[1] United Nations Conference on Trade and Development (UNCTAD). Review of maritime transport 2019[EB/OL]. (2019-11-01)
[2022-08-27]. https://un ctad.org/system/files/official-document/rmt2019_en.pdf.
[2] World Bank. Global economic prospects, January 2019: Darkening skies[M]. The World Bank, 2019: 6-19.
[3] British Broadcasting Corporation (BBC) News. Why some countries are shipping back plastic waste[EB/OL]. (2019-06-02)
[2022-12-11]. https://www.bbc.com/news/ world-48444874.
[4] Drewry Maritime Research. Trade impact analysis of proposed US auto tariffs: White Paper[R]. London: Drewry, 2019.
[5] Barry Rogliano Salles. Annual review 2019: Shipping and shipbuilding markets[EB/OL]. (2019-12-07)
[2022-12-12]. https://www.brsbrokers.com/BRS-Review-2019.pdf.
[6] UNCTAD. Review of maritime transport 2020[EB/OL]. (2020-11-12)
[2022-08-27]. https://unctad.org/system/files/official-document/rmt2020_en.pdf.
[7] 上海国际航运研究中心. 全球港口发展报告(2022)[R]. 上海: 上海国际航运研究中心, 2022.
[8] Li S, Wu Z, Liu G. Degradation kinetics of toilet paper fiber during wastewater treatment: Effects of solid retention time and microbial community[J]. Chemosphere, 2019, 225: 915-926.
[9] Lam L, Kurisu K, Hanaki K. Comparative environmental impacts of source-separation systems for domestic wastewater management in rural China[J]. Journal of Cleaner Production, 2015, 104: 185-198.
[10] Andersson K, Otoo M, Nolasco M. Innovative sanitation approaches could address multiple development challenges[J]. Water Science and Technology,2018, 77(4): 855–858.
[11] Rose C, Parker A, Jefferson B, et al. The Characterization of feces and urine: A review of the literature to inform advanced treatment technology[J]. Critical Reviews in Environmental Science & Technology, 2015, 45(17): 1827-1879.
[12] Simha P, Ganesapillai M. Ecological sanitation and nutrient recovery from human urine: How far have we come? A review[J]. Sustainable Environment Research, 2016, 27(3): 107-116.
[13] Odey E A, Li Z, Zhou X, et al. Fecal sludge management in developing urban centers: A review on the collection, treatment, and composting[J]. Environmental Science and Pollution Research, 2017, 24: 23441-23452.
[14] 苏杰, 连杰, 蔡新华. 谈船舶灰水的管控[J]. 世界海运, 2019, 42(6): 3.
[15] Rakesh S S, Ramesh P T, Murugaragavan R, et al. Characterization and treatment of grey water: A review[J]. International Journal of Chemical Studies, 2020, 8(1): 34-40.
[16] Eriksson E, Auffarth K, Henze M, et al. Characteristics of grey wastewater[J]. Urban Water, 2002, 4(1): 85-104.
[17] Oteng-Peprah M, Acheampong M A, DeVries N K. Greywater characteristics, treatment systems, reuse strategies and user perception—a review[J]. Water, Air, & Soil Pollution, 2018, 229(8): 255.
[18] Halalsheh M, Dalahmeh S, Sayed M, et al. Grey water characteristics and treatment options for rural areas in Jordan[J]. Bioresource Technology, 2008, 99(14): 6635-6641.
[19] Edokpayi J N, Odiyo J O, Durowoju O S. Impact of wastewater on surface water quality in developing countries: A case study of South Africa[J]. Water Quality, 2017, 10: 66561.
[20] World Health Organization (WHO). WHO guidelines for the safe use of wasterwater excreta and greywater[M]. World Health Organization, 2006.
[21] Benami M, Gillor O, Gross A. Potential health and environmental risks associated with onsite greywater reuse: A Review[J]. Built Environment, 2016, 42(2): 212-229.
[22] Priac A, Morin-Crini N, Druart C, et al. Alkylphenol and alkylphenol polyethoxylates in water and wastewater: A review of options for their elimination[J]. Arabian Journal of Chemistry, 2017, 10(8): 4511-4523.
[23] El-Jawaher B D. The effects of 4-nonylphenol contamination on livers of Tilapia fish (Oreochromus spilurs) in Jeddah[J]. Biological Research, 2012, 45(1): 15.
