[1] CHEN Q, SCHOENMAKER W, WENG S H, et al. A fast time-domain EM-TCAD coupled simulation framework via matrix exponential[C]//2012 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). 2012: 422-428.
[2] CHEN Q, SCHOENMAKER W. A new tightly-coupled transient electro-thermal simulation method for power electronics[C/OL]//2016 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). 2016: 1-7. DOI: 10.1145/2966986.2966993.
[3] 王也, 覃焕耀, 高洪民, 等. 基于ADS 的2.4GHz 射频通信系统设计与仿真分析[J]. 微波学报, 2020, 36: 218-221.
[4] LANTSOV V. A New Algorithm for Solving of Harmonic Balance Equations by Using the Model Order Reduction Method[C/OL]//2020 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT). 2020: 295-297. DOI: 10.1109/USBEREIT48449.2020.9117768.
[5] LIU X X, YU H, RELLES J, et al. A structured parallel periodic Arnoldi shooting algorithm for RF-PSS analysis based on GPU platforms[C/OL]//16th Asia and South Pacific Design Automation Conference (ASP-DAC 2011). 2011: 13-18. DOI: 10.1109/ASPDAC.2011.5722172.
[6] KAPRE N, DEHON A. Parallelizing sparse Matrix Solve for SPICE circuit simulation using FPGAs[C/OL]//2009 International Conference on Field-Programmable Technology. 2009: 190-198. DOI: 10.1109/FPT.2009.5377665.
[7] GE X, ZHU H, YANG F, et al. Parallel sparse LU decomposition using FPGA with an efficient cache architecture[C/OL]//2017 IEEE 12th International Conference on ASIC (ASICON). 2017: 259-262. DOI: 10.1109/ASICON.2017.8252462.
[8] LEE D, HAGIESCU A, PRITSKER D. Large-Scale and High-Throughput QR Decomposition on an FPGA[C/OL]//2019 IEEE 27th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM). 2019: 337. DOI: 10.1109/FCCM.2019.00078.
[9] KAPRE N, DEHON A. Performance comparison of single-precision SPICE Model-Evaluation on FPGA, GPU, Cell, and multi-core processors[C/OL]//2009 International Conference on Field Programmable Logic and Applications. 2009: 65-72. DOI: 10.1109/FPL.2009.5272548.
[10] REN L, CHEN X, WANG Y, et al. Sparse LU factorization for parallel circuit simulation on GPU[C]//DAC Design Automation Conference 2012. 2012: 1125-1130.
[11] VOLKOV V, DEMMEL J. LU, QR and Cholesky Factorizations using Vector Capabilities of GPUs: UCB/EECS-2008-49[R/OL]. EECS Department, University of California, Berkeley, 2008: 15-27. http://www2.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-49.html.
[12] TOMOV S, DONGARRA J J, BABOULIN M. Towards dense linear algebra for hybrid GPU accelerated manycore systems[J]. Parallel Comput., 2009, 36: 232-240.
[13] AGULLO E, AUGONNET C, DONGARRA J, et al. LU factorization for accelerator-based systems[C/OL]//2011 9th IEEE/ACS International Conference on Computer Systems and Applications(AICCSA). 2011: 217-224. DOI: 10.1109/AICCSA.2011.6126599.
[14] LIU L, YANG G. A Highly Efficient GPU-CPU Hybrid Parallel Implementation of Sparse LU Factorization[J]. Chinese Journal of Electronics, 2012, 21: 7-12.
[15] CHEN X, WANG Y, YANG H. NICSLU: An Adaptive Sparse Matrix Solver for Parallel Circuit Simulation[J/OL]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2013, 32(2): 261-274. DOI: 10.1109/TCAD.2012.2217964.
[16] NAGEL L, ROHRER R. Computer analysis of nonlinear circuits, excluding radiation (CANCER)[J/OL]. IEEE Journal of Solid-State Circuits, 1971, 6(4): 166-182. DOI: 10.1109/JSSC.1971.1050166.
