中文版 | English
题名

Kakioka观测台超低频地震地磁研究

其他题名
STUDY ON ULTRA-LOW FREQUENCY SEISMO-MAGNETIC PHENOMENA AT KAKIOKA OBSERVATORY
姓名
姓名拼音
CHEN Hongyan
学号
11930858
学位类型
博士
学位专业
0702 物理学
学科门类/专业学位类别
07 理学
导师
韩鹏
导师单位
地球与空间科学系
论文答辩日期
2023-05-13
论文提交日期
2023-06-27
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

地震是最严重的自然灾害之一。准确的地震预测可有效减轻地震灾害,一直以来都是地震工作者的奋斗目标。“是否存在有助于预测的地震前兆”是Science期刊创建125周年之际提出的125个最前沿科学问题之一。超低频地震地磁信号被认为是最具前景的地震短临前兆之一,受到广泛关注。然而,由于地震地磁信号本身较弱、孕震过程高度复杂,地震地磁研究仍面临一系列挑战:地震地磁信号通常混杂于空间场源之中难以精确提取;地震地磁信号与地震的时、空、强三要素对应关系不清,预测效能难以定量评估;地震地磁信号中的预测信息尚未得到有效应用。针对上述问题和挑战,本文利用日本Kakioka地磁台长达10年的超低频地磁观测数据和地震目录,开展地震地磁信号提取、统计显著性分析以及预测效能评估研究,并在此基础上探讨如何在预测模型中有效融合地震地磁信号中的预测信息,发挥磁场观测数据的应用价值。

第一,针对地震地磁信号弱、提取难的问题,开发了基于小波多元相干的台站间转换函数新方法。利用观测数据计算小波多元相干系数,通过设置相干度阈值筛选高信噪比数据;提出了新的窗长选取函数,实现了不同周期转换函数计算时间窗长的自适应选取,提升了转换函数计算精度。新方法解决了已有算法中存在的相干度计算窗长划分过于粗糙、有效样本数据少的问题,提升了转换函数计算稳定性和精度。合成数据和实测数据分析验证了新方法的有效性及稳定性,展现了新方法的优势。利用台站间转换函数,准确计算了Kakioka观测台磁场水平XY分量和垂向Z分量的外界空间场源信号,在此基础上实现了Kakioka台站局部磁场扰动的高精度识别和提取。

第二,针对地磁异常信号与地震对应关系不清的问题,开展了统计分析和预测效能评估。首先,利用新开发的台站间转换函数方法,构建了Kakioka台空间场源信号(周期小于940秒)变化模型值,计算了观测值与模型值残差,获取了Kakioka台站局部磁场变化。然后,计算了每日当地夜间230-400时间段磁场XYZ三分量的局部磁场能量变化,并设置阈值定义磁场异常;最后,使用时序叠加法统计分析了Kakioka台磁场异常与区域地震活动的相关性及显著性,并利用Molchan误差图系统性地评估了磁场异常对区域地震活动的预测效能。结果表明Kakioka台的Z分量磁异常预测效能优于X分量和Y分量。Z分量磁异常总能量以及各周期(50/100/200/400秒)能量在地震前显著提升,预测效能均优于随机预测,其中总残差预测效能最佳。地磁异常对距离更远的地震样本预测效能明显下降,表明Kakioka台地磁异常信号与台站周围的地震更相关。为了进一步厘清地震地磁信号与地震时、空、强三要素对应关系,本研究提出了量化预测效能的新参数S*,利用数据驱动实现了对异常所指示的地震时间、位置和强度等参数的同步优化,获取了Kakioka台地磁异常与区域地震的关联特征。

第三,在上述工作基础上,本文对如何在实际地震预测中利用地震地磁信号进行了探讨。使用已有的点过程外激发模型,将基于台站间转换函数所得地磁异常作为激发源,通过适当的激发核函数,得到了随时间变化的地震发生率。赤池信息准则分析结果表明,基于地震地磁信号的外激发模型显著优于随机预测的泊松模型。进一步分析表明,外激发模型的信息增益随着震级下限的增加而增加,地震自激发模型(传染型余震模型)的信息增益随着震级下限的增加而减小,融合地震触发信息和地磁异常信息的综合地震模型预测效果最佳。

综上,本文分析了日本Kakioka地磁台长达10年的超低频地磁观测数据,开展了地震地磁信号提取、统计显著性分析、预测效能评估研究,并进行了应用探索。发展了基于小波多元相干的台站间转换函数新方法,提升了转换函数计算精度;提出了可系统性量化地磁异常预测效能的新参数;揭示了Kakioka台地磁异常与区域地震的关联特征;验证了综合地震预测模型的有效性并评估了其信息增益。相关研究成果可为中国地震科学试验场数据分析提供技术方法,有助于发掘观测资料在防灾减灾中的应用价值。

关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2023-06
参考文献列表

[1] 马瑾. 从“是否存在有助于预报的地震先兆”说起 [J]. 科学通报, 2016, 61(Z1): 409-414.
