中文版 | English
题名

南海沉积物的磁学机制及对古地磁场与古环境记录的指示意义研究

其他题名
THE MAGNETIC MECHANISM OF SEDIMENTS IN THE SOUTH CHINA SEA AND ITS SIGNIFICANCE FOR PALEOMAGNETIC AND PALEOENVIRONMENTAL RECORDS
姓名
姓名拼音
WANG Haosen
学号
11930841
学位类型
博士
学位专业
0801 力学
学科门类/专业学位类别
08 工学
导师
刘青松
导师单位
海洋科学与工程系
论文答辩日期
2021-05-13
论文提交日期
2023-06-27
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

南海地处于东亚季风区,受全球气候及古环境变化的影响显著。受周围河流径流的输入影响,南海具有较高的沉积速率,因此南海沉积物是记录地质信息的良好载体。具体而言,南海海洋沉积物中含有大量的磁性矿物,能记录丰富的古地磁和古环境演化信息。但是,这些磁性矿物的种类、含量及粒径等性质会受诸多环境因素控制,进而对磁性记录造成影响。因此,厘定南海沉积物中磁性矿物的变化机制,是精确解译其磁性记录的前提。目前对南海北部地区沉积物中磁性矿物还缺乏系统性的研究。针对这一前沿科学问题,本论文以南海西北次海盆岩芯XB1XB3XB5钻孔为研究对象,开展了系统性的岩石磁学与古地磁学研究。

首先,根据AMS14C和格陵兰间冰期事件的共同约束,建立了50 ka以来的高分辨率年龄框架。岩芯的岩石磁学结果显示,该区沉积物中主要以生物成因和碎屑来源的磁铁矿作为载磁矿物。其中生物成因磁铁矿主要为单畴磁小体,其含量的变化受到东亚季风、海平面变化、深层水底流以及营养盐输入等因素的影响。

沉积物中的磁铁矿能够稳定地记录剩磁变化,本研究对其记录的天然剩磁(natural remanent magnetization, NRM)进行归一化处理得到了地磁场相对古强度信息,并建立了50 ka以来的地球磁场长期变化记录。此外,本研究还将南海西北次海盆的古地磁记录进行叠加处理并与南海的SCS-stack记录、黑海古地磁记录以及其他全球不同地区的古强度记录进行对比,发现了不同地区之间古地磁记录特征的相似性。这说明了地磁场相对古强度变化的全球一致性,南海沉积物记录了全球模式的地磁场古强度行为,这对南海地磁场的演化研究及全球的地磁场记录对比具有重大意义。本研究的古地磁结果还在~41 ka记录到了Laschamp极性漂移事件以及在此期间倾角的振荡行为,通过中低纬地区的磁倾角结果以及模型的模拟结果可知地磁场的非偶极子场是极性事件期间的主导因素。

本研究利用磁组构和主成分分析的方法首次建立了磁小体丰度和磁组构之间的联系,弥补了沉积物中磁小体定量化的难题。同时结合古环境变化信息发现磁小体的丰度在14.7-4.7 ka期间显著增加,这导致了逆向磁组构特征的出现,研究还发现东亚夏季风的增强和深层水底流的减弱会改变物质输入模式和深层水溶解氧的含量,进而影响磁小体的丰度变化。而在4.7 ka后,溶解氧含量增加,磁小体的丰度又快速降低。

关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2023-06
参考文献列表

[1] HE E, ZHAO M, QIU X, et al. Crustal structure across the post-spreading magmatic ridge of the East Sub-basin in the South China Sea: Tectonic significance[J]. Journal of Asian Earth Sciences, 2016, 121: 139-152.
[2] LIU Z, ZHAO Y, COLIN C, et al. Source-to-sink transport processes of fluvial sediments in the South China Sea[J]. Earth-Science Reviews, 2016, 153: 238-273.
[3] QU T, GIRTON J B, WHITEHEAD J A. Deepwater overflow through Luzon Strait[J]. Journal of Geophysical Research: Oceans, 2006, 111: C01002.
[4] HU D, BöNING P, KöHLER C M, et al. Deep-sea records of the continental weathering and erosion response to East Asian monsoon intensification since 14 ka in the South China Sea[J]. Chemical Geology, 2012, 326-327: 1-18.
[5] LI M, OUYANG T, ROBERTS A P, et al. Influence of Sea Level Change and Centennial East Asian Monsoon Variations on Northern South China Sea Sediments Over the Past 36 kyr[J]. Geochemistry Geophysics Geosystems, 2018, 19: 1674-1689.
[6] OLDFIELD F. Environmental magnetism-A personal perspective[J]. Quaternary Science Reviews, 1991, 10(1): 73-85.
[7] SUN Y, KUTZBACH J, AN Z, et al. Astronomical and glacial forcing of East Asian summer monsoon variability[J]. Quaternary Science Reviews, 2015, 115: 132-142.
[8] GUO Z T, RUDDIMAN W F, HAO Q Z, et al. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China[J]. Nature, 2002, 416(6877): 159-163.
[9] LIU Q, ROBERTS A P, TORRENT J, et al. What do the HIRM and S-ratio really measure in environmental magnetism?[J]. Geochemistry, Geophysics, Geosystems, 2007, 8(9): Q09011.
[10] LOWRIE W. Identification of ferromagnetic minerals in a rock by coercivity and unblocking temperature properties[J]. Geophysical Research Letters, 1990, 17(2): 159-162.
[11] STERN D P. A MILLENNIUM OF GEOMAGNETISM[J]. Reviews of Geophysics, 2002, 40(3): 1-1-1-30.
[12] 刘青松, 朱日祥, 潘永信, 等. 地球磁场偶极子和非偶极子分量变化特征及其相关的地球深部过程[J]. 地球物理学报, 1999, 2: 178-184.
[13] MERRILL R T, MCFADDEN P L. Geomagnetic field stability: Reversal events and excursions[J]. Earth and Planetary Science Letters, 1994, 121(1): 57-69.
