中文版 | English
题名

土基沸石材料合成及修复重金属污染水体的性能与机制

其他题名
SOIL-BASED ZEOLITE MATERIALS FOR HEAVY METAL-POLLUTED WATER REMEDIATION
姓名
姓名拼音
CHU Zheting
学号
12132193
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
08 工学
导师
陈洪
导师单位
环境科学与工程学院
论文答辩日期
2023-05-21
论文提交日期
2023-06-25
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

  随着城市化与工业化发展进程加快,重金属已成为水污染的重要来源,对自然环境和人类健康构成严重威胁。为了解决这个问题,开发具有优异重金属吸附性能的新型吸附材料至关重要。沸石由于其独特的孔隙结构和较大的比表面积,在重金属污染水体修复中备受关注。然而,沸石的高合成成本阻碍了其在水处理工业中的大规模应用。本文提出了一种“以土治水”策略,即利用储量丰富、价格低廉,富含硅铝元素的黄土和红壤作为沸石合成的原料,以降低沸石生产成本。通过简单的水热法成功合成了八种低硅铝比(硅铝比为1~2)的土基沸石,包括黄土基ANA型沸石(Loess-ANA)、黄土基CAN型沸石(Loess-CAN)、红壤基ANA型沸石(RE-ANA)、红壤基CAN型沸石(RE-CAN)、红壤基FAU型沸石(RE-FAU)、红壤基JBW沸石(RE-JBW)、红壤基LTA型沸石(RE-LTA)和红壤基SOD型沸石(RE-SOD),并对八种土基沸石进行了形貌、物相、结构等表征。吸附实验结果表明,土基沸石对多种典型重金属具有良好的吸附性能,吸附机理包括离子交换、静电吸引和共沉淀。密度泛函理论(DFT)计算表明,从热力学的角度来看,大部分有效果的重金属离子的吸附过程可以自发进行。

  此外,本文进一步研究了八种土基沸石在多种复杂成分水体中,对重金属离子的选择性吸附性能。实验结果表明,八种土基沸石对Pb2+污染的去离子水、自来水、河水和海水,均有较好的去除效果,而对Cr2O72-离子的去除,几乎没有效果。在海水修复实验中,我们还探讨了pH值对典型重金属选择性吸附效果的影响。在两种重金属阴离子(AsO2-, Cr2O72-)共污染的海水中,当pH=5时,所有类型的土基沸石对Cr2O72-均无去除效果; 当pH=8时,除了RE-LTA,其它七种沸石材料对Cr2O72-有轻微去除效果。此外,海水中AsO2-的去除效果几乎不受pH条件的影响。

  总体而言,本文基于“以土治水”策略,开发了系列土基沸石材料,为典型沸石材料在重金属污染水体修复的工程应用,提出了系统的吸附效果评估数据;为未来基于“以土治水”策略的土基沸石材料合成,及其实际工程应用,提供了科学参考依据。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2023-06
参考文献列表

[1] Shrestha N K, Du X, Wang J. Assessing climate change impacts on fresh water resources of the Athabasca River Basin, Canada[J]. Science of the Total Environment, 2017, 601: 425-440.
[2] Bolisetty S, Peydayesh M, Mezzenga R. Sustainable technologies for water purification from heavy metals: review and analysis[J]. Chemical Society Reviews, 2019, 48(2): 463-487.
[3] Fei Y, Hu Y H. Design, synthesis, and performance of adsorbents for heavy metal removal from wastewater: a review[J]. Journal of Materials Chemistry A, 2022, 10(3): 1047-1085.
[4] 张玲. 水体重金属污染的现状及生态效应[J]. 江西化工, 2017, 5(1): 138-139.
[5] Chai W S, Cheun J Y, Kumar P S, et al. A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application[J]. Journal of Cleaner Production, 2021, 296: 126589.
[6] Stuckey J W, Schaefer M V., Kocar B D, et al. Arsenic release metabolically limited to permanently water-saturated soil in Mekong Delta[J]. Nature Geoscience, 2016, 9(1): 70-76.
[7] Palansooriya K N, Shaheen S M, Chen S S, et al. Soil amendments for immobilization of potentially toxic elements in contaminated soils: a critical review[J]. Environment International, 2020, 134: 105046.