[2] JORDAN T H, CHEN Y T, GASPARINI P, et al. Operational Earthquake Forecasting: State of Knowledge and Guidelines for Utilization [J]. Annals of Geophysics, 2011, 54(4): 315-391.
[3] IACOLETTI S, CREMEN G, GALASSO C. Validation of the Epidemic-Type Aftershock Sequence (ETAS) Models for Simulation-Based Seismic Hazard Assessments [J]. Seismological Research Letters, 2022, 93(3): 1601-1618.
[4] OGATA Y. Prediction and validation of short-to-long-term earthquake probabilities in inland Japan using the hierarchical space-time ETAS and space-time Poisson process models [J]. Earth Planets and Space, 2022, 74(1): 110.
[5] ZHUANG J. Next-day earthquake forecasts for the Japan region generated by the ETAS model [J]. Earth Planets and Space, 2011, 63(3): 207-216.
[6] WANG R, CHANG Y, MIAO M, et al. Assessing Earthquake Forecast Performance Based on b Value in Yunnan Province, China [J]. Entropy, 2021, 23(6): 730.
[7] WANG T, ZHUANG J, KATO T, et al. Assessing the potential improvement in short-term earthquake forecasts from incorporation of GPS data [J]. Geophysical Research Letters, 2013, 40(11): 2631-2635.
[8] HAN P, ZHUANG J, HATTORI K, et al. Assessing the Potential Earthquake Precursory Information in ULF Magnetic Data Recorded in Kanto, Japan during 2000-2010: Distance and Magnitude Dependences [J]. Entropy, 2020, 22(8): 859.
[9] UYEDA S, NAGAO T, KAMOGAWA M. Short-term earthquake prediction: Current status of seismo-electromagnetics [J]. Tectonophysics, 2009, 470(3): 205-213.
[10] HATTORI K. ULF Geomagnetic Changes Associated with Large Earthquakes [J]. Terrestrial Atmospheric and Oceanic Sciences, 2004, 15(3): 329-360.
[11] HAN P, HATTORI K, HIROKAWA M, et al. Statistical analysis of ULF seismomagnetic phenomena at Kakioka, Japan, during 2001-2010 [J]. Journal of Geophysical Research, 2014, 119(6): 4998-5011.
[12] HUANG Q, HAN P, HATTORI K, et al. Electromagnetic Signals Associated With Earthquakes [M]. Seismoelectric Exploration. 2020: 415-436.
[13] 董超, 陈斌, 袁洁浩, 等. 2021年5月22日玛多M_S7.4地震震前岩石圈磁场变化特征分析 [J]. 地震学报, 2021, 43(4): 453-462.
[14] 王同利, 崔博闻, 叶青, 等. 九寨沟M_S7.0地震地电阻率变化时空演化分析 [J]. 地球物理学报, 2020, 63(6): 2345-2356.
[15] HATTORI K, HAN P, YOSHINO C, et al. Investigation of ULF Seismo-Magnetic Phenomena in Kanto, Japan During 2000-2010: Case Studies and Statistical Studies [J]. Surveys in Geophysics, 2013, 34(3): 293-316.
[16] HAYAKAWA M. VLF/LF Radio Sounding of Ionospheric Perturbations Associated with Earthquakes [J]. Sensors, 2007, 7(7): 1141-1158.
[17] HEKI K. Ionospheric electron enhancement preceding the 2011 Tohoku-Oki earthquake [J]. Geophysical Research Letters, 2011, 38(17): L17312.
[18] HUANG Q. Forecasting the epicenter of a future major earthquake [J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(4): 944-945.
[19] REN H, HUANG Q, CHEN X. Numerical simulation of seismo-electromagnetic fields associated with a fault in a porous medium [J]. Geophysical Journal International, 2016, 206(1): 205-220.
[20] DUNSON J C, BLEIER T E, ROTH S, et al. The Pulse Azimuth effect as seen in induction coil magnetometers located in California and Peru 2007-2010, and its possible association with earthquakes [J]. Natural Hazards and Earth System Sciences, 2011, 11(7): 2085-2105.
[21] HUANG Q. Retrospective investigation of geophysical data possibly associated with the Ms8.0 Wenchuan earthquake in Sichuan, China [J]. Journal of Asian Earth Sciences, 2011, 41(4): 421-427.
[22] PULINETS S, OUZOUNOV D. Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) model - An unified concept for earthquake precursors validation [J]. Journal of Asian Earth Sciences, 2011, 41(4-5): 371-382.
[23] HATTORI K, AKINAGA Y, HAYAKAWA M, et al. ULF magnetic anomaly preceding the 1997 Kagoshima earthquake [M]. Tokyo: Terra Scientific Publishing Company, 2002.
[24] MIYAKOSHI J. Anomalous time-variation of the self-potential in the fractured zone of an active fault preceding the earthquake occurrence [J]. Journal of Geomagnetism and Geoelectricity, 1986, 38(10): 1015-1030.
[25] VAROTSOS P, ALEXOPOULOS K, NOMICOS K, et al. Earthquake prediction and electric signals [J]. Nature, 1986, 322(6075): 120.