[14] VANDAMME D. A new method to determine paleosecular variation[J]. Physics of the Earth and Planetary Interiors, 1994, 85(1-2): 131-142.
[15] RICHTER C, VENUTI A, VEROSUB K L, et al. Variations of the geomagnetic field during the Holocene: Relative paleointensity and inclination record from the West Pacific(ODP Hole 1202B)[J]. Physics of the Earth and Planetary Interiors, 2006, 156(3-4): 179-193.
[16] BRACHFELD S A, BANERJEE S K. A new high-resolution geomagnetic relative paleointensity record for the North American Holocene: A comparison of sedimentary and absolute intensity data[J]. Journal of Geophysical Research: Solid Earth, 2000, 105(B1): 821-834.
[17] BARLETTA F, ST-ONGE G, STONER J, et al. A high-resolution Holocene paleomagnetic secular variation and relative paleointensity stack from eastern Canada[J]. Earth and Planetary Science Letters, 2010, 298(1-2): 162-174.
[18] GOGORZA C, LIRIO J, NUñEZ H, et al. Paleointensity studies on Holocene-Pleistocene sediments from lake Escondido, Argentina[J]. Physics of the Earth and Planetary Interiors, 2004, 145(1-4): 219-238.
[19] HYODO M, NAKAGAWA T, MATSUSHITA H, et al. Intermittent non-axial dipolar-field dominance of twin Laschamp excursions[J]. Communications Earth Environment, 2022, 3:79.
[20] SIMO Q, SUGANUMA Y, OKADA M, et al. High-resolution 10Be and paleomagnetic recording of the last polarity reversal in the Chiba composite section: Age and dynamics of the Matuyama-Brunhes transition[J]. Earth and Planetary Science Letters, 2019, 519: 92-100.
[21] GUYODO Y, VALET J P. Relative variations in geomagnetic intensity from sedimentary records: the past 200,000 years[J]. Earth and Planetary Science Letters, 1996, 143(1–4): 23-36.
[22] GUYODO Y, VALET J P. Global changes in intensity of the Earth’s magnetic field during the past 800 kyr[J]. Nature, 1999, 399: 249-252.
[23] VALET J P, MEYNADIER L, GUYODO Y. Geomagnetic dipole strength and reversal rate over the past two million years[J]. Nature, 2005, 435: 802-805.
[24] LAJ C, KISSEL C, MAZAUD A, et al. North Atlantic palaeointensity stack since 75 ka(NAPIS-75) and the duration of the Laschamp event[J]. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 2000, 358(1768): 1009-1025.
[25] STONER J S, LAJ C, CHANNELL J E T, et al. South Atlantic and North Atlantic geomagnetic paleointensity stacks(0-80 ka): implications for inter-hemispheric correlation[J]. Quaternary Science Reviews, 2002, 21(10): 1141-1151.
[26] BOWLES J, TAUXE L, GEE J, et al. Source of tiny wiggles in Chron C5: A comparison of sedimentary relative intensity and marine magnetic anomalies[J]. Geochemistry, Geophysics, Geosystems, 2003, 4(6):1049.
[27] GUBBINS D. The distinction between geomagnetic excursions and reversals[J]. Geophysical Journal International, 1999, 137(1): F1-F4.
[28] ELSASSER W, NEY E P, WINCKLER J R. Cosmic-Ray Intensity and Geomagnetism[J]. Nature, 1956, 178(4544): 1226-1227.
[29] LINGENFELTER R E. Production of carbon 14 by cosmic-ray neutrons[J]. Reviews of Geophysics, 1963, 1(1): 35-55.
[30] ROBERTS A P, WINKLHOFER M. Why are geomagnetic excursions not always recorded in sediments? Constraints from post-depositional remanent magnetization lock-in modelling[J]. Earth and Planetary Science Letters, 2004, 227(3): 345-359.
[31] COE R S, GROMMé S, MANKINEN E A. Geomagnetic paleo-intensities from radiocarbon-dated lava flows on Hawaii and the question of the Pacific nondipole low[J]. Journal of Geophysical Research: Solid Earth, 1978, 83(B4): 1740-1756.
[32] LAJ C, KISSEL C, SCAO V, et al. Geomagnetic intensity and inclination variations at Hawaii for the past 98 kyr from core SOH-4(Big Island): a new study and a comparison with existing contemporary data[J]. Physics of the Earth and Planetary Interiors, 2002, 129(3): 205-243.
[33] THOUVENY N, CREER K M. Geomagnetic excursions in the past 60 ka: Ephemeral secular variation features[J]. Geology, 1992, 20(5): 399-402.
[34] PECK J A, KING J W, COLMAN S M, et al. An 84-kyr paleo-magnetic record from the sediments of Lake Baikal, Siberia[J]. Journal of Geophysical Research: Solid Earth, 1996, 101(B5): 11365-11385.
[35] NOWACZYK N R, ANTONOW M, KNIES J, et al. Further rock magnetic and chronostratigraphic results on reversal excursions during the last 50 ka as derived from northern high latitudes and discrepancies in precise AMS14C dating[J]. Geophysical Journal International, 2003, 155(3): 1065-1080.
[36] 彭杰, 杨小强, 强小科, 等. 钱塘江河口周边钻孔磁性地层学研究及意义[J]. 地球物理学报, 2016, 59(08): 2949-2964.
[37] LISé-PRONOVOST A, ST-ONGE G, GOGORZA C, et al. High-resolution paleomagnetic secular variations and relative paleo-intensity since the Late Pleistocene in southern South America[J]. Quaternary Science Reviews, 2013, 71: 91-108.
[38] LIU J, NOWACZYK N R, PANOVSKA S, et al. The Norwegian-Greenland Sea, the Laschamps, and the Mono Lake excursions recorded in a Black Sea sedimentary sequence spanning from 68.9 to 14.5 ka[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(8): e2019JB019225.
[39] BONHOMMET N, BABKINE J. SUR LA PRESENCE DAIMANTATIONS INVERSEES DANS LA CHAINE DES PUYS[J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE B, 1967, 264(1): 92.
