中文版 | English
题名

桨驱动微型自主水下机器人系统设计

其他题名
SYSTEM DESIGN OF PROPELLER-BASED MINITURIZED AUTONOMOUS UNDERWATER VEHICLE
姓名
姓名拼音
LUO Yang
学号
12132280
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
08 工学
导师
魏艳
导师单位
机械与能源工程系
论文答辩日期
2023-05-13
论文提交日期
2023-06-27
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

自主水下潜航器(AUV),又称自主水下机器人,是指在无人干预的情况下,能够独立完成自主导航、自主避障、自主作业等任务的水下机器人。自主水下机器人在军事侦察、自然资源勘探、救助打捞、管道及船体探伤等领域发挥着重要作用。目前,国内外关于自主水下机器人研究的工作,一部分集中在较大型的航行器,其丰富的传感器可以极大提高机器人智能化水平,但体积较大无法探测狭窄场景;另一部分集中在微小型仿生机器人,由于智能化程度较低不能满足复杂场景的探测需求。在一些复杂而狭窄的探测场景中,自主水下机器人需要同时具备体积小、自主性高、感知力强、机动性好的性能特点。
针对这一应用需求,本文设计了一个基于螺旋桨驱动的微型自主水下机器人,以实现在狭窄复杂场景的高机动自主探测侦察。机器人集成了高性能处理器树莓派CM4 模块、STM32F4 系列核心处理器、高清相机模块、高精度惯性测量单元(IMU)、水深传感器等,以提高数据处理和环境感知能力。通过IMU、水深传感器实时获取机器人的姿态和位置信息,处理器控制六个螺旋桨的运动状态,实现空间六自由度运动。高清相机捕获环境数据,处理器通过图像处理、目标识别算法处理数据,进而实现环境探测并为机器人运动提供参考。高度集成的电路设计和外壳设计,确保了整机的最大长度为12.88 厘米,最大直径为5.62 厘米,以便于适用更多狭小
探测场景;主处理器、协处理器配合的双系统设计,确保了高效的数据处理和稳定的姿态控制;丰富的传感器集成、高性能处理器选用和多种图像处理算法的开发,为目标跟踪和识别提供了更多可能性。经过水下实验和管道测试,本文设计的自主水下机器人在狭窄通道中显示出优越的运动性能和目标探测能力。

其他摘要

Autonomous underwater vehicles (AUVs), also known as autonomous underwater robots, are underwater robots that can independently perform tasks such as autonomous navigation, autonomous obstacle avoidance, and autonomous operations without human intervention. Autonomous underwater robots play an important role in military reconnaissance, natural resource exploration, rescue and salvage, pipeline and ship hull probing, etc. At present, some work on autonomous underwater robots focuses on larger navigators, where sensors can greatly improve the intelligence of the robot, but they cannot detect narrow scenes with the larger size; another work focus on micro and small bionic robots, which cannot meet the detection needs of complex scenes due to the lower intelligence. In some complex and narrow detection scenes, autonomous underwater robots need to have the performance characteristics of small size, high autonomy, strong perception and good mobility at the same time.

For this application requirement, this thesis designs a propeller-driven miniature autonomous underwater robot to achieve highly mobile autonomous detection and reconnaissance in narrow and complex scenes. The robot integrates a high-performance processor Raspberry Pi CM4 module, STM32F4 series core processor, high-definition camera module, high-precision inertial measurement unit (IMU), and bathymetry sensor to improve data processing and environment sensing capability. The IMU and water depth sensor acquire the robot's attitude and position information in real time, and the processor controls the motion state of the six propellers to achieve six degrees of freedom movement in space. The HD camera captures environmental data, and the processor processes the data through image processing and target recognition algorithms to achieve environmental detection and provide reference for robot motion. The highly integrated circuit design and housing design ensure that the robot has a maximum length of 12.88 cm and a maximum diameter of 5.62 cm to allow for more narrow detection scenarios; the dual system design with main processor and co-processor ensures efficient data processing and stable attitude control; the rich sensor integration, the selection of high-performance processor and the development of various image processing algorithms provide more possibilities for target tracking and identification. After underwater experiments and pipeline tests, the autonomous underwater robot in this thesis has shown superior motion performance and target detection capability through narrow passages.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2023-06
参考文献列表