[8] Xu J, Liu C, Hsu P C, et al. Remediation of heavy metal contaminated soil by asymmetrical alternating current electrochemistry[J]. Nature Communications, 2019, 10(1): 1-8.
[9] Yang S, Qu Y, Ma J, et al. Comparison of the concentrations, sources, and distributions of heavy metal(loid)s in agricultural soils of two provinces in the Yangtze River Delta, China[J]. Environmental Pollution, 2020, 264: 114688.
[10] Alloway B J. Heavy metals in soils: trace metals and metalloids in soils and their bioavailability[M]. Springer, 2012.
[11] 王海东,方凤满,谢宏芳. 中国水体重金属污染研究现状与展望[J]. 广东微量元素科学, 2010, 1: 14-18.
[12] 贾广宁. 重金属污染的危害与防治[J]. 有色矿冶, 2004, 20(1): 39-42.
[13] 魏思翔. 水体重金属污染的危害与防治对策[J]. 化学工程与装备, 2022, 2: 240-242.
[14] 陈愚,任久长,蔡晓明. 镉对沉水植物硝酸还原酶和超氧化物歧化酶活性的影响[J]. 环境科学学报, 1998, 18(3): 313-317.
[15] 浩云涛,李建宏,潘欣,马宇翔,王雪锋. 椭圆小球藻(Chlorella ellipsoidea)对4种重金属的耐受性及富集[J]. 湖泊科学, 2001, 13(2): 158-162.
[16] 李洪利,高晓田. 水体常见几种重金属污染物及对水生生物的危害[J]. 河北渔业, 2007, 3: 1-4.
[17] Uddin M K. A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade[J]. Chemical Engineering Journal, 2017, 308: 438-462.
[18] Gu S, Kang X, Wang L, et al. Clay mineral adsorbents for heavy metal removal from wastewater: a review[J]. Environmental Chemistry Letters, 2019, 17(2): 629-654.
[19] Chen Y, Wang J, Shi G, et al. Human health risk assessment of lead pollution in atmospheric deposition in Baoshan District, Shanghai[J]. Environmental Geochemistry and Health, 2011, 33(6): 515-523.
[20] Feng X, Qiu G. Mercury pollution in Guizhou, Southwestern China - An overview[J]. Science of the Total Environment, 2008, 400(1-3): 227-237.
[21] Xiong Z T, Wang H. Copper toxicity and bioaccumulation in Chinese cabbage (Brassica pekinensis Rupr.)[J]. Environmental Toxicology, 2005, 20(2): 188-194.
[22] Nordberg G F. Historical perspectives on cadmium toxicology[J]. Toxicology and Applied Pharmacology, 2009, 238(3): 192-200.
[23] Wang Z xing, Chen J qun, Chai L yuan, et al. Environmental impact and site-specific human health risks of chromium in the vicinity of a ferro-alloy manufactory, China[J]. Journal of Hazardous Materials, 2011, 190(1-3): 980-985.
[24] He M, Wang X, Wu F, et al. Antimony pollution in China[J]. Science of the Total Environment, 2012, 421: 41-50.
[25] Jyoti D, Sinha R, Faggio C. Advances in biological methods for the sequestration of heavy metals from water bodies: a review[J]. Environmental Toxicology and Pharmacology, 2022, 94: 103927.
[26] 周启艳,李国葱,唐植成. 我国水体重金属污染现状与治理方法研究[J]. 轻工科技, 2013, 4: 98-99.
[27] Santoro C, Arbizzani C, Erable B, et al. Microbial fuel cells: from fundamentals to applications. A review[J]. Journal of Power Sources, 2017, 356: 225-244.
[28] Schröder U. A basic introduction into microbial fuel cells and microbial electrocatalysis[J]. ChemTexts, 2018, 4(4): 1-6.
[29] Sumisha A, Haribabu K. Nanostructured polypyrrole as cathode catalyst for Fe(III) removal in single chamber microbial fuel cell[J]. Biotechnology and Bioprocess Engineering, 2020, 25(1): 78-85.
[30] Jamil N, Kumar P, Batool R. Soil microenvironment for bioremediation and polymer production[M]. John Wiley & Sons, 2020.