[24] WHO. Guidelines for the safe use of wastewater, excreta and greywater: Policy and regulatory aspects[M]//Guidelines for the safe use of wastewater, excreta and greywater: wastewater and excreta use in aquaculture. 2006.
[25] WHO. Guidelines for the safe use of wastewater, excreta and greywater: Excreta and greywater use in agriculture[M]//Guidelines for the safe use of wastewater, excreta and greywater: wastewater and excreta use in aquaculture. 2006.
[26] Sweeting J E N, Wayne S L. A shifting tide: Environmental challenges and cruise industry responses[M]. CABI, 2006.
[27] Svaetichin I, Inkinen T. Port waste management in the Baltic Sea area: A four port study on the legal requirements, processes and collaboration[J]. Sustainability, 2017, 9(5): 699.
[28] Kotrikla A M, Zavantias A, Kaloupi M. Waste generation and management onboard a cruise ship: A case study[J]. Ocean & Coastal Management, 2021, 212: 105850.
[29] Copeland C. Cruise ship pollution: Background, laws and regulations, and key issues[C]//CRS Report for Congress. 2008: 1-30.
[30] Chen R, Liu C, Xue Q, et al. Research on fine ship sewage generation inventory marine pollution bulletin based on AIS data and its application in the Yangtze River[J]. Water, 2022, 14(19): 3109.
[31] Ytreberg E, Eriksson M, Maljutenko I, et al. Environmental impacts of grey water discharge from ships in the Baltic Sea[J]. Marine Pollution Bulletin, 2020, 152: 110891.
[32] Jalkanen J P, Johansson L, Wilewska-Bien M, et al. Modelling of discharges from Baltic Sea shipping[J]. Ocean Science, 2021, 17(3): 699-728.
[33] Parks M, Ahmasuk A, Compagnoni B, et al. Quantifying and mitigating three major vessel waste streams in the northern Bering Sea[J]. Marine Policy, 2019, 106: 103530.
[34] Kersh J, James C A, Gough H L. Impacts of high-strength boat waste on activated sludge processes[J]. Journal of Environmental Engineering, 2020, 146(5): 04020023.
[35] Chen Q, Wu W, Guo Y, et al. Environmental impact, treatment technology and monitoring system of ship domestic sewage: A review[J]. Science of the Total Environment, 2022, 811: 151410.
[36] Loehr L C, Beegle-Krause C J, George K, et al. The significance of dilution in evaluating possible impacts of wastewater discharges from large cruise ships[J]. Marine Pollution Bulletin, 2006, 52(6): 681-688.
[37] Cai Y, Zaidi A A, Sun P, et al. Effect of volume loading rate and C/N on ship domestic sewage treatment by two membrane bioreactors[J]. Periodica Polytechnica Chemical Engineering, 2020, 64(3): 328-339.
[38] Sharma M K, Kazmi A A. Anaerobic onsite treatment of black water using filter-based packaged system as an alternative of conventional septic tank[J]. Ecological Engineering, 2015, 75: 457-461.
[39] Tang J, Wang X C, Hu Y, et al. Nutrients removal performance and sludge properties using anaerobic fermentation slurry from food waste as an external carbon source for wastewater treatment[J]. Bioresource Technology, 2019, 271: 125-135.
[40] Jung J H, Yoon Y N, Lee S K, et al. Nitrogen removal characteristic of excreta wastewater using SBR and MBR processes[J]. Journal of Environmental Science International, 2015, 24(11): 1485-1491.
[41] Huhta H K, Rytkönen J, Sassi J. Estimated nutrient load from waste waters originating from ships in the Baltic Sea area[J]. VTT Tiedotteita, 2007, 2370: 12.
[42] Zhang L, Zhong M, Li X, et al. River bacterial community structure and co-occurrence patterns under the influence of different domestic sewage types[J]. Journal of Environmental Management, 2020, 266: 110590.
[43] Sharma S, Chatterjee S. Microplastic pollution, a threat to marine ecosystem and human health: a short review[J]. Environmental Science and Pollution Research, 2017, 24: 21530-21547.
[44] Shimofuruya H, Kunieda Y, Kamada M, et al. Flocculation and sedimentation of suspended solids by the preparation derived from the microorganism[J]. Pharmaceutical Chemistry Journal, 2016, 16(16): 15-20.
[45] Song X, Luo W, Hai F I, et al. Resource recovery from wastewater by anaerobic membrane bioreactors: Opportunities and challenges[J]. Bioresource Technology, 2018, 270: 669-677.