[26] VAROTSOS P, ALEXOPOULOS K, LAZARIDOU M. Latest aspects of earthquake prediction in Greece based on seismic electric signals, II [J]. Tectonophysics, 1993, 224(1): 1-37.
[27] VAROTSOS P, ALEXOPOULOS K, LAZARIDOUVAROTSOU M, et al. Earthquake predictions issued in Greece by seismic electric signals since February 6, 1990 [J]. Tectonophysics, 1993, 224(1-3): 269-288.
[28] SARLIS N V, VAROTSOS P A, SKORDAS E S, et al. Seismic electric signals in seismic prone areas [J]. Earthquake Science, 2018, 31(1): 44-51.
[29] WARDEN S, BLEIER T, KAPPLER K. Long term air ion monitoring in search of pre-earthquake signals [J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2019, 186: 47-60.
[30] KAPPLER K N, SCHNEIDER D D, MACLEAN L S, et al. An algorithmic framework for investigating the temporal relationship of magnetic field pulses and earthquakes applied to California [J]. Computers & Geosciences, 2019, 133: 104317.
[31] HEAVLIN W D, KAPPLER K, YANG L, et al. Case-Control Study on a Decade of Ground-Based Magnetometers in California Reveals Modest Signal 24-72 hr Prior to Earthquakes [J]. Journal of Geophysical Research-Solid Earth, 2022, 127(10): e2022JB024109.
[32] 李琪, 袁伊人, 杨星, 等. 2013年3月3日洱源M_S5.5地震前地磁谐波振幅比异常研究 [J]. 地震学报, 2016, 38(1): 122-129.
[33] 解滔, 刘杰, 卢军, 等. 2008年汶川M_S8.0地震前定点观测电磁异常回溯性分析 [J]. 地球物理学报, 2018, 61(5): 1922-1937.
[34] 钱家栋, 马钦忠, 李劭秾. 汶川M_S8.0地震前成都台NE测线地电阻率异常的进一步研究 [J]. 地震学报, 2013, 35(1): 4-17.
[35] 马钦忠, 方国庆, 李伟, 等. 芦山M_S7.0地震前的电磁异常信号 [J]. 地震学报, 2013, 35(5): 717-730.
[36] 汤吉, 赵国泽, 王继军, 等. 张北-尚义地震前后电阻率的变化及分析 [J]. 地震地质, 1998, 20(2): 69-76.
[37] 陈军营, 杜学彬, 谭大诚, 等. 老虎山断裂带大地电磁地震监测研究 [J]. 地震, 2009, 29(3): 79-85.
[38] KAPPLER K N, MORRISON H F, EGBERT G D. Long-term monitoring of ULF electromagnetic fields at Parkfield, California [J]. Journal of Geophysical Research-Solid Earth, 2010, 115(B4): B04406.
[39] MASCI F, THOMAS J N. Are there new findings in the search for ULF magnetic precursors to earthquakes? [J]. Journal of Geophysical Research-Space Physics, 2015, 120(12): 10289-12304.
[40] FIDANI C. The earthquake lights (EQL) of the 6 April 2009 Aquila earthquake, in Central Italy [J]. Natural Hazards and Earth System Sciences, 2010, 10(5): 967-978.
[41] DERR J. Earthquake lights: A review of observations and present theories [J]. Bulletin of the Seismological Society of America, 1973, 63(3): 2177-2187.
[42] OUZOUNOV D, BRYANT N, LOGAN T, et al. Satellite thermal IR phenomena associated with some of the major earthquakes in 1999-2003 [J]. Physics and Chemistry of the Earth, Parts A/B/C, 2006, 31(4): 154-163.
[43] HAO J G. Near earth surface anomalies of the atmospheric electric field and earthquakes [J]. Acta Seismologica Sinica-English Edition, 1989, 2: 289-298.
[44] CHEN T, LI L, ZHANG X X, et al. Near-epicenter weather conditions several hours before strong earthquakes (Ms ≥6) [J]. Natural Hazards, 2022, 110(1): 57-68.
[45] LIU J Y, CHEN Y I, HUANG C H, et al. A Statistical Study of Lightning Activities and M≥5.0 Earthquakes in Taiwan During 1993-2004 [J]. Surveys in Geophysics, 2015, 36(6): 851-859.
[46] KAI Q. Preliminary analysis of surface temperature anomalies that preceded the two major Emilia 2012 earthquakes (Italy) [J]. Annals of Geophysics, 2012, 55(4): 823-828.
[47] OUZOUNOV D, PULINETS S, HATTORI K, et al. Pre-earthquake processes: a multidisciplinary approach to earthquake prediction studies [M]. Hoboken, New Jersey: John Wiley & Sons, 2018.
[48] GENZANO N, FILIZZOLA C, HATTORI K, et al. Statistical Correlation Analysis Between Thermal Infrared Anomalies Observed From MTSATs and Large Earthquakes Occurred in Japan (2005-2015) [J]. Journal of Geophysical Research-Solid Earth, 2021, 126(2): e2020JB020108.