[31] Kiran M G, Pakshirajan K, Das G. Heavy metal removal from multicomponent system by sulfate reducing bacteria: mechanism and cell surface characterization[J]. Journal of Hazardous Materials, 2017, 324: 62-70.
[32] Xu Y N, Chen Y. Advances in heavy metal removal by sulfate-reducing bacteria[J]. Water Science and Technology, 2020, 81(9): 1797-1827.
[33] Radhika V, Subramanian S, Natarajan K A. Bioremediation of zinc using Desulfotomaculum nigrificans: bioprecipitation and characterization studies[J]. Water Research, 2006, 40(19): 3628-3636.
[34] Akinpelu E A, Ntwampe S K O, Fosso-Kankeu E, et al. Performance of microbial community dominated by Bacillus spp. in acid mine drainage remediation systems: a focus on the high removal efficiency of SO42-, Al3+, Cd2+, Cu2+, Mn2+, Pb2+, and Sr2+[J]. Heliyon, 2021, 7(6): e07241.
[35] Mehrotra T, Dev S, Banerjee A, et al. Use of immobilized bacteria for environmental bioremediation: a review[J]. Journal of Environmental Chemical Engineering, 2021, 9(5): 105920.
[36] O’Connell D W, Birkinshaw C, O’Dwyer T F. Heavy metal adsorbents prepared from the modification of cellulose: a review[J]. Bioresource Technology, 2008, 99(15): 6709-6724.
[37] Hunsom M, Pruksathorn K, Damronglerd S, et al. Electrochemical treatment of heavy metals (Cu2+, Cr6+, Ni2+) from industrial effluent and modeling of copper reduction[J]. Water Research, 2005, 39(4): 610-616.
[38] Zhang L, Wu Y, Qu X, et al. Mechanism of combination membrane and electro-winning process on treatment and remediation of Cu2+ polluted water body[J]. Journal of Environmental Sciences, 2009, 21(6): 764-769.
[39] Aziz A, Agamuthu P, Fauziah S H. Removal of bisphenol A and 2,4-Di-tert-butylphenol from landfill leachate using plant-based coagulant[J]. Waste Management and Research, 2018, 36(10): 975-984.
[40] Crini G, Lichtfouse E. Advantages and disadvantages of techniques used for wastewater treatment[J]. Environmental Chemistry Letters, 2019, 17(1): 145-155.
[41] Bobade V, Eshtiaghi N, Eshtiagi N. Heavy metals removal from wastewater by adsorption process: a review[C]. Asia Pacific Confederation of Chemical Engineering Congress, 2015.
[42] Otunola B O, Ololade O O. A review on the application of clay minerals as heavy metal adsorbents for remediation purposes[J]. Environmental Technology and Innovation, 2020, 18: 100692.
[43] Sit P S. Studying molecular-scale protein-surface interactions in biomaterials[M]. Springer, 2013.
[44] Mariana M, Abdul A K, Mistar E M, et al. Recent advances in activated carbon modification techniques for enhanced heavy metal adsorption[J]. Journal of Water Process Engineering, 2021, 43: 102221.
[45] Ahmad S Z N, Wan Salleh W N, Ismail A F, et al. Adsorptive removal of heavy metal ions using graphene-based nanomaterials: toxicity, roles of functional groups and mechanisms[J]. Chemosphere, 2020, 248: 126008.
[46] Pal D B, Singh A, Jha J M, et al. Low-cost biochar adsorbents prepared from date and delonix regia seeds for heavy metal sorption[J]. Bioresource Technology, 2021, 339: 125606.
[47] Deng G, Wong W T, Huang M, et al. Self-healing properties of hydrogels based on natural polymers[M]. Elsevier, 2019.
[48] Duan C, Ma T, Wang J, et al. Removal of heavy metals from aqueous solution using carbon-based adsorbents: a review[J]. Journal of Water Process Engineering, 2020, 37(130): 101339.
[49] Zou J, Liu X, Zhang D, et al. Adsorption of three bivalent metals by four chemical distinct microplastics[J]. Chemosphere, 2020, 248: 126064.
[50] Saifuddin M, Bae J, Kim K S. Role of Fe, Na and Al in Fe-Zeolite-A for adsorption and desorption of phosphate from aqueous solution[J]. Water Research, 2019, 158: 246-256.