[1] PACKARD G E, KUKULYA A, AUSTIN T, et al. Continuous autonomous tracking and imaging of white sharks and basking sharks using a REMUS -100 AUV[C]//2013 OCEANS-San Diego. IEEE, 2013: 1-5.
[2] BUCKINGHAM B, WHILDEN K A, SHIELDS M, et al. Slocum glider observations of the subsurface chlorophyll-a maximum on the texas continental shelf boundary[C]//Global Oceans 2020: Singapore –US Gulf Coast. IEEE, 2020: 1-5.
[3] MILLARD N, MCPHAIL S, PEBODY M, et al. Autosub-1. From test-tank to autonomy and the science beyond[C]// Seventh International Conference on Electronic Engineering in Oceanography . IET, 1997: 1-8.
[4] LEHMANN B, SIANTIDIS K, KRAUS D, et al. Active contours for object characterization in sonar images[C]//Underwater Defence Technol. 2011.
[5] WANG R, WANG S, WANG Y, et al. Development and motion control of biomimetic underwater robots: A Survey[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(2): 833 -844.
[6] TRIANTAFYLLOU M S, TRIANTAFYLLOU G S. An efficient swimming machine [J]. Scientific American, 1995, 272(3): 64 -70.
[7] MANOJ B S, SEKHAR A, MURTHY C S R. On the use of limited autonomous mobility for dynamic coverage maintenance in sensor networks[J]. Computer Networks, 2007, 51( 8): 2126-2143.
[8] DURAISAMY P, SIDHARTHAN R K, SANTHANAKRISHNAN M N. Design, modeling, and control of biomimetic fish robot: A Review[J]. Journal of Bionic Engineering, 2019, 16(6): 967 -993.
[9] CLAPHAM R J, HU H. iSplash: Realizing fast carangiform swimming to outperform a real fish[J]. Robot fish: bio -inspired fishlike underwater robots, 2015: 193-218.
[10] CLAPHAM R, HU H. ISplash-I: High performance swimming motion of a carangiform robotic fish with full-body coordination[C]//2014 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2014: 322-327.
[11] EPSTEIN M, COLGATE J E, MACIVER M A, et al. Generating thrust with a biologically-inspired robotic ribbon fin[C]//2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2006: 2412-2417.
[12] MACIVER M A, FONTAINE E, BURDICK J W. Designing future underwater vehicles: Principles and mechanisms of the weakly electric fish[J]. I EEE Journal of Oceanic Engineering, 2004, 29(3): 651 -659.
[13] Zhou C, Low K H. Better endurance and load capacity: an improved design of manta ray robot (RoMan-II)[J]. Journal of Bionic Engineering, 2010, 7: S137-S144.
[14] BEHBAHANI S B, WANG J, TAN X, et al. A dynamic model for robotic fish with flexible pectoral fins[C]//2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. IEEE, 2013: 1552 -1557.
[15] M.MOILER A S P B M W A S F D. Focus project Sepios:Riding the wave of progress[R]. ETH Zurich Autonomous Systems Lab, 2014 .
[16] HEO S, WIGUNA T, PARK H C, et al. Effect of an artificial caudal fin o n the performance of a biomimetic fish robot propelled by piezoelectric actuators[J]. Journal of Bionic Engineering, 2007, 4(3): 151 -158.
[17] MBEMMO E, CHEN Z, SHATARA S, et al. Modeling of biomimetic robotic fish propelled by an ionic polymer-metal composite actuator[C]//2008 IEEE International Conference on Robotics and Automation. IEEE, 2008: 689 -694.
[18] 沈春蕾. 国产自主水下机器人从追赶到并跑[N]. 中国科学报, 2022-01-25(001).
[19] 李硕, 刘健, 徐会希, 等. 我国深海自主水下机器人的研究现状[J]. 中国科学: 信息科学, 2018, 48(9): 1152 -1164.
[20] 封锡盛, 李一平, 徐会希, 等. 深海自主水下机器人发展及其在资源调查中的应用[J]. 中国有色金属学报, 2021, 31(10): 2746-2756.
[21] 吴杰, 王志东, 凌宏杰, 等. 深海作业型带缆水下机器人关键技术综述[J]. 江苏科技大学学报: 自然科学版, 2020, 34(4): 1-12.