[49] TRAMUTOLI V, CUOMO V, FILIZZOLA C, et al. Assessing the potential of thermal infrared satellite surveys for monitoring seismically active areas: The case of Kocaeli (İzmit) earthquake, August 17, 1999 [J]. Remote Sensing of Environment, 2005, 96(3): 409-426.
[50] ZHANG Y, MENG Q. A statistical analysis of TIR anomalies extracted by RSTs in relation to an earthquake in the Sichuan area using MODIS LST data [J]. Natural Hazards and Earth System Sciences, 2019, 19(3): 535-549.
[51] SARKAR S, GWAL A K, PARROT M. Ionospheric variations observed by the DEMETER satellite in the mid-latitude region during strong earthquakes [J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2007, 69(13): 1524-1540.
[52] HAYAKAWA M, MOLCHANOV O A, ONDOH T, et al. Anomalies in the sub-ionospheric VLF signals for the 1995 Hyogo-ken Nanbu earthquake [J]. Journal of Physics of the Earth, 1996, 44(4): 413-418.
[53] MOLCHANOV O A, HAYAKAWA M. Subionospheric VLF signal perturbations possibly related to earthquakes [J]. Journal of Geophysical Research-Space Physics, 1998, 103(A8): 17489-17504.
[54] SHEN X H, ZHANG X M, YUAN S G, et al. The state-of-the-art of the China Seismo-Electromagnetic Satellite mission [J]. Science China-Technological Sciences, 2018, 61(5): 634-642.
[55] HAYAKAWA M, OHTA K, MAEKAWA S, et al. Electromagnetic precursors to the 2004 Mid Niigata Prefecture earthquake [J]. Physics and Chemistry of the Earth, 2006, 31(4-9): 356-364.
[56] 张学民. 甚低频/低频人工源电波信号地震应用研究进展 [J]. 地震学报, 2021, 43(5): 656-673.
[57] 赵国泽, 王立凤, 汤吉, 等. 地震监测人工源极低频电磁技术(CSELF)新试验 [J]. 地球物理学报, 2010, 53(3): 479-486.
[58] LIU J Y, LE H, CHEN Y I, et al. Observations and simulations of seismoionospheric GPS total electron content anomalies before the 12 January 2010 M7 Haiti earthquake [J]. Journal of Geophysical Research-Space Physics, 2011, 116(A4): A04302.
[59] GUO J, LI W, YU H, et al. Impending ionospheric anomaly preceding the Iquique Mw8.2 earthquake in Chile on 2014 April 1 [J]. Geophysical Journal International, 2015, 203(3): 1461-1470.
[60] CHEN H, MIAO M, CHANG Y, et al. Singular Spectrum Analysis of the Total Electron Content Changes Prior to M≥6.0 Earthquakes in the Chinese Mainland During 1998-2013 [J]. Frontiers in Earth Science, 2021, 9(432): 677163.
[61] LIM B J M, LEONG E C. Challenges in the Detection of Ionospheric Pre-Earthquake Total Electron Content Anomalies (PETA) for Earthquake Forewarning [J]. Pure and Applied Geophysics, 2019, 176(6): 2425-2449.
[62] HE L M, WU L X, PULINETS S, et al. A nonlinear background removal method for seismo-ionospheric anomaly analysis under a complex solar activity scenario: A case study of the M9.0 Tohoku earthquake [J]. Advances in Space Research, 2012, 50(2): 211-220.
[63] GUO J, SHI K, LIU X, et al. Singular spectrum analysis of ionospheric anomalies preceding great earthquakes: Case studies of Kaikoura and Fukushima earthquakes [J]. Journal of Geodynamics, 2019, 124(3): 1-13.
[64] HE L M, HEKI K. Three-dimensional distribution of ionospheric anomalies prior to three large earthquakes in Chile [J]. Geophysical Research Letters, 2016, 43(14): 7287-7293.
[65] SONG R, HATTORI K, ZHANG X M, et al. Seismic-ionospheric effects prior to four earthquakes in Indonesia detected by the China seismo-electromagnetic satellite [J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2020, 205(8): 105291.
[66] 赵国泽, 张学民, 蔡军涛, 等. 中国地震电磁研究现状和发展趋势 [J]. 中国科学:地球科学, 2022, 52(8): 1499-1515.
[67] PARROT M, BERTHELIER J, LEBRETON J P, et al. Examples of unusual ionospheric observations made by the DEMETER satellite over seismic regions [J]. Physics and Chemistry of The Earth, 2006, 31(4): 486-495.
[68] NĚMEC F, SANTOLíK O, PARROT M, et al. Spacecraft observations of electromagnetic perturbations connected with seismic activity [J]. Geophysical Research Letters, 2008, 35(5): L05109.
[69] AKHOONDZADEH M, PARROT M, SARADJIAN M R. Electron and ion density variations before strong earthquakes (M>6.0) using DEMETER and GPS data [J]. Natural Hazards and Earth System Sciences, 2010, 10(1): 7-18.
