中文版 | English
题名

多量子比特的表征与标定

其他题名
CHARACTERIZATION AND CALIBRATION OF MULTI-QUBITS
姓名
姓名拼音
YANG Zusheng
学号
12032697
学位类型
硕士
学位专业
080902 电路与系统
学科门类/专业学位类别
08 工学
导师
付柏山
导师单位
量子科学与工程研究院
论文答辩日期
2023-05-23
论文提交日期
2023-06-28
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

      量子计算作为一种基于量子力学的新型计算模式,可以大幅提升算力,在量子搜索、量子加解密以及量子模拟等方面有巨大的应用价值。超导量子计算近些年获得了突飞猛进的发展,被公认为是扩展性最好、最有希望实现通用量子计算机的方式之一。通用的超导量子计算机,需要对大量的量子比特进行快速且精确的门操作。对门操作错误率进行表征,是提高门操作精准控制的前提。而随着超导量子计算系统规模的扩大,传统的表征方案,例如过程层析技术和随机基准测试技术,在扩展性方面受到限制,对多比特门操作的错误率进行表征成为当前需要解决的问题。

       周期基准测试和交叉熵基准测试都是较新的表征方案,相比传统表征方案更具有扩展潜力,作者分别使用这两种方式对超导量子多比特线路进行了表征。尤其是周期基准测试,尚未在超导量子计算实验平台被广泛应用。作者研究了表征方案的相关理论,完成了周期基准测试和交叉熵基准测试两款表征软件的编写。在单比特门的表征实验中,使用新编写的两种表征软件得到的保真度,与通过传统的随机基准测试得到的保真度一致,三者的差距都在千分之一左右。在两比特门的表征实验中,每种方案都能得到稳定的保真度,同种方案重复测量的差异在千分之一左右。实验验证了这两种表征软件都有表征单比特门和两比特门的能力。在四比特门的表征实验中,传统方案已不能有效地给出保真度,但是周期基准测试方案仍能得到稳定的表征结果。在对串扰影响进行表征时,交叉熵基准测试能够准确表征出多比特线路中单比特门受到的串扰影响,为多比特线路中单比特门的校准提供了有效的表征工具。

      为了更加高效地完成表征工作,作者先后开发了超导量子计算测控软件以及量子比特自动标定软件,能够将门操作标定缩短近一半的时间。为了能够在不同平台使用相同的表征线路,作者开发了可跨平台的量子表征软件框架,实现了表征线路生成代码的复用。

       超导量子计算实验需要低至10 mK的超低温测试环境,稀释制冷机是唯一可以稳定提供10 mK的超低温设备。但目前稀释制冷机的进口受到国外限制,国内商业稀释制冷机尚未面世,稀释制冷机的国产自主研发,是国内量子计算研究的迫切需求。作者参加了稀释制冷机的国产自主研发工作,开发出稀释制冷机的气体循环处理系统。该系统作为稀释制冷机系统中自动控制的重要组成部分,已经投入使用。在干式稀释制冷机中,冷头的振动会对超导量子芯片产生噪声干扰。为了降低冷头的振动,作者提出了冷头减振设计,该设计已经被安装在稀释制冷机中。