[22] 王磊, 任国征. 新时代海洋机器人助推海洋强国战略[J]. 第九届海洋强国战略论坛论文集, 2018.
[23] CHEN D, SHAO W, XU C. Development of a soft robotic fish with BCF propulsion using MFC smart materials[C]//2018 37th Chinese Control Conference (CCC). IEEE, 2018: 5358 -5363.
[24] DU S, ZHOU C, YU J, et al. A modified line -of-sight method for path tracking applied to robotic fish[C]//2020 IEEE International Conference on Mechatronics and Automation (ICMA). IEEE, 2020: 809 -814.
[25] WANG R, WANG S, WANG Y, et al. Vision -based autonomous hovering for the biomimetic underwater robot—RobCutt-II[J]. IEEE Transactions on Industrial Electronics, 2019, 66(11): 8578 -8588.
[26] WANG Y, WANG R, WANG S, et al. Underwater bioinspired propulsion: from inspection to manipulation[J]. IEEE Transactions on Industrial Electronics, 2020, 67(9): 7629-7638.
[27] ZHANG S, QIAN Y, LIAO P, et al. Design and control of an agile robotic fish with integrative biomimetic mechanisms[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(4): 1846 -1857.
[28] DENG B, BO Z, JIA Y, et al. Research on STM32 development board based on ARM Cortex-M3[C]//2020 IEEE 2nd International Conference on Civil Aviation Safety and Information Techno logy (ICCASIT). IEEE, 2020: 266 -272.
[29] WEI W, KURITA K, KUANG J, et al. Real-time 3D arm motion tracking using the 6-axis IMU sensor of a smartwatch[C]//2021 IEEE 17th International Conference on Wearable and Implantable Body Sensor Networks (BSN). IEEE, 2021: 1-4.
[30] TANG S, YANG W, BAJENOV A, et al. Inertial-Measurement-Unit (IMU) based motion tracking for biomorphic hyper-redundant snake robot[C]//2017 IEEE 7th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER). IEEE, 2017: 1124 -1129.
[31] MAHONY R, KUMAR V, CORKE P. Multirotor aerial vehicles: modeling, estimation, and control of quadrotor[J]. IEEE Robotics & Automation Magazine, 2012, 19(3): 20-32.
[32] Fang Z, Wang X, Sun J. Design and nonlinear control of an i ndoor quadrotor flying robot[C]//2010 8th World Congress on Intelligent Control and Automation. IEEE, 2010: 429 -434.
[33] ZHOU J, WANG S Z. Dynamics modeling and maneuverability simulation of the unmanned underwater vehicle hanging torpedoes externally[C]//2009 International Asia Conference on Informatics in Control, Automation and Robotics. IEEE, 2009: 207-210.
[34] WADOO S, KACHROO P. Autonomous underwater vehicles: modeling, control design and simulation[M]. CRC press, 2017.
[35] STEINBUSCH A, REYHANOGLU M. Robust nonlinear output feedback control of a 6-DOF quadrotor UAV[C]//2019 12th Asian Control Conference (ASCC). IEEE, 2019: 1655-1660.
[36] WANG L, MENG L, KANG R, et al. Design and dynamic locomotion control of quadruped robot with perception -less terrain adaptation[J]. Cyborg and Bionic Systems, 2022, 2022.
[37] ABRO G E M, ZULKIFLI S A B M, ASIRVADAM V S. Performance evaluation of Newton Euler & quaternion mathematics-based dynamic models for an underactuated quadrotor UAV[C]//2021 11th IEEE international conference on control system, computing and engineering (ICCSCE). IEEE, 2021: 142-147.
[38] REN X, HUANG Q, XIA X, et al. Characterizing common and domain -specific package bugs: A case study on ubuntu[C]//2018 IEEE 42nd Annual Computer Software and Applications Confer ence (COMPSAC). IEEE, 2018, 1: 426-431.
[39] ZHAO C, HUA Z. Design of motor speed control system based on STM32 microcontroller[C]//2022 International Conference on Computation, Big -Data and Engineering (ICCBE). IEEE, 2022: 274 -276.