[70] ZENG Z C, ZHANG B, FANG G Y, et al. The analysis of ionospheric variations before Wenchuan earthquake with DEMETER data [J]. Chinese Journal of Geophysics-Chinese Edition, 2009, 52(1): 11-19.
[71] PARROT M. Statistical analysis of automatically detected ion density variations recorded by DEMETER and their relation to seismic activity [J]. Annals of Geophysics, 2012, 55(1): 149-155.
[72] LI M, PARROT M. Statistical analysis of an ionospheric parameter as a base for earthquake prediction [J]. Journal of Geophysical Research-Space Physics, 2013, 118(6): 3731-3739.
[73] MARCHETTI D, DE SANTIS A, CAMPUZANO S A, et al. Worldwide Statistical Correlation of Eight Years of Swarm Satellite Data with M5.5+ Earthquakes: New Hints about the Preseismic Phenomena from Space [J]. Remote Sensing, 2022, 14(11): 2649.
[74] SANTIS A D, MARCHETTI D, PAVóN-CARRASCO F J, et al. Precursory worldwide signatures of earthquake occurrences on Swarm satellite data [J]. Scientific Reports, 2019, 9(1): 20287.
[75] MARCHETTI D, DE SANTIS A, D'ARCANGELO S, et al. Pre-earthquake chain processes detected from ground to satellite altitude in preparation of the 2016-2017 seismic sequence in Central Italy [J]. Remote Sensing of Environment, 2019, 229: 93-99.
[76] LIU J, GUAN Y B, ZHANG X M, et al. The Data Comparison of Electron Density Between CSES and DEMETER Satellite, Swarm Constellation and IRI Model [J]. Earth and Space Science, 2021, 8(2): e2020EA001475.
[77] YANG Y Y, HULOT G, VIGNERON P, et al. The CSES global geomagnetic field model (CGGM): an IGRF-type global geomagnetic field model based on data from the China Seismo-Electromagnetic Satellite [J]. Earth Planets and Space, 2021, 73(1): 45.
[78] YAN R, ZHIMA Z R, XIONG C, et al. Comparison of Electron Density and Temperature From the CSES Satellite With Other Space-Borne and Ground-Based Observations [J]. Journal of Geophysical Research-Space Physics, 2020, 125(10): e2019JA027747.
[79] 申旭辉, 黄建平, 林剑, 等. 地球物理探测卫星数据分析处理技术与地震预测应用研究项目及研究进展 [J]. 地震科学进展, 2022, 52(1): 1-25.
[80] ZHIMA Z, ZHOU B, ZHAO S, et al. Cross-calibration on the electromagnetic field detection payloads of the China Seismo-Electromagnetic Satellite [J]. Science China Technological Sciences, 2022, 65(6): 1415-1426.
[81] RUI Y, XUHUI S, JIANPING H, et al. Examples of unusual ionospheric observations by the CSES prior to earthquakes [J]. Earth and Planetary Physics, 2018, 2(6): 515-526.
[82] ZHANG X, WANG Y, BOUDJADA M Y, et al. Multi-Experiment Observations of Ionospheric Disturbances as Precursory Effects of the Indonesian Ms6.9 Earthquake on August 05, 2018 [J]. Remote Sensing, 2020, 12(24): 4050.
[83] ZHU K, ZHENG L, YAN R, et al. The variations of electron density and temperature related to seismic activities observed by CSES [J]. Natural Hazards Research, 2021, 1(2): 88-94.
[84] XIONG P, LONG C, ZHOU H Y, et al. Identification of Electromagnetic Pre-Earthquake Perturbations from the DEMETER Data by Machine Learning [J]. Remote Sensing, 2020, 12(21): 3643.
[85] XIONG P, LONG C, ZHOU H, et al. Pre-Earthquake Ionospheric Perturbation Identification Using CSES Data via Transfer Learning [J]. Frontiers in Environmental Science, 2021, 9: 779255.
[86] LI Z, YANG B, HUANG J, et al. Analysis of Pre-Earthquake Space Electric Field Disturbance Observed by CSES [J]. Atmosphere, 2022, 13(6): 934.
[87] MIZUTANI H, ISHIDO T, YOKOKURA T, et al. Electrokinetic phenomena associated with earthquakes [J]. Geophysical Research Letters, 1976, 3(7): 365-368.
[88] GAO Y, JIANG P, XU Y, et al. On magnetic disturbances induced by rotation of coil-type magnetometer driven by seismic waves [J]. Geophysical Journal International, 2021, 226(3): 1948-1974.
[89] FREUND F. Pre-earthquake signals: Underlying physical processes [J]. Journal of Asian Earth Sciences, 2011, 41(41): 383-400.
[90] HUANG Q. One possible generation mechanism of co-seismic electric signals [J]. Proceedings of the Japan Academy, Series B, 2002, 78(7): 173-178.
[91] GERSHENZON N I, GOKHBERG M B, YUNGA S L. On the electromagnetic field of an earthquake focus [J]. Physics of the Earth and Planetary Interiors, 1993, 77(1): 13-19.
[92] 张学民, 申旭辉. 地震—电离层圈层耦合机理研究进展及问题思考 [J]. 地震科学进展, 2022, 52(5): 193-202.