[40] ROPERCH P, BONHOMMET N, LEVI S. Paleointensity of the earth's magnetic field during the Laschamp excursion and its geomagnetic implications[J]. Earth and Planetary Science Letters, 1988, 88(1): 209-219.
[41] CHAUVIN A, DUNCAN R A, BONHOMMET N, et al. Paleointensity of the Earth's magnetic field and K-Ar dating of the Louchadiere volcanic flow(central France): New evidence for the Laschamp excursion[J]. Geophysical Research Letters, 1989, 16(10): 1189-1192.
[42] MéNABRéAZ L, THOUVENY N, BOURLèS D L, et al. The Laschamp geomagnetic dipole low expressed as a cosmogenic 10Be atmospheric overproduction at ~41 ka[J]. Earth and Planetary Science Letters, 2011, 312(3): 305-317.
[43] NOWACZYK N R, ARZ H W, FRANK U, et al. Dynamics of the Laschamp geomagnetic excursion from Black Sea sediments[J]. Earth and Planetary Science Letters, 2012, 351-352: 54-69.
[44] LAJ C, KISSEL C, ROBERTS A P. Geomagnetic field behavior during the Iceland Basin and Laschamp geomagnetic excursions: A simple transitional field geometry?[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(3): Q03004.
[45] INGHAM E, TURNER G M, CONWAY C E, et al. Volcanic records of the Laschamp geomagnetic excursion from Mt Ruapehu, New Zealand[J]. Earth and Planetary Science Letters, 2017, 472: 131-141.
[46] CASSATA W S, SINGER B S, CASSIDY J. Laschamp and Mono Lake geomagnetic excursions recorded in New Zealand[J]. Earth and Planetary Science Letters, 2008, 268(1): 76-88.
[47] DENHAM C R, COX A. Evidence that the Laschamp polarity event did not occur 13300–30400 years ago[J]. Earth and Planetary Science Letters, 1971, 13(1): 181-190.
[48] CASSIDY J, HILL M J. Absolute palaeointensity study of the Mono Lake excursion recorded by New Zealand basalts[J]. Physics of the Earth and Planetary Interiors, 2009, 172(3): 225-234.
[49] CAMPUZANO S A, PAVóN-CARRASCO F J, DE SANTIS A, et al. South Atlantic Anomaly Areal Extent as a Possible Indicator of Geomagnetic Jerks in the Satellite Era[J]. Frontiers in Earth Science, 2021, 8.
[50] 徐文耀, 魏自刚. 核幔界面反极性磁斑区和地磁场倒转[J]. 中国科学(D辑:地球科学), 2001(08): 617-625.
[51] 杨小强, 张贻男, 高芳蕾, 等. 近130 ka以来地球磁场相对强度变化:南海南部NS93-5钻孔记录[J]. 热带地理, 2006, 26(1): 1-5.
[52] 杨小强, 翁元忠, 周绮娴, 等. 南海北部约17 cal. ka以来地磁场长期变记录[J]. 第四纪研究, 2016, 36(5): 1165-1175.
[53] 高华鸿, 杨小强, 张金鹏, 等. 南海南部约80 ka以来的古地磁记录[J]. 地球物理学报, 2019, 62(12): 4750-4765.
[54] YANG X Q, FRIEDRICH H, WU N Y, et al. Geomagnetic paleointensity dating of South China Sea sediments for the last 130 kyr[J]. Earth and Planetary Science Letters, 2009, 284(1-2): 258-266.
[55] HOFMANN D I, FABIAN K. Rock magnetic properties and relative paleointensity stack for the last 300 ka based on a stratigraphic network from the subtropical and subantarctic South Atlantic[J]. Earth and Planetary Science Letters, 2007, 260(1): 297-312.
[56] STONER J S, CHANNELL J E T, HODELL D A, et al. A ∼580 kyr paleomagnetic record from the sub-Antarctic South Atlantic(Ocean Drilling Program Site 1089)[J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B5): 2244.
[57] LANGWAY C C, OESCHGER H, DANSGAARD W. Greenland Ice Core: Geophysics, Geochemistry, and the Environment[C]. Washington: American Geophysical Union, 1985.
[58] OUYANG T, HESLOP D, ROBERTS A P, et al. Variable remanence acquisition efficiency in sediments containing biogenic and detrital magnetites: Implications for relative paleointensity signal recording[J]. Geochemistry, Geophysics, Geosystems, 2014, 15(7): 2780-2796.
[59] LEFèVRE C T, ABREU F, LINS U, et al. A Bacterial Backbone: Magnetosomes in Magnetotactic Bacteria[M]//RAI M, DURAN N. Metal Nanoparticles in Microbiology. Berlin, Heidelberg; Springer Berlin Heidelberg. 2011: 75-102.
[60] YUAN W, ZHOU H, YANG Z, et al. Magnetite magnetofossils record biogeochemical remanent magnetization in hydrogenetic ferro-manganese crusts[J]. Geology, 2020, 48(3): 298-302.
[61] CHANG S B R, KIRSCHVINK J L. Magnetofossils, the Magnetization of Sediments, and the Evolution of Magnetite Biomineralization[J]. Annual Review of Earth and Planetary Sciences, 1989, 17(1): 169-195.
[62] KIRSCHVINK J L, CHANG S B R. Ultrafine-grained magnetite in deep-sea sediments: Possible bacterial magnetofossils[J]. Geology, 1984, 12(9): 559-562.
[63] XUE P, CHANG L, PEI Z, et al. Discovery of giant magnetofossils within and outside of the Palaeocene-Eocene Thermal Maximum in the North Atlantic[J]. Earth and Planetary Science Letters, 2022, 584: 117417.
[64] MAO X, EGLI R, PETERSEN N, et al. Magnetotaxis and acquisition of detrital remanent magnetization by magnetotactic bacteria in natural sediment: First experimental results and theory[J]. Geochemistry, Geophysics, Geosystems, 2014, 15(1): 255-283.
[65] CHEN L, HESLOP D, ROBERTS A P, et al. Remanence acquisition efficiency in biogenic and detrital magnetite and recording of geo-magnetic paleointensity[J]. Geochemistry, Geophysics, Geosystems, 2017, 18(4): 1435-1450.