[51] Caputo D, De Gennaro B, Aprea P, et al. Data processing of cation exchange equilibria in zeolites: a modified approach[J]. Studies in Surface Science and Catalysis, 2005, 155: 129-140.
[52] Guida S, Potter C, Jefferson B, et al. Preparation and evaluation of zeolites for ammonium removal from municipal wastewater through ion exchange process[J]. Scientific Reports, 2020, 10(1): 1-11.
[53] Daochalermwong A, Chanka N, Songsrirote K, et al. Removal of heavy metal ions using modified celluloses prepared from pineapple leaf fiber[J]. ACS Omega, 2020, 5(10): 5285-5296.
[54] Liu J, Cheng W, Yang X, et al. Modification of biochar with silicon by one-step sintering and understanding of adsorption mechanism on copper ions[J]. Science of the Total Environment, 2020, 704: 135252.
[55] Chen Q, Zheng J, Wen L, et al. A multi-functional-group modified cellulose for enhanced heavy metal cadmium adsorption: performance and quantum chemical mechanism[J]. Chemosphere, 2019, 224: 509-518.
[56] Barran P, Cooper H, Eyers C. Protein Structure[J]. Proteomics, 2015, 15(16): 2731-2732.
[57] Zhang Y, Jiang D, Wang Y, et al. Core-shell structured magnetic γ-Fe2O3@PANI nanocomposites for enhanced As(V) adsorption[J]. Industrial and Engineering Chemistry Research, 2020, 59(16): 7554-7563.
[58] Ahmad M, Usman A R A, Rafique M I, et al. Engineered biochar composites with zeolite, silica, and nano-zerovalent iron for the efficient scavenging of chlortetracycline from aqueous solutions[J]. Environmental Science and Pollution Research, 2019, 26(15): 15136-15152.
[59] Xu Y, Liang X, Xu Y, et al. Remediation of heavy metal-polluted agricultural soils using clay minerals: a review[J]. Pedosphere, 2017, 27(2): 193-204.
[60] Liu J, Zhu R, Ma L, et al. Adsorption of phosphate and cadmium on iron(oxyhydr)oxides: a comparative study on ferrihydrite, goethite, and hematite[J]. Geoderma, 2021, 383: 114799.
[61] Li X, Bi E. The impacts of Cu(II) complexation on gatifloxacin adsorption onto goethite and hematite[J]. Journal of Environmental Quality, 2020, 49(1): 50-60.
[62] Su B, Lin J, Owens G, et al. Impact of green synthesized iron oxide nanoparticles on the distribution and transformation of As species in contaminated soil[J]. Environmental Pollution, 2020, 258: 113668.
[63] Ramos-Guivar J A, Taipe K, Schettino M A, et al. Improved removal capacity and equilibrium time of maghemite nanoparticles growth in zeolite type 5A for Pb(II) adsorption[J]. Nanomaterials, 2020, 10(9): 1-19.
[64] El-Dib F I, Mohamed D E, El-Shamy O A A, et al. Study the adsorption properties of magnetite nanoparticles in the presence of different synthesized surfactants for heavy metal ions removal[J]. Egyptian Journal of Petroleum, 2020, 29(1): 1-7.
[65] Ata S, Tabassum A, Bibi I, et al. Lead remediation using smart materials. A review[J]. Zeitschrift fur Physikalische Chemie, 2019, 233(10): 1377-1409.
[66] Cornell R M, Schwertmann U. The iron oxides: structure, properties, reactions, occurrences, and uses[M]. John Wiley & Sons, 2003.
[67] Yang J, Wang S, Xu N, et al. Synthesis of montmorillonite-supported nano-zero-valent iron via green tea extract: enhanced transport and application for hexavalent chromium removal from water and soil[J]. Journal of Hazardous Materials, 2021, 419: 126461.
[68] Liu S, Gao H, Cheng R, et al. Study on influencing factors and mechanism of removal of Cr(VI) from soil suspended liquid by bentonite-supported nanoscale zero-valent iron[J]. Scientific Reports, 2020, 10(1): 1-12.
[69] Amin R M, Mahmoud R K, Gadelhak Y, et al. Gamma irradiated green synthesized zero valent iron nanoparticles as promising antibacterial agents and heavy metal nano-adsorbents[J]. Environmental Nanotechnology, Monitoring & Management, 2021, 16: 100461.