[46] Meng F, Zhang S, Oh Y, et al. Fouling in membrane bioreactors: An updated review[J]. Water Research, 2017, 114: 151-180.
[47] Verdugo E M, Gifford M, Glover C, et al. Controlling disinfection byproducts from treated wastewater using adsorption with granular activated carbon: impact of pre-ozonation and pre-chlorination[J]. Water Research X, 2020, 9: 100068.
[48] Ganiyu S O, Martinez-Huitle C A, Rodrigo M A. Renewable energies driven electrochemical wastewater/soil decontamination technologies: A critical review of fundamental concepts and applications[J]. Applied Catalysis B: Environmental, 2020, 270: 118857.
[49] 船讯网. 船舶海运数据库[DB/OL].
[2022-07-05] https://www.shipxy.com/.
[50] Shu Y, Wang X, Huang Z, et al. Estimating spatiotemporal distribution of wastewater generated by ships in coastal areas[J]. Ocean & Coastal Management, 2022, 222: 106133.
[51] AIDA. AIDA Cares - 2019 sustainability report[EB/OL]. 2019
[2022-11-05]. https:// www.aida.com/v10/fileadmin/user_upload_v8/AIDA_Cares/201117_AIDA_Cares_2019_Sustainability_Report. pdf.
[52] Seabourn. Sustainability report[EB/OL]. 2018
[2022-11-05]. https://www.seabour n.com/en_US/our-co mpany/sustainability.html.
[53] Corporation&PLC, C. Sustainable from ship shore[EB/OL]. 2018
[2022-11-05]. https://carnival-sustainability-2021.nyc3.digitaloceanspaces.com/assets/content/pdf/ 2018_Carnival_Sustainability_Report.pdf.
[54] Vicente-Cera I, Acevedo-Merino A, López-Ramírez J A, et al. Use of AIS data for the environmental characterization of world cruise ship traffic[J]. International Journal of Sustainable Transportation, 2020, 14(6): 465-474.
[55] Caribbean, R. 2014 Sustainability report[EB/OL]. 2014
[2022-11-05]. http://www. royalcaribbeanincentives.com/content/uploads/2014-RCL-Sustainability-Report.pdf.
[56] EPA. Cruise ship discharge assessment report[EB/OL]. 2009
[2022-11-15]. https:// nepis.epa.gov/Exe/ZyPDF.cgi/P1002SVS.PDF?Dockey=P1002SVS.PDF.
[57] Butt N. The impact of cruise ship generated waste on home ports and ports of call: A study of Southampton[J]. Marine Policy, 2007, 31(5): 591-598.
[58] EPA. Graywater discharges from vessels[EB/OL].
[2022-12-05] https://www3. epa.gov/npdes/pubs/vgp_graywater.pdf.
[59] 搜航网. 港口百科-中国-深圳港 SHENZHEN[EB/OL].
[2022-10-22]. https://www. sofreight.com/ports/cn/cnszx.
[60] 陈仁丽, 王宜强, 刘柏静,等. 基于GIS和AIS的渤海海上船舶活动时空特征分析[J]. 地理科学进展, 2020, 39(7): 10.
[61] Shi K, Weng J. Impacts of the COVID-19 epidemic on merchant ship activity and pollution emissions in Shanghai port waters[J]. Science of the Total Environment, 2021, 790(1):148198.
[62] 马广文. 交通大辞典[M]. 上海交通大学出版社,2005.
[63] 中商情报网. 2019年中国原油进口量为50572万吨同比增长9.5%[EB/OL]. (2020-03-06)
[2023-03-30]. https://baijiahao.baidu.com/s?id=1660379383580986106&wfr= spider&for=pc&qq-pf-to=pcqq.c2c.
[64] 前瞻产业研究院. 2022年1-12月中国原油行业产量规模及进口数据统计[EB/OL]. (2023-03-06)
[2023-03-30]. https://bg.qianzhan.com/report/detail/459/230306-29c10 97b.html.
[65] 深圳市规划和自然资源局. 依法休渔,利国利民——南山区扎实做好2022年伏季休渔工作[EB/OL]. (2022-05-05)
[2023-02-12]. http://pnr.sz.gov.cn/gkmlpt/ content/9/9752/mpost_9752081.html#4296.