[66] NéEL L. Some theoretical aspects of rock-magnetism[J]. Advances in Physics, 1955, 4(14): 191-243.
[67] LARRASOANA J C, ROBERTS A P, CHANG L, et al. Magnetotactic bacterial response to Antarctic dust supply during the Palaeocene–Eocene thermal maximum[J]. Earth and Planetary Science Letters, 2012, 333: 122-133.
[68] HE K, PAN Y. Magnetofossil Abundance and Diversity as Paleo-environmental Proxies: A Case Study from Southwest Iberian Margin Sediments[J]. Geophysical Research Letters, 2020, 47(8): e2020GL087165.
[69] LI J, MENGUY N, LEROY E, et al. Biomineralization and Magnetism of Uncultured Magnetotactic Coccus Strain THC-1 With Non-chained Magnetosomal Magnetite Nanoparticles[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(12): e2020JB020853.
[70] YAMAZAKI T, FU W, SHIMONO T, et al. Unmixing biogenic and terrigenous magnetic mineral components in red clay of the Pacific Ocean using principal component analyses of first-order reversal curve diagrams and paleoenvironmental implications[J]. Earth, Planets and Space, 2020, 72(1): 120.
[71] MATHIAS G, ROUD S, CHIESSI C, et al. A Multi-Proxy Approach to Unravel Late Pleistocene Sediment Flux and Bottom Water Conditions in the Western South Atlantic Ocean[J]. Paleo-ceanography and Paleoclimatology, 2021, 36(4): e2020PA004058.
[72] PAASCHE Ø, LøVLIE R, DAHL S O, et al. Bacterial magnetite in lake sediments: late glacial to Holocene climate and sedimentary changes in northern Norway[J]. Earth and Planetary Science Letters, 2004, 223(3): 319-333.
[73] KENT D V, CRAMER B S, LANCI L, et al. A case for a comet impact trigger for the Paleocene/Eocene thermal maximum and carbon isotope excursion[J]. Earth and Planetary Science Letters, 2003, 211(1): 13-26.
[74] KOPP R E, RAUB T D, SCHUMANN D, et al. Magnetofossil spike during the Paleocene-Eocene thermal maximum: Ferromagnetic resonance, rock magnetic, and electron microscopy evidence from Ancora, New Jersey, United States[J]. Paleoceanography, 2007, 22(4): PA4103.
[75] LIPPERT P C, ZACHOS J C. A biogenic origin for anomalous fine-grained magnetic material at the Paleocene-Eocene boundary at Wilson Lake, New Jersey[J]. Paleoceanography, 2007, 22(4): PA4104.
[76] LIU S, DENG C, XIAO J, et al. Insolation driven biomagnetic response to the Holocene Warm Period in semi-arid East Asia[J]. Scientific Reports, 2015, 5(1): 8001.
[77] CHANG L, HARRISON R J, ZENG F, et al. Coupled microbial bloom and oxygenation decline recorded by magnetofossils during the Palaeocene–Eocene Thermal Maximum[J]. Nature commu-nications, 2018, 9(1): 1-9.
[78] THOMAS-KEPRTA K L, BAZYLINSKI D A, KIRSCHVINK J L, et al. Elongated prismatic magnetite crystals in ALH84001 carbonate globules: Potential Martian magnetofossils[J]. Geochimica et Cosmochimica Acta, 2000, 64(23): 4049-4081.
[79] YAMAZAKI T. Environmental magnetism of Pleistocene sediments in the North Pacific and Ontong-Java Plateau: Temporal variations of detrital and biogenic components[J]. Geochemistry, Geophysics, Geosystems, 2009, 10(7): Q07Z04.
[80] YAMAZAKI T, SUZUKI Y, KOUDUKA M, et al. Dependence of bacterial magnetosome morphology on chemical conditions in deep-sea sediments[J]. Earth and Planetary Science Letters, 2019, 513: 135-143.
[81] YAMAZAKI T. Magnetostatic interactions in deep-sea sediments inferred from first-order reversal curve diagrams: Implications for relative paleointensity normalization[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(2): Q02005.
[82] KING J, BANERJEE S K, MARVIN J, et al. A comparison of different magnetic methods for determining the relative grain size of magnetite in natural materials: Some results from lake sediments[J]. Earth and Planetary Science Letters, 1982, 59(2): 404-419.
[83] HESLOP D, ROBERTS A P, CHANG L. Characterizing magneto-fossils from first-order reversal curve(FORC) central ridge signatures[J]. Geochemistry, Geophysics, Geosystems, 2014, 15(6): 2170-2179.
[84] LASCU I, HARRISON R J, LI Y, et al. Magnetic unmixing of first-order reversal curve diagrams using principal component analysis[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(9): 2900-2915.
[85] USUI Y, YAMAZAKI T, OKA T, et al. Inverse Magnetic Susceptibility Fabrics in Pelagic Sediment: Implications for Magnetofossil Abundance and Alignment[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(11): 10672-10686.
[86] POTTER D K, STEPHENSON A. Single-domain particles in rocks and magnetic fabric analysis[J]. Geophysical Research Letters, 1988, 15(10): 1097-1100.
[87] FERRé E C. Theoretical models of intermediate and inverse AMS fabrics[J]. Geophysical Research Letters, 2002, 29(7): 31-1-31-4.
[88] ROCHETTE P, JACKSON M, AUBOURG C. Rock magnetism and the interpretation of anisotropy of magnetic susceptibility[J]. Reviews of Geophysics, 1992, 30(3): 209-226.
[89] ROCHETTE P, AUBOURG C, PERRIN M. Is this magnetic fabric normal? A review and case studies in volcanic formations[J]. Tectonophysics, 1999, 307(1-2): 219-234.
[90] CHANG C P, ZHANG Y, LI T. Interannual and Interdecadal Variations of the East Asian Summer Monsoon and Tropical Pacific SSTs. Part I: Roles of the Subtropical Ridge[J]. Journal of Climate, 2000, 13(24): 4310-4325.