[17] 袁韬, 冯平, 杨静, 等. 节点法与改进节点法的讨论[J]. 电气电子教学学报, 2012, 34: 88-90.
[18] SANDBERG M. Convergence of the Forward Euler Method for Nonconvex Differential Inclusions[J/OL]. SIAM Journal on Numerical Analysis, 2009, 47(1): 308-320. DOI: 10.1137/070686093.
[19] GUERRA G, SHEN W. Vanishing Viscosity and Backward Euler Approximations for Conservation Laws with Discontinuous Flux[J/OL]. SIAM Journal on Mathematical Analysis, 2019,51(4): 3112-3144. DOI: 10.1137/18M1205662.
[20] 殷术亨. 矩阵LU 分解及Cholesky 分解的随机算法研究[D]. 重庆大学, 2020: 1-2.
[21] BLECHTA J. Stability of Linear GMRES Convergence with Respect to Compact Perturbations[J/OL]. SIAM Journal on Matrix Analysis and Applications, 2021, 42(1): 436-447. DOI:10.1137/20M1340848.
[22] AMDAHL G M. Validity of the Single Processor Approach to Achieving Large Scale Computing Capabilities[J/OL]. IEEE Solid-State Circuits Society Newsletter, 2007, 12(3): 19-20. DOI: 10.1109/N-SSC.2007.4785615.
[23] GUSTAFSON J L. Reevaluating Amdahl’s Law[J/OL]. Commun. ACM, 1988, 31(5): 532–533. https://doi.org/10.1145/42411.42415.
[24] FLYNN M J. Some Computer Organizations and Their Effectiveness[J/OL]. IEEE Transactions on Computers, 1972, C-21(9): 948-960. DOI: 10.1109/TC.1972.5009071.
[25] KAPASI U, RIXNER S, DALLY W, et al. Programmable stream processors[J/OL]. Computer, 2003, 36(8): 54-62. DOI: 10.1109/MC.2003.1220582.
[26] GADHIKAR L M, RAO Y S. Analysis of Programs for GPGPU Architectures[C/OL]//2018 2nd International Conference on Trends in Electronics and Informatics (ICOEI). 2018: 1-4. DOI: 10.1109/ICOEI.2018.8553918.
[27] LINDHOLM E, OBERMAN S. The NVIDIA GeForce 8800 GPU[C/OL]//2007 IEEE Hot Chips 19 Symposium (HCS). 2007: 1-17. DOI: 10.1109/HOTCHIPS.2007.7482490.
[28] NVIDIA. CUDA C++ Programming Guide: v12.1[EB/OL]. 2023. https://docs.nvidia.com/cu da/pdf/CUDA_C_Programming_Guide.pdf.
[29] CUOMO S, MARCELLINO L, NAVARRA G. A Parallel Implementation of the Hestenes-Jacobi-One-Sides Method Using GPU-CUDA[C/OL]//2018 26th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP). 2018: 722-725. DOI:10.1109/PDP2018.2018.00118.
[30] IKUNO S, CHEN G, ITOH T, et al. Variable Preconditioned Krylov Subspace Method With Communication Avoiding Technique for Electromagnetic Analysis[J/OL]. IEEE Transactions on Magnetics, 2017, 53(6): 1-4. DOI: 10.1109/TMAG.2017.2655513.
[31] 李鹏, 于浩, 王成山, 等. 基于Krylov 子空间的大规模配电网络模型整体化简方法[J]. 电网技术, 2013(8): 2343-2348.
[32] LINARO D, GIUDICE D D, BRAMBILLA A, et al. Application of Envelope-Following Techniques to the Shooting Method[J/OL]. IEEE Open Journal of Circuits and Systems, 2020, 1:22-33. DOI: 10.1109/OJCAS.2020.2987973.
[33] TELICHEVESKY R, KUNDERT K S, WHITE J K. Efficient Steady-State Analysis Based on Matrix-Free Krylov-Subspace Methods[C/OL]//32nd Design Automation Conference. 1995: 480-484. DOI: 10.1145/217474.217574.