[70] Ali A, Guo D, Arockiam Jeyasundar P G S, et al. Application of wood biochar in polluted soils stabilized the toxic metals and enhanced wheat (Triticum aestivum) growth and soil enzymatic activity[J]. Ecotoxicology and Environmental Safety, 2019, 184: 109635.
[71] Wang Z, Shen R, Ji S, et al. Effects of biochar derived from sewage sludge and sewage sludge/cotton stalks on the immobilization and phytoavailability of Pb, Cu, and Zn in sandy loam soil[J]. Journal of Hazardous Materials, 2021, 419: 126468.
[72] Mujtaba Munir M A, Yousaf B, Ali M U, et al. In situ synthesis of micro-plastics embedded sewage-sludge co-pyrolyzed biochar: implications for the remediation of Cr and Pb availability and enzymatic activities from the contaminated soil[J]. Journal of Cleaner Production, 2021, 302: 127005.
[73] Gao R, Hu H, Fu Q, et al. Remediation of Pb, Cd, and Cu contaminated soil by co-pyrolysis biochar derived from rape straw and orthophosphate: speciation transformation, risk evaluation and mechanism inquiry[J]. Science of the Total Environment, 2020, 730: 139119.
[74] Inyang M I, Gao B, Yao Y, et al. A review of biochar as a low-cost adsorbent for aqueous heavy metal removal[J]. Critical Reviews in Environmental Science and Technology, 2016, 46(4): 406-433.
[75] Wang X, Guo Z, Hu Z, et al. Recent advances in biochar application for water and wastewater treatment: a review[J]. PeerJ, 2020, 8: e9164.
[76] Dai L, Lu Q, Zhou H, et al. Tuning oxygenated functional groups on biochar for water pollution control: a critical review[J]. Journal of Hazardous Materials, 2021, 420: 126547.
[77] Li Y, Yu J. New stories of zeolite structures: their descriptions, determinations, predictions, and evaluations[J]. Chemical Reviews, 2014, 114(14): 7268-7316.
[78] Chen L H, Sun M H, Wang Z, et al. Hierarchically structured zeolites: from design to application[J]. Chemical Reviews, 2020, 120(20): 11194-11294.
[79] Li Y, Sun H, Wang Y, et al. Green routes for synthesis of zeolites[J]. Chemical Reviews, 2015, 27(5): 503-510.
[80] Yurekli Y. Determination of adsorption characteristics of synthetic NaX nanoparticles[J]. Journal of Hazardous Materials, 2019, 378: 120743.
[81] Shen Z, Wang Y, Chen W, et al. Investigation of nitrogen pollutants transformation and its pathways along the long-distance prechlorinated raw water distribution system[J]. Chemosphere, 2020, 255: 126833.
[82] Structure Commission of the International Zeolite Association[EB].
[2023-03-03]. http://asia.iza-structure.org/IZA-SC/ftc_table.php.
[83] Yang D, Chu Z, Zheng R, et al. Remediation of Cu-polluted soil with analcime synthesized from engineering abandoned soils through green chemistry approaches[J]. Journal of Hazardous Materials, 2021, 406: 124673.
[84] Yang D, Wang R, Feng X, et al. Transferring waste red mud into ferric oxide decorated ANA-type zeolite for multiple heavy metals polluted soil remediation[J]. Journal of Hazardous Materials, 2022, 424: 127244.
[85] Zheng R, Feng X, Zou W, et al. Converting loess into zeolite for heavy metal polluted soil remediation based on “soil for soil-remediation” strategy[J]. Journal of Hazardous Materials, 2021, 412: 125199.
[86] Zhao Y, Zhang B, Zhang Y, et al. Removal of ammonium from wastewater by pure form low-silica zeolite Y synthesized from halloysite mineral[J]. Separation Science and Technology, 2010, 45(8): 1066-1075.
[87] Matito-Martos I, Martin-Calvo A, Ania C O, et al. Role of hydrogen bonding in the capture and storage of ammonia in zeolites[J]. Chemical Engineering Journal, 2020, 387: 124062.