[93] HARRISON R G, APLIN K L, RYCROFT M J. Atmospheric electricity coupling between earthquake regions and the ionosphere [J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2010, 72(5-6): 376-381.
[94] RYCROFT M J, NICOLL K A, APLIN K L, et al. Recent advances in global electric circuit coupling between the space environment and the troposphere [J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2012, 90-91: 198-211.
[95] HARRISON R, APLIN K, RYCROFT M. Brief Communication: Earthquake-cloud coupling through the global atmospheric electric circuit [J]. Natural Hazards and Earth System Sciences Discussions, 2013, 14(4): 773-777.
[96] KUO C L, HUBA J D, JOYCE G, et al. Ionosphere plasma bubbles and density variations induced by pre-earthquake rock currents and associated surface charges [J]. Journal of Geophysical Research-Space Physics, 2011, 116(A10): A10317.
[97] KUO C L, LEE L C, HUBA J D. An improved coupling model for the lithosphere-atmosphere-ionosphere system [J]. Journal of Geophysical Research-Space Physics, 2014, 119(4): 3189-3205.
[98] SHVETS A V, HAYAKAWA M, MOLCHANOV O A, et al. A study of ionospheric response to regional seismic activity by VLF radio sounding [J]. Physics and Chemistry of the Earth, Parts A/B/C, 2004, 29(4): 627-637.
[99] GAO Y, LI T, ZHOU G, et al. Acoustic-gravity waves generated by a point source on the ground in a stratified atmosphere-Earth structure [J]. Geophysical Journal International, 2022, 232(2): 764-787.
[100] LIPEROVSKY V A, MEISTER C V, LIPEROVSKAYA E V, et al. On spread-E-s effects in the ionosphere before earthquakes [J]. Natural Hazards and Earth System Sciences, 2005, 5(1): 59-62.
[101] SOROKIN V M, ISAEV N V, YASCHENKO A K, et al. Strong DC electric field formation in the low latitude ionosphere over typhoons [J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2005, 67(14): 1269-1279.
[102] LIU J Y, CHEN C H, SUN Y Y, et al. The vertical propagation of disturbances triggered by seismic waves of the 11 March 2011 M9.0 Tohoku earthquake over Taiwan [J]. Geophysical Research Letters, 2016, 43(4): 1759-1765.
[103] CHEN C H, SUN Y Y, LIN K, et al. A New Instrumental Array in Sichuan, China, to Monitor Vibrations and Perturbations of the Lithosphere, Atmosphere, and Ionosphere [J]. Surveys in Geophysics, 2021, 42: 1425-1442.
[104] DOBROVOLSKY I P, ZUBKOV S I, MIACHKIN V I. Estimation of the size of earthquake preparation zones [J]. Pure and applied geophysics, 1979, 117(5): 1025-1044.
[105] BOWMAN D D, OUILLON G, SAMMIS C G, et al. An observational test of the critical earthquake concept [J]. Journal of Geophysical Research-Solid Earth, 1998, 103(B10): 24359-24372.
[106] JIANG W, MA Y, ZHOU X, et al. Analysis of ionospheric vertical total electron content before the 1 April 2014 Mw 8.2 Chile earthquake [J]. Journal of Seismology, 2017, 21(6): 1599-1612.
[107] LIU J Y, CHEN Y I, CHUO Y J, et al. Variations of ionospheric total electron content during the Chi-Chi Earthquake [J]. Geophysical Research Letters, 2001, 28(7): 1383-1386.
[108] LIU W J, XU L. Statistical analysis of ionospheric TEC anomalies before global M (w) >= 7.0 earthquakes using data of CODE GIM [J]. Journal of Seismology, 2017, 21(4): 759-775.
[109] KARIA S P, PATHAK K N. Change in refractivity of the atmosphere and large variation in TEC associated with some earthquakes, observed from GPS receiver [J]. Advances in Space Research, 2011, 47(5): 867-876.
[110] PARK S K. Precursors to earthquakes: Seismoelectromagnetic signals [J]. Surveys in Geophysics, 1996, 17(4): 493-516.
[111] NAGAO T, ENOMOTO Y, FUJINAWA Y, et al. Electromagnetic anomalies associated with 1995 Kobe earthquake [J]. Journal of Geodynamics, 2002, 33(4): 401-411.
[112] SERITA A, HATTORI K, YOSHINO C, et al. Principal component analysis and singular spectrum analysis of ULF geomagnetic data associated with earthquakes [J]. Natural Hazards and Earth System Sciences, 2005, 5(5): 685-689.
[113] WEN S, CHEN C, YEN H, et al. Magnetic storm free ULF analysis in relation with earthquakes in Taiwan [J]. Natural Hazards and Earth System Sciences, 2012, 12(5): 1747-1754.
[114] FRASER-SMITH A C, BERNARDI A, MCGILL P R, et al. Low-frequency magnetic field measurements near the epicenter of the Ms 7.1 Loma Prieta Earthquake [J]. Geophysical Research Letters, 1990, 17(9): 1465-1468.
