-oscillations of the free turbine speed in testing turboshaft engine with hydraulic dynamometer[J]. Aerospace, 2021, 8(4): 114.
[13] Pan S, Wang D, Huang W. A novel small motor measurement system based on ultrasonic bearings[J]. Measurement, 2021, 168: 108307.
[14] Washabaugh E P, Claflin E S, Gillespie R B, et al. A novel application of eddy current braking for functional strength training during gait[J]. Annals of biomedical engineering, 2016, 44: 2760-2773.
[15] Ye L, Liang C, Liu Y, et al. Performance analysis and test of a novel eddy -current braking & heating system for electric bus[J]. Energy conversion and management, 2019, 183: 440-449.
[16] Gulec M, Aydin M, Sergeant P. Eddy current brakes: A review on working principles and technology evolution[C]//2022 International Conference on Electrical Machines (ICEM). IEEE, 2022: 441-447.
[17] Gong H, Shi H, Han Z, et al. Experimental and numerical investigation on an optimization method of heaving buoy wave energy converter arrays based on a given target wave spectrum[J]. Ocean Engineering, 2022, 259: 111766.
[18] Azizi-Moghaddam H, Mohamadian S, Nasiri-Zarandi R. Adaptive vector control of induction motor based inverse dynamic dynamometer[C]//2020 11th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC). IEEE, 2020: 1-6.
[19] Ma K, Xia S, Qi Y, et al. Power-electronics-based mission profile emulation and test for electric machine drive system—Concepts, features, and challenges[J]. IEEE Transactions on Power Electronics, 2022, 37(7): 8526-8542.
[20]Ji Y, Bao J, Tuttle M E, et al. Influence of magnetic powders on the tribological performance of a novel magnetic brake material[J]. Composite Interfaces, 2017, 24(4): 399-415.
[21] D. Chen, H. Zhang and M. Wang, "An intelligent tension control system in strip unwinding process," 2007 IEEE International Conference on Control and Automation, Guangzhou, China, 2007, pp. 342-345, doi: 10.1109/ICCA.2007.4376376.
[22] Yang M, Zhang S. The research of tension control system in web press based on the fuzzy adaptive PID controller[C]//2014 9th IEEE Conference on Industrial Electronics and Applications. IEEE, 2014: 1204-1208.
[23] Chen W, Sun X, Chen W, et al. Nonlinear web tension control of a roll-to-roll printed electronics system[J]. Precision Engineering, 2022, 76: 88-94.
[24] 张光伟, 田帆, 高嗣土, 等. 导向钻井工具试验台加载控制系统的研究[J]. 2020.
[25] Xia K, Ye Y, Ni J, et al. Model predictive control method of torque ripple reduction for BLDC motor[J]. IEEE Transactions on Magnetics, 2019, 56(1): 1-6.
[26] GUO J, BAMBER T, ZHAO Y, et al. Toward adaptive and intelligent electroadhesives for robotic material handling[J/OL]. IEEE Robotics and Automation Letters, 2017, 2(2): 538-545.
[27] ZHOU X, TIAN P, SHER C W, et al. Growth, transfer printing and colour conversion techniques towards full-colour micro-LED display[J/OL]. Progress in Quantum Electronics, 2020, 71(April): 100263.
[28] Wei D, Xiong Q, Dong J, et al. Electrostatic adhesion clutch with superhigh force density achieved by MXene-Poly (Vinylidene Fluoride–Trifluoroethylene–Chlorotrifluoroethylene) Composites[J]. Soft Robotics, 2022.
[29] DILLER S, MAJIDI C, COLLINS S H. A lightweight, low-power electroadhesive clutch and spring for exoskeleton actuation[C/OL]//2016 IEEE International Conference on Robotics and Automation (ICRA). 2016: 682-689. DOI:10.1109/ICRA.2016.7487194.
[30] RAMACHANDRAN V, SHINTAKE J, FLOREANO D. All-fabric wearable electroadhesive clutch[J/OL]. Advanced Materials Technologies, 2019, 4(2): 1-15.
[31] Aukes D M, Heyneman B, Ulmen J, et al. Design and testing of a selectively compliant underactuated hand[J]. The International Journal of Robotics Research, 2014, 33(5): 721-735.
[32] NAKAMURA T, YAMAMOTO A. Modeling and control of electroadhesion force in DC voltage[J/OL]. ROBOMECH Journal, 2017, 4(1).