[88] Kuwahara Y, Ohmichi T, Kamegawa T, et al. A novel conversion process for waste slag: synthesis of a hydrotalcite-like compound and zeolite from blast furnace slag and evaluation of adsorption capacities[J]. Journal of Materials Chemistry, 2010, 20(24): 5052-5062.
[89] Pizarro C, Escudey M, Caroca E, et al. Evaluation of zeolite, nanomagnetite, and nanomagnetite-zeolite composite materials as arsenic(V) adsorbents in hydroponic tomato cultures[J]. Science of the Total Environment, 2021, 751: 141623.
[90] Liu G hua, Wang Y, Zhang Y, et al. Modification of natural zeolite and its application to advanced recovery of organic matter from an ultra-short-SRT activated sludge process effluent[J]. Science of the Total Environment, 2019, 652: 1366-1374.
[91] Ma Y, Cheng L, Zhang D, et al. Stabilization of Pb, Cd, and Zn in soil by modified-zeolite: mechanisms and evaluation of effectiveness[J]. Science of the Total Environment, 2021, 814: 152746.
[92] Chai Y, Dai W, Wu G, et al. Confinement in a zeolite and zeolite catalysis[J]. Accounts of Chemical Research, 2021, 54(13): 2894-2904.
[93] Burtch N C, Walton I M, Hungerford J T, et al. In situ visualization of loading-dependent water effects in a stable metal–organic framework[J]. Nature Chemistry, 2020, 12(2): 186-192.
[94] Bols M L, Devos J, Rhoda H M, et al. Selective formation of α-Fe(II) sites on Fe-zeolites through one-pot synthesis[J]. Journal of the American Chemical Society, 2021, 143(39): 16243-16255.
[95] Novembre D, Pace C, Gimeno D. Syntheses and characterization of zeolites K-F and W type using a diatomite precursor[J]. Mineralogical Magazine, 2014, 78(5): 1209-1225.
[96] Khamkeaw A, Phisalaphong M, Jongsomjit B, et al. Synthesis of mesoporous MFI zeolite via bacterial cellulose-derived carbon templating for fast adsorption of formaldehyde[J]. Journal of Hazardous Materials, 2020, 384: 121161.
[97] Goyal N, Bulasara V K, Barman S. Removal of emerging contaminants daidzein and coumestrol from water by nanozeolite beta modified with tetrasubstituted ammonium cation[J]. Journal of Hazardous Materials, 2018, 344: 417-430.
[98] Pour A Arefi, Sharifnia S, Salehi R Neishabori, et al. Adsorption separation of CO2/CH4 on the synthesized NaA zeolite shaped with montmorillonite clay in natural gas purification process[J]. Journal of Natural Gas Science and Engineering, 2016, 36: 630-643.
[99] Johnson E B G, Arshad S E. Hydrothermally synthesized zeolites based on kaolinite: a review[J]. Applied Clay Science, 2014, 97-98: 215-221.
[100] Cejka J, van Bekkum H, Corma A, et al. Introduction to zeolite molecular sieves[M]. Elsevier, 2007.
[101] Szostak R. Molecular sieves[M]. Kluwer Academic Publishers, 1998.
[102] Caballero I, Colina F G, Costa J. Synthesis of X-type zeolite from dealuminated kaolin by reaction with sulfuric acid at high temperature[J]. Industrial and Engineering Chemistry Research, 2007, 46(4): 1029-1038.
[103] Maldonado M, Oleksiak M D, Chinta S, et al. Controlling crystal polymorphism in organic-free synthesis of na-zeolites[J]. Journal of the American Chemical Society, 2013, 135(7): 2641-2652.
[104] Ayele L, Pérez-Pariente J, Chebude Y, et al. Synthesis of zeolite A from Ethiopian kaolin[J]. Microporous and Mesoporous Materials, 2015, 215: 29-36.
[105] 孙晓勃, 杜艳泽, 秦波, 等. “蒸汽相转化”法制备纳米多级Beta沸石催化材料[J]. 无机材料学报, 2018, 33(1): 27-34.
[106] Zhang H, Zhang H, Wang P, et al. Organic template-free synthesis of zeolite mordenite nanocrystals through exotic seed-assisted conversion[J]. RSC Advances, 2016, 6(53): 47623-47631.