[91] WAN S, LI A, CLIFT P D, et al. Development of the East Asian monsoon: Mineralogical and sedimentologic records in the northern South China Sea since 20 Ma[J]. Palaeogeography, Palaeo-climatology, Palaeoecology, 2007, 254(3): 561-582.
[92] WANG B, HUANG F, WU Z, et al. Multi-scale climate variability of the South China Sea monsoon: A review[J]. Dynamics of Atmospheres and Oceans, 2009, 47(1): 15-37.
[93] LI C F, LI J, DING W, et al. Seismic stratigraphy of the central South China Sea basin and implications for neotectonics[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(3): 1377-1399.
[94] GAO H. Seismic facies’ characteristic of turbidities and sea level change in the northwest sub-basin of South China Sea since late Miocene[J]. Journal of Tropical Oceanography, 2012, 31(3): 113-119.
[95] BRIAIS A, PATRIAT P, TAPPONNIER P. Updated interpretation of magnetic anomalies and seafloor spreading stages in the south China Sea: Implications for the Tertiary tectonics of Southeast Asia[J]. Journal of Geophysical Research: Solid Earth, 1993, 98(B4): 6299-6328.
[96] TAPPONNIER P, PELTZER G, LE DAIN A Y, et al. Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine[J]. Geology, 1982, 10(12): 611-616.
[97] TAYLOR B, HAYES D E. The Tectonic Evolution of the South China Basin[M]. The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands. 1980: 89-104.
[98] HALL R. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations[J]. Journal of Asian Earth Sciences, 2002, 20(4): 353-431.
[99] WANG B, CLEMENS S C, LIU P. Contrasting the Indian and East Asian monsoons: implications on geologic timescales[J]. Marine Geology, 2003, 201(1): 5-21.
[100] LIU Z, ZHAO Y, COLIN C, et al. Chemical weathering in Luzon, Philippines from clay mineralogy and major-element geochemistry of river sediments[J]. Applied Geochemistry, 2009, 24(11): 2195-2205.
[101] LIU Z, COLIN C, HUANG W, et al. Clay minerals in surface sediments of the Pearl River drainage basin and their contribution to the South China Sea[J]. Chinese Science Bulletin, 2007, 52(8): 1101-1111.
[102] LIU Z, WANG H, HANTORO W S, et al. Climatic and tectonic controls on chemical weathering in tropical Southeast Asia(Malay Peninsula, Borneo, and Sumatra)[J]. Chemical Geology, 2012, 291: 1-12.
[103] LIU Z, TUO S, COLIN C, et al. Detrital fine-grained sediment contri-bution from Taiwan to the northern South China Sea and its relation to regional ocean circulation[J]. Marine Geology, 2008, 255(3): 149-155.
[104] CHAO S Y, SHAW P-T, WU S Y. Deep water ventilation in the South China Sea[J]. Deep Sea Research Part I: Oceanographic Research Papers, 1996, 43(4): 445-466.
[105] YUAN D, HAN W, HU D. Surface Kuroshio path in the Luzon Strait area derived from satellite remote sensing data[J]. Journal of Geophysical Research: Oceans, 2006, 111: C11007.
[106] HU J, KAWAMURA H, HONG H, et al. A Review on the Currents in the South China Sea: Seasonal Circulation, South China Sea Warm Current and Kuroshio Intrusion[J]. Journal of Oceanography, 2000, 56(6): 607-624.
[107] WANG G, XIE S-P, QU T, et al. Deep South China Sea circulation[J]. Geophysical Research Letters, 2011, 38(5): L05601.
[108] TIAN J, YANG Q, ZHAO W. Enhanced Diapycnal Mixing in the South China Sea[J]. Journal of Physical Oceanography, 2009, 39(12): 3191-3203.
[109] WANG A, DU Y, PENG S, et al. Deep water characteristics and circulation in the South China Sea[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2018, 134: 55-63.
[110] LAN J, ZHANG N, WANG Y. On the dynamics of the South China Sea deep circulation[J]. Journal of Geophysical Research: Oceans, 2013, 118(3): 1206-1210.
[111] MILLIMAN J D, FARNSWORTH K L. River discharge to the coastal ocean: a global synthesis[M]. Cambridge University Press, 2013.
[112] WIESNER M G, ZhENG L, WONG H K, et al. Fluxes of particulate matter in the South China Sea[M]. London: Wiley, 1996.
[113] LI L, QU T. Thermohaline circulation in the deep South China Sea basin inferred from oxygen distributions[J]. Journal of Geophysical Research: Oceans, 2006, 111: C05017.
[114] QU, TANGDONG. Evidence for water exchange between the South China Sea and the Pacific Ocean through the Luzon Strait[J]. Acta Ocean-ologica Sinica, 2002, 21: 175-185.
[115] QU T, MITSUDERA H, YAMAGATA T. Intrusion of the North Pacific waters into the South China Sea[J]. Journal of Geophysical Research: Oceans, 2000, 105(C3): 6415-6424.
[116] TIAN J, YANG Q, LIANG X, et al. Observation of Luzon Strait transport[J]. Geophysical Research Letters, 2006, 33(19): L19607.
[117] LI G, RASHID H, ZHONG L F, et al. Changes in Deep Water Oxygenation of the South China Sea Since the Last Glacial Period[J]. Geophysical Research Letters, 2018, 45(17): 9058-9066.
[118] BUTLER R F, BUTLER R F. Paleomagnetism: magnetic domains to geologic terranes[M]. Blackwell Scientific Publications Boston, 1992.
[119] THOMPSON R, OLDFIELD F. Magnetic properties of solids[M]. Environmental Magnetism. Dordrecht; Springer Netherlands. 1986: 3-12.
[120] DUNLOP D J, ÖZDEMIR Ö. Rock Magnetism: Fundamentals and Frontiers[M]. Cambridge: Cambridge University Press, 1997.
[121] ROBERTS A P, ALMEIDA T P, CHURCH N S, et al. Resolving the Origin of Pseudo-Single Domain Magnetic Behavior[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(12): 9534-9558.