[66] 王雪薇. 台风“天鸽”明夜来袭珠三角粤北将有局部大暴雨[EB/OL]. (2017-08-21)
[2023-01-22]. http://www.cnr.cn/gd/gdtt/20170821/t20170821_523909965.shtml? from=group message, 2017-08-21.
[67] 阳扬 .2017年广东天气气候特征台风影响为近50年来之最[EB/OL]. (2018-01-03)
[2023-01-22]. http://news.ycwb.com/2018-01/03/content_ 25848936.htm.
[68] 方圆震. 国家防总启动防汛防台风Ⅲ级应急响应全力防御第14号台风“帕卡”[EB/OL]. (2017-08-27)
[2023-01-22]. http://www.gov.cn/xinwen/2017-08/27/ content_5220747.htm.
[69] 周晶晶. 第14号台风帕卡广东台山登陆累计雨量将超天鸽[EB/OL]. (2017-08-28)
[2023-01-22]. https://news.china.com/domesticgd/10000159/20170828/31208714.html.
[70] Jin T, Yin X G, Xu J, et al. Air pollutants emission inventory from commercial ships of Tianjin Harbor[J]. Marine Environmental Science, 2009, 6: 623-625.
[71] Xing H, Duan S L, Huang L Z, et al. AIS data-based estimation of emissions from sea-going ships in Bohai Sea areas[J]. China Environmental Science, 2016, 36(3): 953-960.
[72] Chen D, Zhao Y, Nelson P, et al. Estimating ship emissions based on AIS data for port of Tianjin, China[J]. Atmospheric Environment, 2016, 145: 10-18.
[73] Zhang S, Zhang H. Anthropogenic impact on long-term riverine CODMn, BOD, and nutrient flux variation in the Pearl River Delta[J]. Science of the Total Environment, 2023, 859: 160197.
[74] Shuwang X, Zhang G, Li D, et al. Spatial and temporal changes in the assembly mechanism and co-occurrence network of the chromophytic phytoplankton communities in coastal ecosystems under anthropogenic influences[J]. Science of the Total Environment, 2023, 877: 162831.
[75] Rii Y M, Karl D M, Church M J. Temporal and vertical variability in picophytoplankton primary productivity in the North Pacific Subtropical Gyre[J]. Marine Ecology Progress Series, 2016, 562: 1-18.
[76] 广东省人民政府. 广东启动十项行动治理珠江口邻近海域到2025年珠江口水质优良面积将达73%[EB/OL]. (2022-08-19)
[2023-02-20]. http://www.gd.gov.cn/ gdywdt/bmdt/content/post_3997401.html.
[77] 深圳市水务局. 2021年深圳市水质净化厂运行情况[EB/OL]. (2022-04-08)
[2023-02-19]. http://swj.sz.gov.cn/gkmlpt/content/9/9685/mpost_9685822.html#22709.
[78] 丁侃. 日处理污水22.5万吨, 深圳福永水质净化厂顺利完成竣工验收[EB/OL]. (2023-01-12)
[2023-02-19]. https://baijiahao.baidu.com/s?id=1754829383944162809 &wfr=spider&for=pc.
[79] 深圳市国资委. 环水固戍水质净化厂二期项目入围菲迪克全球工程项目奖[EB/OL]. (2022-08-09)
[2023-02-19]. http://www.sz.gov.cn/szzt2010/wgkzl/glgk/ jgxxgk/gyqyyy/content/mpost_10008350.html.
[80] He H, Chen Y, Li X, et al. Influence of salinity on microorganisms in activated sludge processes: a review[J]. International Biodeterioration & Biodegradation, 2017, 119: 520-527.
[81] Sun X, Sun Y, Wang H, et al. Experimental study on shortcut nitrification of sewage from flushing toilet with seawater[C]//2009 International Conference on Environmental Science and Information Application Technology. IEEE, 2009, 2: 273-276.
[82] Jiang L, Chen X, Qin M, et al. On-board saline black water treatment by bioaugmentation original marine bacteria with Pseudoalteromonas sp. SCSE709-6 and the associated microbial community[J]. Bioresource Technology, 2019, 273: 496-505.
[83] Wilson L P, Loetscher L H, Sharvelle S E, et al. Microbial community acclimation enhances waste hydrolysis rates under elevated ammonia and salinity conditions[J]. Bioresource Technology, 2013, 146: 15-22.