[34] TELICHEVESKY R, KUNDERT K, ELFADEL I, et al. Fast simulation algorithms for RF circuits[C/OL]//Proceedings of Custom Integrated Circuits Conference. 1996: 437-444. DOI: 10.1109/CICC.1996.510592.
[35] KUNDERT K, WHITE J, SANGIOVANNI-VINCENTELLI A. The Springer International Series in Engineering and Computer Science: Steady-State Methods for Simulating Analog and Microwave Circuits[M/OL]. Springer US, 2013: 81-116. https://books.google.com/books?id=9_XTBwAAQBAJ.
[36] HUANG A, GAO X, PAWLOWSKI R, et al. A versatile harmonic balance method in a parallel framework[C/OL]//2018 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD). 2018: 271-275. DOI: 10.1109/SISPAD.2018.8551620.
[37] 公忠盛, 徐光宪, 南敬昌, 等. 基于改进混合蜂群算法的非线性电路谐波平衡分析[J]. 计算机应用研究, 2018, 35: 1970-1973+1995.
[38] KUNDERT K. Introduction to RF simulation and its application[J/OL]. IEEE Journal of Solid-State Circuits, 1999, 34(9): 1298-1319. DOI: 10.1109/4.782091.
[39] 深圳市比昂芯科技有限公司. 一种基于谐波平衡的电路仿真方法、装置及存储介质:CN202210421916.9[P]. 2022-08-19.
[40] LAU S L, CHEUNG Y K. Amplitude Incremental Variational Principle for Nonlinear Vibration of Elastic Systems[J/OL]. Journal of Applied Mechanics, 1981, 48(4): 959-964. DOI: 10.1115/1.3157762.
[41] 黄建亮, 张兵许, 陈树辉. 优化迭代步长的两种改进增量谐波平衡法[J]. 力学学报, 2022,54(5): 1353-1363.
[42] LIU X X, YU H, TAN S X D. A robust periodic arnoldi shooting algorithm for efficient analysis of large-scale RF/MM ICs[C]//Design Automation Conference. 2010: 573-578.
[43] LIU X X, YU H, TAN S X D. A GPU-Accelerated Parallel Shooting Algorithm for Analysis of Radio Frequency and Microwave Integrated Circuits[J/OL]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2015, 23(3): 480-492. DOI: 10.1109/TVLSI.2014.2309606.
[44] RETZLER A, SWEVERS J, GILLIS J, et al. Shooting methods for identification of nonlinear state-space grey-box models[C/OL]//2022 IEEE 17th International Conference on Advanced Motion Control (AMC). 2022: 207-212. DOI: 10.1109/AMC51637.2022.9729299.
[45] 武新宇, 来金梅, 章倩苓, 等. 射频集成电路周期稳态快速模拟算法的研究[J]. 微电子学,2002, 32(3): 161-164.
[46] NASTOV O, TELICHEVESKY R, KUNDERT K, et al. Fundamentals of Fast Simulation Algorithms for RF Circuits[J/OL]. Proceedings of the IEEE, 2007, 95(3): 600-621. DOI: 10.1109/JPROC.2006.889366.
[47] STOER J, BARTELS R, GAUTSCHI W, et al. Texts in Applied Mathematics: Introduction to Numerical Analysis[M/OL]. Springer US, 2002: 174-182. https://books.google.com/books?id=1oDXWLb9qEkC.
[48] VENTURINI G, DANIHER I, ENDOLITH, et al. Ahkab: an open-source SPICE-like interactive circuit simulator[EB/OL]. 2015. DOI: 10.5281/zenodo.19967.
[49] 赵斌, 贾智, 王东, 等. 电气化铁路轨道电路钢轨互阻抗计算研究[J]. 铁道学报, 2021, 43(8): 54-61.
[50] 马城城, 田泽, 黎小玉, 等. 统一渲染架构GPU 图形处理量化性能模型研究[J]. 电子技术应用, 2019, 45(2): 27-32,36.66
修改评论