[33] Feizi N, Atashzar S F, Kermani M R, et al. Modeling and high-definition control of a smart electroadhesive actuator: toward application in rehabilitation[J]. IEEE Transactions on Medical Robotics and Bionics, 2022, 4(4): 1057-1067.
[34] Levine D J, Iyer G M, Daelan Roosa R, et al. A mechanics-based approach to realize high–force capacity electroadhesives for robots[J]. Science Robotics, 2022, 7(72): eabo2179.
[35]J. Guo, J. Leng and J. Rossiter, "Electroadhesion technologies for robotics: Acomprehensive review," in IEEE Transactions on Robotics, vol. 36, no. 2, pp. 313-327, April 2020, doi: 10.1109/TRO.2019.2956869.
[36] Chen A S, Bergbreiter S. A comparison of critical shear force in low-voltage, allpolymer electroadhesives to a basic friction model[J]. Smart Materials and Structures, 2017, 26(2): 025028.
[37] YAMAMOTO A, NAGASAWA S, YAMAMOTO H, et al. Electrostatic tactile display with thin film slider and its application to tactile telepresentation systems[J/OL]. IEEE Transactions on Visualization and Computer Graphics, 2006, 12(2): 168 -177.
[38] KANNO S, KATO K, YOSHIOKA K, et al. Prediction of clamping pressure in a Johnsen-Rahbek-type electrostatic chuck based on circuit simulation[J/OL]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 2006, 24(1): 216.
[39] NAKAMURA T, YAMAMOTO A. Multi-finger electrostatic passive haptic feedback on a visual display[C/OL]//2013 World Haptics Conference, WHC 2013. IEEE, 2013: 37-42. DOI:10.1109/WHC.2013.6548381.
[40] Levine D J, Iyer G M, Daelan Roosa R, et al. A mechanics-based approach to realize high–force capacity electroadhesives for robots[J]. Science Robotics, 2022, 7(72): eabo2179.
[41] QIN S, MCTEER A. Wafer dependence of Johnsen-Rahbek type electrostatic chuck for semiconductor processes[J/OL]. Journal of Applied Physics, 2007, 102(6).
[42] Alessio A, Bemporad A. A survey on explicit model predictive control[J]. Nonlinear Model Predictive Control: Towards New Challenging Applications, 2009: 345 -369.
[43] Huang P, Wu J, Zhang P, et al. Dynamic modeling and tracking control for dielectric elastomer actuator with a model predictive controller[J]. IEEE Transactions on Industrial Electronics, 2021, 69(2): 1819-1828.
[44] Lima P F, Mårtensson J, Wahlberg B. Stability conditions for linear time -varying model predictive control in autonomous driving[C]//2017 IEEE 56th Annual Conference on Decision and Control (CDC). IEEE, 2017: 2775-2782.
[45] 孟明站,杨帅,吴大转等.水力测功机瞬态特性研究[J].流体机械,2022,50(06):71-77.
[46] Putra M R A, Nizam M, Tjahjana D D D P, et al. Analysis of heat generation on unipolar axial eddy current brake disc and its effect on braking performance[J]. World Electric Vehicle Journal, 2022, 13(10): 180.
[47] Cho S, Liu H C, Ahn H, et al. Eddy current brake with a two-layer structure: Calculation and characterization of braking performance[J]. IEEE Transactions on Magnetics, 2017, 53(11): 1-5.
[48] Wellborn P S, Mitchell J E, Pieper N J, et al. Design and analysis of a small-scale magnetorheological brake[J]. IEEE/ASME Transactions on Mechatronics, 2021, 27(5): 3099-3109.
[49] Neisi N, Tavakoli A R. Simulation of high power electric dynamometer using fuzzy direct torque control for induction motors[J]. Majlesi Journal of Energy Management, 2021, 10(2): 41-47.
[50] Hu G, Wu L, Li L. Torque characteristics analysis of a magnetorheological brake with double brake disc[C]//Actuators. MDPI, 2021, 10(2): 23.
[51] Acharya S, Tak R S S, Singh S B, et al. Characterization of magnetorheological brake utilizing synthesized and commercial fluids[J]. Materials Today: Proceedings, 2021, 46: 9419-9424.
[52] Qiu Z, Xue J. Review of performance testing of high precision reducers for industrial robots[J]. Measurement, 2021, 183: 109794.
[53] 袁宇凤. 磁粉制动器加载系统动态特性分析与试验研究[D].太原理工大学,2017.
修改评论