[84] Di Bella G, Di Prima N, Di Trapani D, et al. Performance of membrane bioreactor (MBR) systems for the treatment of shipboard slops: Assessment of hydrocarbon biodegradation and biomass activity under salinity variation[J]. Journal of Hazardous Materials, 2015, 300: 765-778.
[85] Jang D, Hwang Y, Shin H, et al. Effects of salinity on the characteristics of biomass and membrane fouling in membrane bioreactors[J]. Bioresource Technology, 2013, 141(4): 50-56.
[86] Yang Y, Shao Z, Du J, et al. Enhancement of organic matter removal in an integrated biofilm-membrane bioreactor treating high-salinity wastewater[J]. Archaea, 2018, 2018: 1-8.
[87] Vaneeckhaute C, Fazli A. Management of ship-generated food waste and sewage on the Baltic Sea: A review[J]. Waste Management, 2020, 102: 12-20.
[88] Matassa M, McEntyre C, Watson J T. Tennessee valley marina and campground wastewater characterization screening study[C]//WEFTEC 2005. Water Environment Federation, 2005: 3685-3712.
[89] Fane A, Tang C, Wang R. Membrane technology for water: Microfiltration, ultrafiltration, nanofiltration, and reverse osmosis[J]. Treatise on Water Science, 2011, 113(6): 301-335.
[90] Guilbaud J, A Massé, Y Andrès, et al. Laundry water recycling in ship by direct nanofiltration with tubular membranes[J]. Resources Conservation & Recycling, 2011, 55(2): 148-154.
[91] Wang J, Chen H. Catalytic ozonation for water and wastewater treatment: Recent advances and perspective[J]. Science of the Total Environment, 2020, 704: 135249.
[92] Plakas K V, Karabelas A J. Electro-Fenton applications in the water industry[J]. Electro-Fenton Process: New Trends and Scale-Up, 2018: 343-378.
[93] Han X, Feng J, Zhang L, et al. Micro-polluted water treatment by biological contact oxidation process: Aeration mode and bacteria community analysis[J]. Environmental Engineering Science, 2019, 36(12): 1491-1502.
[94] Zhang L, Han X, Yuan B, et al. Mechanism of purification of low-pollution river water using a modified biological contact oxidation process and artificial neural network modeling[J]. Journal of Environmental Chemical Engineering, 2021, 9(2): 104832.
[95] Chen Z, Yi Q, Wang W, et al. Research on biological contact oxidation process treating simulated ship sewage[C]//2009 International Conference on Energy and Environment Technology. IEEE, 2009, 2: 705-708.
[96] Sánchez J B, Vuono M, Dionisi D. Model-based comparison of sequencing batch reactors and continuous-flow activated sludge processes for biological wastewater treatment[J]. Computers & Chemical Engineering, 2021, 144: 107127.
[97] Chowdhury P, Viraraghavan T, Srinivasan A. Biological treatment processes for fish processing wastewater–A review[J]. Bioresource Technology, 2010, 101(2): 439-449.
[98] Lofrano G, Meriç S, Zengin G E, et al. Chemical and biological treatment technologies for leather tannery chemicals and wastewaters: A review[J]. Science of the Total Environment, 2013, 461: 265-281.
[99] Zhang Y, Jiang W L, XU R X, et al. Effect of short-term salinity shock on unacclimated activated sludge with pressurized aeration in a sequencing batch reactor[J]. Purif. Technol, 2017, 178: 200-206.
[100] Ferrer-Polonio E, Mendoza-Roca J A, Iborra-Clar A, et al. Biological treatment performance of hypersaline wastewaters with high phenols concentration from table olive packaging industry using sequencing batch reactors[J]. Journal of Industrial and Engineering Chemistry, 2016, 43: 44-52.
[101] Gao F, Zhang H, Yang F, et al. Study of an innovative anaerobic (A)/oxic (O)/anaerobic (A) bioreactor based on denitrification–anammox technology treating low C/N municipal sewage[J]. Chemical Engineering Journal, 2013, 232: 65-73.
[102] Jiang Y, Wei L, Zhang H, et al. Removal performance and microbial communities in a sequencing batch reactor treating hypersaline phenol-laden wastewater[J]. Bioresource Technology, 2016, 218: 146-152.
[103] Lu J, Ma Y, Liu Y, et al. Treatment of hypersaline wastewater by a combined neutralization–precipitation with ABR-SBR technique[J]. Desalination, 2011, 277(1-3): 321-324.
修改评论