[40] LIU P, XIAO C, HE J, et al. Research on smart home system based on STM32[C]//2022 3rd Information Communication Technologies Conference (ICTC). IEEE, 2022: 260-264.
[41] JIANG S, ZHU Z. Ship insulation monitoring and fault location system based on STM32[C]//2020 IEEE 18th International Co nference on Industrial Informatics (INDIN). IEEE, 2020, 1: 851 -856.
[42] MAUMELA T, ṊELWAMONDO F, MARWALA T. Introducing ulimisana optimization algorithm based on ubuntu philosophy[J]. IEEE Access, 2020, 8: 179244-179258.
[43] MA L, ZHAO D. Research on setting of two firewall rules based on ubuntu Linux system[C]//2022 International Conference on Computer Network, Electronic and Automation (ICCNEA). IEEE, 2022: 178 -182.
[44] ZHANG Q, Li H, WAN X, et al. An intelligent waste removal system for smarter communities[J]. Susta inability, 2020, 12(17): 6829.
[45] STONE D L, SHAH G, MOTAI Y. Direct spherical calibration of omnidirectional far infrared camera system[J]. IEEE Sensors Journal, 2019, 19(13): 5285-5298.
[46] DIMA E, SJOSTROM M, OLSSON R. Assessment of multi-camera calibration algorithms for two-dimensional camera arrays relative to ground truth position and direction[C]//2016 3DTV-Conference: The True VisionCapture,Transmission and Display of 3D Video (3DTV -CON). IEEE, 2016: 1-4.
[47] FETIĆ A, JURIĆ D, OSMANKOVIĆ D. The procedure of a camera calibration using Camera Calibration Toolbox for MATLAB[C]//2012 Proceedings of the 35th International Convention MIPRO. IEEE, 2012: 1752 -1757.
[48] BAVLE H, PUENTE P D L, HOW J P, et al. VPS-SLAM: Visual planar semantic SLAM for aerial robotic systems[J]. IEEE Access, 2020, 8: 60704 -60718.
[49] SATZODA R K, SUCHITRA S, SRIKANTHAN T. Parallelizing the Hough transform computation[J]. IEEE Signal Processing Letters, 2008, 15: 297 -300.
[50] BONCI A, LEO T, LONGHI S. A bayesian approach to the Hough transform for line detection[J]. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 2005, 35(6): 945 -955.
[51] DING Y, LIN X, SUN K, et al. Human target localization using Hough transform and doppler processing[J]. IEEE Geoscience and Remote Sensi ng Letters, 2016, 13(10): 1457-1461.
[52] LIU Y Q, DU X, SHEN H L, et al. Estimating generalized Gaussian blur kernels for out-of-focus image deblurring[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31(3): 829 -843.
[53] LAI Y C, HUO C L, YU Y H, et al. PSO-based estimation for Gaussian blur in blind image deconvolution problem[C]//2011 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2011). IEEE, 2011: 1143-1148.
[54] BAI Z, WANG L, ZHOU S, et al. Fast recognition method of football ro bot’s graphics from the VR perspective[J]. IEEE Access, 2020, 8: 161472 -161479.
[55] ZHANG H, LU B, YU Y. The method of ostu used in the video detection of vehicles[C]//2008 International Conference on Intelligent Computation Technology and Automation (ICICTA). IEEE, 2008, 2: 547-551.

所在学位评定分委会
材料与化工
国内图书分类号
TP242
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544126
专题工学院_机械与能源工程系
推荐引用方式
GB/T 7714
罗杨. 桨驱动微型自主水下机器人系统设计[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132280-罗杨-机械与能源工程系(6576KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[罗杨]的文章
百度学术
百度学术中相似的文章
[罗杨]的文章
必应学术
必应学术中相似的文章
[罗杨]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。