[115] KOPYTENKO Y A, MATIASHVILI T G, VORONOV P M, et al. Detection of ultra-low-frequency emissions connected with the Spitak earthquake and its aftershock activity, based on geomagnetic pulsations data at Dusheti and Vardzia observatories [J]. Physics of the Earth and Planetary Interiors, 1993, 77(1): 85-95.
[116] HAYAKAWA M, KAWATE R, MOLCHANOV O A, et al. Results of ultra-low-frequency magnetic field measurements during the Guam Earthquake of 8 August 1993 [J]. Geophysical Research Letters, 1996, 23(3): 241-244.
[117] UYEDA S, HAYAKAWA M, NAGAO T, et al. Electric and magnetic phenomena observed before the volcano-seismic activity in 2000 in the Izu Island Region, Japan [J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(11): 7352-7355.
[118] HATTORI K, SERITA A, YOSHINO C, et al. Singular spectral analysis and principal component analysis for signal discrimination of ULF geomagnetic data associated with 2000 Izu Island Earthquake Swarm [J]. Physics and Chemistry of the Earth, 2006, 31(4-9): 281-291.
[119] GOTOH K, HAYAKAWA M, SMIRNOVA N. Fractal analysis of the ULF geomagnetic data obtained at Izu Peninsula, Japan in relation to the nearby earthquake swarm of June-August 2000 [J]. Natural Hazards and Earth System Sciences, 2003, 3(3-4): 229-236.
[120] ISMAGUILOV V S, KOPYTENKO Y A, HATTORI K, et al. ULF magnetic emissions connected with under sea bottom earthquakes [J]. Natural Hazards and Earth System Sciences, 2001, 1(1-2): 23-31.
[121] ISMAGUILOV V S, KOPYTENKO Y A, HATTORI K, et al. Variations of phase velocity and gradient values of ULF geomagnetic disturbances connected with the Izu strong earthquakes [J]. Natural Hazards and Earth System Sciences, 2003, 3(3-4): 211-215.
[122] WARDEN S, MACLEAN L, LEMON J, et al. Statistical Analysis of Pre-earthquake Electromagnetic Anomalies in the ULF Range [J]. Journal of Geophysical Research-Space Physics, 2020, 125(10): e2020JA027955.
[123] HAN P, HATTORI K, ZHUANG J, et al. Evaluation of ULF seismo-magnetic phenomena in Kakioka, Japan by using Molchan's error diagram [J]. Geophysical Journal International, 2017, 208(1): 482-490.
[124] ZHUANG J, MATSU'URA M, HAN P. Critical zone of the branching crack model for earthquakes: Inherent randomness, earthquake predictability, and precursor modelling [J]. The European Physical Journal Special Topics, 2021, 230(1): 409-424.
[125] HARADA M, HATTORI K, ISEZAKI N. Transfer function approach to signal discrimination of ULF geomagnetic data [J]. Physics and Chemistry of the Earth, Parts A/B/C, 2004, 29(4): 409-417.
[126] 周媛媛, 常莹, 陈浩, 等. 基于参考台的盲源分离法在抑制地磁场近场噪音中的应用研究 [J]. 地球物理学报, 2019, 62(2): 572-586.
[127] SCHMUCKER U. Anomalies of Geomagnetic Variations in the Southwestern United States [J]. Journal of geomagnetism and geoelectricity, 1964, 15(4): 193-221.
[128] 王桥, 黄清华. 华北地磁感应矢量时空特征分析 [J]. 地球物理学报, 2016, 59(1): 215-228.
[129] CHAVE A D, THOMSON D J. Bounded influence magnetotelluric response function estimation [J]. Geophysical Journal International, 2004, 157(3): 988-1006.
[130] FUJIWARA S, TOU H. Geomagnetic Transfer Functions in Japan Obtained by First Order Geomagnetic Survey [J]. Journal of geomagnetism and geoelectricity, 1996, 48: 1071-1101.
[131] DAUBECHIES I, BATES B J. Ten Lectures on Wavelets [J]. The Journal of the Acoustical Society of America, 1993, 61(204): 941-942.
[132] GURLEY K, KAREEM A. Applications of wavelet transforms in earthquake, wind and ocean engineering [J]. Engineering Structures, 1999, 21(2): 149-167.
[133] NG E K W, CHAN J C L. Geophysical Applications of Partial Wavelet Coherence and Multiple Wavelet Coherence [J]. Journal of Atmospheric and Oceanic Technology, 2012, 29(12): 1845-1853.
[134] GAO Y, HU H. Seismoelectromagnetic waves radiated by a double couple source in a saturated porous medium [J]. Geophysical Journal International, 2010, 181(2): 873-896.
[135] REN H, CHEN X, HUANG Q. Numerical simulation of coseismic electromagnetic fields associated with seismic waves due to finite faulting in porous media [J]. Geophysical Journal International, 2012, 188(3): 925-944.