[122] DAY R, FULLER M, SCHMIDT V A. Hysteresis properties of titano-magnetites: Grain-size and compositional dependence[J]. Physics of the Earth and Planetary Interiors, 1977, 13(4): 260-267.
[123] BORRADAILE G J, HAMILTON T. Limestones distinguished by magnetic hysteresis in three-dimensional projections[J]. Geophysical Research Letters, 2003, 30(18): 1973.
[124] BORRADAILE G J, LAGROIX F. Magnetic characterization using a three-dimensional hysteresis projection, illustrated with a study of limestones[J]. Geophysical Journal International, 2000, 141(1): 213-226.
[125] LASCU I, BANERJEE S K, BERQUó T S. Quantifying the concentration of ferrimagnetic particles in sediments using rock magnetic methods[J]. Geochemistry, Geophysics, Geosystems, 2010, 11(8): Q08Z19.
[126] FABIAN K. Some additional parameters to estimate domain state from isothermal magnetization measurements[J]. Earth and Planetary Science Letters, 2003, 213(3): 337-345.
[127] HESLOP D. Numerical strategies for magnetic mineral unmixing[J]. Earth-Science Reviews, 2015, 150: 256-284.
[128] ROBERTS A P, HU P, HARRISON R J, et al. Domain State Diagnosis in Rock Magnetism: Evaluation of Potential Alternatives to the Day Diagram[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(6): 5286-5314.
[129] 刘青松, 邓成龙. 磁化率及其环境意义[J]. 地球物理学报, 2009, 52(4): 1041-1048.
[130] LIU Q, DENG C, YU Y, et al. Quantifying grain size distribution of pedogenic magnetic particles in Chinese loess and its significance for pedogenesis[J]. Journal of Geophysical Research: Solid Earth, 2005, 110(B11): B11102.
[131] LIU Q, DENG C, YU Y, et al. Temperature dependence of magnetic susceptibility in an argon environment: implications for pedogenesis of Chinese loess/palaeosols[J]. Geophysical Journal International, 2005, 161(1): 102-112.
[132] ROSENBAUM J, REYNOLDS R, SMOOT J, et al. Anisotropy of magnetic susceptibility as a tool for recognizing core deformation: reevaluation of the paleomagnetic record of Pleistocene sediments from drill hole OL-92, Owens Lake, California[J]. Earth and Planetary Science Letters, 2000, 178(3): 415-424.
[133] ROCHETTE P, MATHé P E, ESTEBAN L, et al. Non-saturation of the defect moment of goethite and fine-grained hematite up to 57 Teslas[J]. Geophysical Research Letters, 2005, 32(22): L22309.
[134] STOBER J C, THOMPSON R. An investigation into the source of magnetic minerals in some Finnish lake sediments[J]. Earth and Planetary Science Letters, 1979, 45(2): 464-474.
[135] LIU Q, YU Y, PAN Y, et al. Partial anhysteretic remanent magnetization(pARM) of synthetic single- and multidomain magne-tites and its paleoenvironmental significance[J]. Chinese Science Bulletin, 2005, 50(20): 2381-2384.
[136] LEVI S, BANERJEE S K. On the possibility of obtaining relative paleointensities from lake sediments[J]. Earth and Planetary Science Letters, 1976, 29(1): 219-226.
[137] HOPKINSON J. XIV. Magnetic and other physical properties of iron at a high temperature[J]. Philosophical Transactions of the Royal Society A, 1889, 180: 443-465.
[138] DUNLOP D J. Theory and application of the Day plot(Mrs/Ms versus Hcr/Hc) 1. Theoretical curves and tests using titanomagnetite data[J]. Journal of Geophysical Research: Solid Earth, 2002, 107(B3): 4-1- 4-22.
[139] DUNLOP D J. Theory and application of the Day plot(Mrs/Ms versus Hcr/Hc) 2. Application to data for rocks, sediments, and soils[J]. Journal of Geophysical Research: Solid Earth, 2002, 107(B3): 5-1-5-15.
[140] PIKE C R, ROBERTS A P, DEKKERS M J, et al. An investigation of multi-domain hysteresis mechanisms using FORC diagrams[J]. Physics of the Earth and Planetary Interiors, 2001, 126(1): 11-25.
[141] MUXWORTHY A R, KING J G, HESLOP D. Assessing the ability of first-order reversal curve(FORC) diagrams to unravel complex magnetic signals[J]. Journal of Geophysical Research: Solid Earth, 2005, 110(B1): B01105.
[142] ZHAO X, ROBERTS A P, HESLOP D, et al. Magnetic domain state diag-nosis using hysteresis reversal curves[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(7): 4767-4789.
[143] PLAZA-MORLOTE M, REY D, SANTOS J F, et al. Southernmost evidence of large European Ice Sheet-derived freshwater discharges during the Heinrich Stadials of the Last Glacial Period(Galician Interior Basin, Northwest Iberian Continental Margin)[J]. Earth and Planetary Science Letters, 2017, 457: 213-226.
[144] CHANNELL J E T, HARRISON R J, LASCU I, et al. Magnetic record of deglaciation using FORC-PCA, sortable-silt grain size, and magnetic excursion at 26 ka, from the Rockall Trough(NE Atlantic)[J]. Geochemistry, Geophysics, Geosystems, 2016, 17(5): 1823-1841.
[145] MAXBAUER D P, FEINBERG J M, FOX D L, et al. Response of pedogenic magnetite to changing vegetation in soils developed under uniform climate, topography, and parent material[J]. Scientific Reports, 2017, 7(1): 17575.
[146] HARRISON R J, MURASZKO J, HESLOP D, et al. An Improved Algorithm for Unmixing First-Order Reversal Curve Diagrams Using Principal Component Analysis[J]. Geochemistry, Geophysics, Geosystems, 2018, 19(5): 1595-1610.
[147] ZHOU L P, SHACKLETON N J. Misleading positions of geomagnetic reversal boundaries in Eurasian loess and implications for correlation between continental and marine sedimentary sequences[J]. Earth and Planetary Science Letters, 1999, 168(1): 117-130.