[107] Park S H, Yang J K, Kim J H, et al. Eco-friendly synthesis of zeolite A from synthesis cakes prepared by removing the liquid phase of aged synthesis mixtures[J]. Green Chemistry, 2015, 17(6): 3571-3578.
[108] Lechert H. The pH value and its importance for the crystallization of zeolites[J]. Microporous and Mesoporous Materials, 1998, 4(22): 519-523.
[109] Caputo D, De Gennaro B, Liguori B, et al. A preliminary investigation on kinetics of zeolite A crystallization using optical diagnostics[J]. Materials Chemistry and Physics, 2000, 66(2): 120-125.
[110] Osacký M, Pálková H, Hudec P, et al. Effect of alkaline synthesis conditions on mineralogy, chemistry and surface properties of phillipsite, P and X zeolitic materials prepared from fine powdered perlite by-product[J]. Microporous and Mesoporous Materials, 2020, 294: 20-23.
[111] Cundy C S, Cox P A. The hydrothermal synthesis of zeolites: precursors, intermediates and reaction mechanism[J]. Microporous and Mesoporous Materials, 2005, 82(1-2): 1-78.
[112] Grand J, Awala H, Mintova S. Mechanism of zeolites crystal growth: new findings and open questions[J]. CrystEngComm, 2016, 18(5): 650-664.
[113] Qiu H, Xu N, Kong L, et al. Fast synthesis of thin Silicalite-1 zeolite membranes at low temperature[J]. Journal of Membrane Science, 2020, 611: 118361.
[114] Stafin G, Cezar E, Regina S, et al. Synthesis of zeolites from residual diatomite using a microwave-assisted hydrothermal method[J]. Waste Management, 2021, 126: 853-860.
[115] Chen H, Li A, Cui C, et al. AHL-mediated quorum sensing regulates the variations of microbial community and sludge properties of aerobic granular sludge under low organic loading[J]. Environment International, 2019, 130: 104946.
[116] Fang Y, Shi T, Liang X, et al. In-situ microwave hydrothermal synthesis and performance of chromium-substituted aluminophosphate zeolite coating on aluminum foil[J]. Microporous and Mesoporous Materials, 2020, 294: 109900.
[117] Bunmai K, Osakoo N, Deekamwong K, et al. Extraction of silica from cogon grass and utilization for synthesis of zeolite NaY by conventional and microwave-assisted hydrothermal methods[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 83: 152-158.
[118] Le T, Wang Q, Pan B, et al. Process regulation of microwave intensified synthesis of Y-type zeolite[J]. Microporous and Mesoporous Materials, 2019, 284: 476-485.
[119] Majdinasab A R, Manna P K, Wroczynskyj Y, et al. Cost-effective zeolite synthesis from waste glass cullet using energy efficient microwave radiation[J]. Materials Chemistry and Physics, 2019, 221: 272-287.
[120] Chen X, Meng X, Xiao F shou. Solvent-free synthesis of SAPO-5 zeolite with plate-like morphology in the presence of surfactants[J]. Chinese Journal of Catalysis, 2015, 36(6): 797-800.
[121] Liu Y, Yang X, Yan C, et al. Solvent-free synthesis of zeolite LTA monolith with hierarchically porous structure from metakaolin[J]. Materials Letters, 2019, 248: 28-31.
[122] Liu Y, Han S, Guan D, et al. Rapid green synthesis of ZSM-5 zeolite from leached illite clay[J]. Microporous and Mesoporous Materials, 2019, 280: 324-330.
[123] Garcia G, Cardenas E, Cabrera S, et al. Synthesis of zeolite Y from diatomite as silica source[J]. Microporous and Mesoporous Materials, 2016, 219: 29-37.
[124] Maia A Á B, Neves R F, Angélica Rô S, et al. Synthesis, optimisation and characterisation of the zeolite NaA using kaolin waste from the Amazon Region. Production of Zeolites KA, MgA and CaA[J]. Applied Clay Science, 2015, 108: 55-60.
[125] Meng Q, Chen H, Lin J, et al. Zeolite A synthesized from alkaline assisted pre-activated halloysite for efficient heavy metal removal in polluted river water and industrial wastewater[J]. Journal of Environmental Sciences, 2017, 56: 254-262.