[136] HUANG Q, REN H, ZHANG D, et al. Medium effect on the characteristics of the coupled seismic and electromagnetic signals [J]. Proceedings of the Japan Academy Series B Physical and Biological Sciences, 2015, 91(1): 17-24.
[137] REN H, WEN J, HUANG Q, et al. Electrokinetic effect combined with surface-charge assumption: a possible generation mechanism of coseismic EM signals [J]. Geophysical Journal International, 2015, 200(2): 837-850.
[138] ZHAO J, GAO Y, TANG J, et al. Electromagnetic Field Generated by an Earthquake Source Due to Motional Induction in 3D Stratified Media, and Application to 2008 Mw 6.1 Qingchuan Earthquake [J]. Journal of Geophysical Research-Solid Earth, 2021, 126(10): e2021JB022102.
[139] REN H, ZENG L, SUN Y C, et al. Semi-analytical solutions of seismo-electromagnetic signals arising from the motional induction in 3-D multi-layered media: part II-numerical investigations [J]. Earth Planets and Space, 2021, 73(1): 130.
[140] OGAWA T, UTADA H. Electromagnetic signals related to incidence of a teleseismic body wave into a subsurface piezoelectric body [J]. Earth Planets and Space, 2000, 52(4): 253-260.
[141] BRAD ADAMS J, MANN M E, AMMANN C M. Proxy evidence for an El Niño-like response to volcanic forcing [J]. Nature, 2003, 426(6964): 274-278.
[142] MOLCHAN G. Structure of optimal strategies in earthquake prediction [J]. Tectonophysics, 1991, 193(4): 267-276.
[143] MOLCHAN G M, KAGAN Y Y. Earthquake prediction and its optimization [J]. Journal of Geophysical Research, 1992, 97(4): 4823-4838.
[144] KATSUMATA K. A long-term seismic quiescence started 23 years before the 2011 off the Pacific coast of Tohoku Earthquake (M = 9.0) [J]. Earth Planets and Space, 2011, 63(7): 709-712.
[145] NANJO K Z, HIRATA N, OBARA K, et al. Decade-scale decrease inb value prior to the M9-class 2011 Tohoku and 2004 Sumatra quakes [J]. Geophysical Research Letters, 2012, 39(20): L20304.
[146] SARLIS N V, SKORDAS E S, VAROTSOS P, et al. Minimum of the order parameter fluctuations of seismicity before major earthquakes in Japan [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(34): 13734-13738.
[147] KATO A, OBARA K, IGARASHI T, et al. Propagation of Slow Slip Leading Up to the 2011 Mw 9.0 Tohoku-Oki Earthquake [J]. Science, 2012, 335(6069): 705-708.
[148] CHEN C H, WEN S, LIU J-Y, et al. Surface displacements in Japan before the 11 March 2011 M9.0 Tohoku-Oki earthquake [J]. Journal of Asian Earth Sciences, 2014, 80: 165-171.
[149] ITO Y, HINO R, KIDO M, et al. Episodic slow slip events in the Japan subduction zone before the 2011 Tohoku-Oki earthquake [J]. Tectonophysics, 2013, 600(5): 14-26.
[150] HATTORI K, HAN P. Investigation on Preparation Process of the 2011 off the Pacific Coast of Tohoku Earthquake (Mw 9.0) By GPS Data [Z]. American Geophysics Union Fall Meeting, NH21C-02. 2014
[151] ORIHARA Y, KAMOGAWA M, NAGAO T. Preseismic Changes of the Level and Temperature of Confined Groundwater related to the 2011 Tohoku Earthquake [J]. Scientific Reports, 2014, 4(1): 6907.
[152] HAN P, HATTORI K, HUANG Q, et al. Spatiotemporal characteristics of the geomagnetic diurnal variation anomalies prior to the 2011 Tohoku earthquake (Mw 9.0) and the possible coupling of multiple pre-earthquake phenomena [J]. Journal of Asian Earth Sciences, 2016, 129: 13-21.
[153] AKAIKE H. A new look at the statistical model identification [J]. IEEE Transactions on Automatic Control, 1974, 19(6): 716-723.
[154] OGATA Y, KATSURA K. Likelihood analysis of spatial inhomogeneity for marked point patterns [J]. Annals of the Institute of Statistical Mathematics, 1988, 40(1): 29-39.
[155] OGATA Y, AKAIKE H, KATSURA K. The application of linear intensity models to the investigation of causal relations between a point process and another stochastic process [J]. Annals of the Institute of Statistical Mathematics, 1982, 34(2): 373-387.
[156] DALEY D, VERE-JONES D. An introduction to the theory of point processes. Vol. I: Elementary theory and methods. [M]. 2nd ed. New York: Springer-Verlag, 2003.

所在学位评定分委会
物理学
国内图书分类号
P318.5
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544112
专题理学院_地球与空间科学系
推荐引用方式
GB/T 7714
陈泓燕. Kakioka观测台超低频地震地磁研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930858-陈泓燕-地球与空间科学(20387KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[陈泓燕]的文章
百度学术
百度学术中相似的文章
[陈泓燕]的文章
必应学术
必应学术中相似的文章
[陈泓燕]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。