[148] BESSE J, COURTILLOT V. Apparent and true polar wander and the geometry of the geomagnetic field over the last 200 Myr[J]. Journal of Geophysical Research: Solid Earth, 2002, 107(B11): 6-1-6-31.
[149] ROBERTS A P, HESLOP D, ZHAO X, et al. Understanding fine magnetic particle systems through use of first-order reversal curve diagrams[J]. Reviews of Geophysics, 2014, 52(4): 557-602.
[150] 梅西, 张训华, 郑洪波, 等. 南海南部120 ka以来元素地球化学记录的东亚夏季风变迁[J]. 矿物岩石地球化学通报, 2010, 29(02): 134-141.
[151] MARGARI V, SKINNER L C, MENVIEL L, et al. Fast and slow components of interstadial warming in the North Atlantic during the last glacial[J]. Communications Earth Environment, 2020, 1(1): 6.
[152] HEATON T J, KöHLER P, BUTZIN M, et al. Marine 20-The Marine Radiocarbon Age Calibration Curve(0-55,000 cal BP)[J]. Radio-carbon, 2020, 62(4): 779-820.
[153] YANG Y, XIANG R, ZHANG L, et al. Is the upward release of intermediate ocean heat content a possible engine for low-latitude processes?[J]. Geology, 2020, 48(6): 579-583.
[154] RASMUSSEN S O, BIGLER M, BLOCKLEY S P, et al. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy[J]. Quaternary Science Reviews, 2014, 106: 14-28.
[155] CHENG H, EDWARDS R L, SINHA A, et al. The Asian monsoon over the past 640,000 years and ice age terminations[J]. Nature, 2016, 534(7609): 640-646.
[156] THOMPSON L G, YAO T, DAVIS M E, et al. Tropical Climate Instability: The Last Glacial Cycle from a Qinghai-Tibetan Ice Core[J]. Science, 1997, 276(5320): 1821-1825.
[157] HOU J, HUANG Y, ZHAO J, et al. Large Holocene summer temperature oscillations and impact on the peopling of the northeastern Tibetan Plateau[J]. Geophysical Research Letters, 2016, 43(3): 1323-1330.
[158] LOUGHEED B C, OBROCHTA S. A Rapid, Deterministic age‐depth modeling routine for geological sequences with inherent depth uncertainty[J]. Paleoceanography and Paleoclimatology, 2019, 34(1): 122-133.
[159] DUAN Z, LIU Q, SHI X, et al. Reconstruction of high-resolution magnetostratigraphy of the Changjiang(Yangtze) River Delta, China[J]. Geophysical Journal International, 2016, 204(2): 948-960.
[160] YAMAZAKI T, INOUE S, SHIMONO T, et al. Sea-ice conditions in the Okhotsk Sea during the last 550 kyr deduced from environmental magnetism[J]. Geochemistry, Geophysics, Geosystems, 2013, 14(12): 5026-5040.
[161] EGLI R. Characterization of individual rock magnetic components by analysis of remanence curves.: 2. Fundamental properties of coercivity distributions[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2004, 29(13): 851-867.
[162] YAMAZAKI T. Paleoposition of the Intertropical Convergence Zone in the eastern Pacific inferred from glacial-interglacial changes in terrigenous and biogenic magnetic mineral fractions[J]. Geology, 2012, 40(2): 151-154.
[163] DUNLOP D J. The Hunting of the ‘Psark’[M]//DUNLOP D J. Origin of Thermoremanent Magnetization: Proceedings of AGU 1976 Fall Annual Meeting December 1976, San Francisco. Dordrecht; Springer Netherlands. 1977: 61-86.
[164] KOPP R E, KIRSCHVINK J L. The identification and biogeochemical interpretation of fossil magnetotactic bacteria[J]. Earth-Science Reviews, 2008, 86(1): 42-61.
[165] EGLI R, CHEN A P, WINKLHOFER M, et al. Detection of noninteracting single domain particles using first-order reversal curve diagrams[J]. Geochemistry, Geophysics, Geosystems, 2010, 11(1): Q01Z11.
[166] WEI G, GUI X, LI X, et al. Strontium and neodymium isotopic compositions of detrital sediment of NS90-103 from South China Sea: Variations and their paleoclimate implication[J]. Science in China Series D: Earth Sciences, 2000, 43(6): 596-604.
[167] WAN S, CLIFT P D, ZHAO D, et al. Enhanced silicate weathering of tropical shelf sediments exposed during glacial lowstands: A sink for atmospheric CO2[J]. Geochimica et Cosmochimica Acta, 2017, 200: 123-144.
[168] KLINKHAMMER G P, PALMER M R. Uranium in the oceans: Where it goes and why[J]. Geochimica et Cosmochimica Acta, 1991, 55(7): 1799-1806.
[169] ANDERSON R F, BACON M P, BREWER P G. Removal of 230Th and 231Pa at ocean margins[J]. Earth and Planetary Science Letters, 1983, 66: 73-90.
[170] KRUIVER P P, DEKKERS M J, HESLOP D. Quantification of magnetic coercivity components by the analysis of acquisition curves of isothermal remanent magnetisation[J]. Earth and Planetary Science Letters, 2001, 189(3): 269-276.
[171] FANJAT G, CAMPS P, SHCHERBAKOV V, et al. Magnetic interactions at the origin of abnormal magnetic fabrics in lava flows: a case study from Kerguelen flood basalts[J]. Geophysical Journal International, 2012, 189(2): 815-832.
[172] ROCHETTE P, JENATTON L, DUPUY C, et al. Diabase Dikes Emplacement in the Oman Ophiolite: A Magnetic Fabric Study with Reference to Geochemistry[M]. Berlin Heidelberg: Springer, 1991.
[173] MERLE O. Internal strain within lava flows from analogue modelling[J]. Journal of Volcanology and Geothermal Research, 1998, 81(3): 189-206.