[126] Qiu W, Zheng Y. Removal of lead, copper, nickel, cobalt, and zinc from water by a cancrinite-type zeolite synthesized from fly ash[J]. Chemical Engineering Journal, 2009, 145(3): 483-488.
[127] Xie W M, Zhou F P, Bi X L, et al. Accelerated crystallization of magnetic 4A-zeolite synthesized from red mud for application in removal of mixed heavy metal ions[J]. Journal of Hazardous Materials, 2018, 358: 441-449.
[128] Belviso C, Cavalcante F, Fiore S. Synthesis of zeolite from Italian coal fly ash: differences in crystallization temperature using seawater instead of distilled water[J]. Waste Management, 2010, 30(5): 839-847.
[129] Kumar M M, Jena H. Direct single-step synthesis of phase pure zeolite Na–P1, hydroxy sodalite and analcime from coal fly ash and assessment of their Cs+ and Sr2+ removal efficiencies[J]. Microporous and Mesoporous Materials, 2022, 333: 111738.
[130] Ma L, Han L, Chen S, et al. Rapid synthesis of magnetic zeolite materials from fly ash and iron-containing wastes using supercritical water for elemental mercury removal from flue gas[J]. Fuel Processing Technology, 2019, 189: 39-48.
[131] Lin Y J, Chen J C. Resourcization and valorization of waste incineration fly ash for the synthesis of zeolite and applications[J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 106549.
[132] Williams D B, Carter C B. Transmission Electron Microscopy[M]. Springer, 1996.
[133] Sathupunya M, Gulari E, Wongkasemjit S. ANA and GIS zeolite synthesis directly from alumatrane and silatrane by sol-gel process and microwave technique[J]. Journal of the European Ceramic Society, 2002, 22(13): 2305-2314.
[134] Reyes C R, Williams C D, Roberts C. Synthesis and characterisation of SOD-, CAN- and JBW-type structures by hydrothermal reaction of kaolinite at 200 ℃[J]. DYNA, 2011, 78(166): 38-47.
[135] Yang D, Chu Z, Zheng R, et al. Remediation of Cu-polluted soil with analcime synthesized from engineering abandoned soils through green chemistry approaches[J]. Journal of Hazardous Materials, 2021, 406: 124673.
[136] Paris E C, Malafatti J O D, Musetti H C, et al. Faujasite zeolite decorated with cobalt ferrite nanoparticles for improving removal and reuse in Pb2+ ions adsorption[J]. Chinese Journal of Chemical Engineering, 2020, 28(7): 1884-1890.
[137] Teng L, Jin X, Bu Y, et al. Facile and fast synthesis of cancrinite-type zeolite from coal fly ash by a novel hot stuffy route[J]. Journal of Environmental Chemical Engineering, 2022, 10(5): 108369.
[138] 国家卫生健康委员会. GB5749-2006. 生活饮用水卫生标准[S]. 北京: 中国标准出版社, 2006.
[139] 生态环境部. GB3838-2002. 地表水环境质量标准[S]. 北京: 中国标准出版社, 2002.
[140] 生态环境部. GB3097-1997. 海水水质标准[S]. 北京: 中国标准出版社, 1997.
[141] Shannon R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides[J]. Acta Crystallographica Section A, 1976, 32(5): 751-767.
[142] Ren H, Jiang J, Wu D, et al. Selective adsorption of Pb(II) and Cr(VI) by surfactant-modified and unmodified natural zeolites: a comparative study on kinetics, equilibrium, and mechanism[J]. Water, Air, & Soil Pollution, 2016, 227: 1-11.
[143] Kim D G, Nhung T T, Ko S O. Enhanced adsorption of heavy metals with biogenic manganese oxide immobilized on zeolite[J]. KSCE Journal of Civil Engineering, 2016, 20(6): 2189-2196.

所在学位评定分委会
材料与化工
国内图书分类号
X52
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544115
专题工学院_环境科学与工程学院
推荐引用方式
GB/T 7714
楚哲婷. 土基沸石材料合成及修复重金属污染水体的性能与机制[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132193-楚哲婷-环境科学与工程(5182KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[楚哲婷]的文章
百度学术
百度学术中相似的文章
[楚哲婷]的文章
必应学术
必应学术中相似的文章
[楚哲婷]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。