[174] ARCHANJO C J, ARAúJO M G S, LAUNEAU P. Fabric of the Rio Ceará–Mirim mafic dike swarm(northeastern Brazil) determined by anisotropy of magnetic susceptibility and image analysis[J]. Journal of Geophysical Research: Solid Earth, 2002, 107(B3): 1-1-1-13.
[175] SHAAR R, FEINBERG J M. Rock magnetic properties of dendrites: insights from MFM imaging and implications for paleomagnetic studies[J]. Geochemistry, Geophysics, Geosystems, 2013, 14(2): 407-421.
[176] SCHöBEL S, WALL H D, ROLF C. AMS in basalts: is there a need for prior demagnetization?[J]. Geophysical Journal International, 2013, 195(3): 1509-1518.
[177] SCHUMANN D, RAUB T D, KOPP R E, et al. Gigantism in unique biogenic magnetite at the Paleocene-Eocene Thermal Maximum[J]. Proceedings of the National Academy of Sciences, 2008, 105(46): 17648-17653.
[178] CHANG L, ROBERTS A P, WILLIAMS W, et al. Giant magnetofossils and hyperthermal events[J]. Earth and Planetary Science Letters, 2012, 351: 258-269.
[179] BOYD P W, ELLWOOD M J. The biogeochemical cycle of iron in the ocean[J]. Nature Geoscience, 2010, 3(10): 675-682.
[180] ROBERTS A P, FLORINDO F, VILLA G, et al. Magnetotactic bacterial abundance in pelagic marine environments is limited by organic carbon flux and availability of dissolved iron[J]. Earth and Planetary Science Letters, 2011, 310(3-4): 441-452.
[181] SNOWBALL I, ZILLéN L, SANDGREN P. Bacterial magnetite in Swedish varved lake-sediments: a potential bio-marker of environmental change[J]. Quaternary International, 2002, 88(1): 13-19.
[182] SUK D. Environmental conditions for the presence of magneto-fossils in the Last Glacial Maximum inferred from magnetic parameters of sediments from the Ulleung Basin, East Sea[J]. Marine Geology, 2016, 372: 53-65.
[183] ZHANG Q, LIU Q, ROBERTS A P, et al. Magnetotactic bacterial activity in the North Pacific Ocean and its relationship to Asian dust inputs and primary productivity since 8.0 Ma[J]. Geophysical Research Letters, 2021, 48(15): e2021GL094687.
[184] GIBBS S J, BRALOWER T J, BOWN P R, et al. Shelf and open-ocean calcareous phytoplankton assemblages across the Paleocene-Eocene Thermal Maximum: Implications for global productivity gradients[J]. Geology, 2006, 34(4): 233-236.
[185] DICKENS G R, CASTILLO M M, WALKER J C. A blast of gas in the latest Paleocene: Simulating first-order effects of massive dissociation of oceanic methane hydrate[J]. Geology, 1997, 25(3): 259-262.
[186] FAIVRE D, SCHULER D. Magnetotactic bacteria and magneto-somes[J]. Chemical reviews, 2008, 108(11): 4875-4898.
[187] XIONG P, DUDZIŃSKA-NOWAK J, HARFF J, et al. Modeling paleo-geographic scenarios of the last glacial cycle as a base for source-to-sink studies: An example from the northwestern shelf of the South China Sea[J]. Journal of Asian Earth Sciences, 2020, 203: 104542.
[188] WEN X, LIU Z, WANG S, et al. Correlation and anti-correlation of the East Asian summer and winter monsoons during the last 21,000 years[J]. Nature Communications, 2016, 7(1): 1-7.
[189] YIN J, YANG X, ZHOU Q, et al. Sea surface temperature and salinity variations from the end of Last Glacial Maximum(LGM) to the Holocene in the northern South China Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 562: 110102.
[190] DYKOSKI C A, EDWARDS R L, CHENG H, et al. A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China[J]. Earth and Planetary Science Letters, 2005, 233(1): 71-86.
[191] LAMBECK K, ROUBY H, PURCELL A, et al. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene[J]. Proceedings of the National Academy of Sciences, 2014, 111(43): 15296-15303.
[192] DYKOSKI C A, EDWARDS R L, CHENG H, et al. A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China[J]. Earth and Planetary Science Letters, 2005, 233(1-2): 71-86.
[193] WANG Y, CHENG H, EDWARDS R, et al. A High-Resolution Absolute-Dated Late Pleistocene Monsoon Record from Hulu Cave, China[J]. Science, 2001, 294: 2345-2348.
[194] ZHENG X, KAO S, CHEN Z, et al. Deepwater circulation variation in the South China Sea since the Last Glacial Maximum[J]. Geophysical Research Letters, 2016, 43(16): 8590-8599.
[195] DUNLOP D J, ÖZDEMIR Ö. Rock magnetism: fundamentals and frontiers[M]. Cambridge university press, 2001.
[196] CHANNELL J E T, STONER J S, HODELL D A, et al. Geomagnetic paleointensity for the last 100 kyr from the sub-antarctic South Atlantic: a tool for inter-hemispheric correlation[J]. Earth and Planetary Science Letters, 2000, 175(1): 145-160.
[197] BRACHFELD S A, BANERJEE S K. A new high-resolution geomagnetic relative paleointensity record for the North American Holocene: A comparison of sedimentary and absolute intensity data[J]. Journal of Geophysical Research: Solid Earth, 2000, 105(B1): 821-834.
[198] KING J W, BANERJEE S K, MARVIN J. A new rock-magnetic approach to selecting sediments for geomagnetic paleointensity studies: Application to paleointensity for the last 4000 years[J]. Journal of Geophysical Research: Solid Earth, 1983, 88(B7): 5911-5921.

所在学位评定分委会
力学
国内图书分类号
P318
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544124
专题工学院_海洋科学与工程系
推荐引用方式
GB/T 7714
王浩森. 南海沉积物的磁学机制及对古地磁场与古环境记录的指示意义研究[D]. 深圳. 南方科技大学,2021.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930841-王浩森-海洋科学与工程(10395KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[王浩森]的文章
百度学术
百度学术中相似的文章
[王浩森]的文章
必应学术
必应学术中相似的文章
[王浩森]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。