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2023-06
参考文献列表

[1] SHOR P. Algorithms for quantum computation: discrete logarithms and factoring[C/OL]// Proceedings 35th Annual Symposium on Foundations of Computer Science. 1994: 124-134. DOI: 10.1109/SFCS.1994.365700.
[2] SHOR P W, PRESKILL J. Simple Proof of Security of the BB84 Quantum Key Distribution Protocol[J/OL]. Phys. Rev. Lett., 2000, 85: 441-444. https://link.aps.org/doi/10.1103/PhysRev Lett.85.441.
[3] EKERT A K. Quantum cryptography based on Bell’s theorem[J/OL]. Phys. Rev. Lett., 1991, 67: 661-663. https://link.aps.org/doi/10.1103/PhysRevLett.67.661.
[4] GROVER L K. A fast quantum mechanical algorithm for database search[C]//Symposium on the Theory of Computing. 1996.
[5] FEYNMAN R P. Simulating physics with computers[J/OL]. International Journal of Theoretical Physics, 1982, 21(6): 467-488. https://doi.org/10.1007/BF02650179.
[6] SIMON J, BAKR W S, MA R, et al. Quantum Simulation of Antiferromagnetic Spin Chains in an Optical Lattice[J]. Nature, 2011, 472(7343): 307-312.
[7] BRAUMÜLLER J, KARAMLOU A H, YANAY Y, et al. Probing quantum information propagation with out-of-time-ordered correlators[J/OL]. Nature Physics, 2022, 18(2): 172-178. https://doi.org/10.1038/s41567-021-01430-w.
[8] JORDAN S P, LEE K S M, PRESKILL J. Quantum Algorithms for Quantum Field Theories [J/OL]. Science, 2012, 336(6085): 1130-1133. https://www.science.org/doi/abs/10.1126/scie nce.1217069.
[9] BENIOFF P. The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines[J/OL]. Journal of Statistical Physics, 1980, 22(5): 563-591. https://doi.org/10.1007/BF01011339.
[10] Feynman R P. Simulating Physics with Computers[J/OL]. International Journal of Theoretical Physics, 1982, 21(6-7): 467-488. DOI: 10.1007/BF02650179.
[11] FEYNMAN R P. Quantum mechanical computers[J/OL]. Foundations of Physics, 1986, 16(6): 507-531. https://doi.org/10.1007/BF01886518.
[12] DEUTSCH D, JOZSA R. Rapid Solution of Problems by Quantum Computation[J/OL]. Proceedings: Mathematical and Physical Sciences, 1992, 439(1907): 553-558
[2023-04-16]. http://www.jstor.org/stable/52182.
[13] SAGGIO V, ASENBECK B E, HAMANN A, et al. Experimental quantum speed-up in reinforcement learning agents[J/OL]. Nature, 2021, 591(7849): 229-233. https://doi.org/10.1038/ s41586-021-03242-7.
[14] CHUANG I L, GERSHENFELD N, KUBINEC M. Experimental Implementation of Fast Quantum Searching[J/OL]. Phys. Rev. Lett., 1998, 80: 3408-3411. https://link.aps.org/doi/10.1103 /PhysRevLett.80.3408.
[15] DIVINCENZO D P. The Physical Implementation of Quantum Computation[J/OL]. Fortschritte der Physik, 2000,48(9-11): 771-783. https://onlinelibrary.wiley.com/doi/abs/ 10.1002/1521-3978%28200009%2948%3A9/11%3C771%3A%3AAID-PROP771%3E3.0.CO%3B2-E. DOI:https://doi.org/10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E.
[16] CIRAC J I, ZOLLER P. Quantum Computations with Cold Trapped Ions[J/OL]. Phys. Rev. Lett., 1995, 74: 4091-4094. https://link.aps.org/doi/10.1103/PhysRevLett.74.4091.
[17] HARTY T P, ALLCOCK D T C, BALLANCE C J, et al. High-Fidelity Preparation, Gates, Memory, and Readout of a Trapped-Ion Quantum Bit[J/OL]. Phys. Rev. Lett., 2014, 113: 220501. https://link.aps.org/doi/10.1103/PhysRevLett.113.220501.
[18] MONROE C, MEEKHOF D M, KING B E, et al. Demonstration of a Fundamental Quantum Logic Gate[J/OL]. Phys. Rev. Lett., 1995, 75: 4714-4717. https://link.aps.org/doi/10.1103/Phy sRevLett.75.4714.
[19] MONROE C, CAMPBELL W C, DUAN L M, et al. Programmable quantum simulations of spin systems with trapped ions[J/OL]. Rev. Mod. Phys., 2021, 93: 025001. https://link.aps.org /doi/10.1103/RevModPhys.93.025001.
[20] LOSS D, DIVINCENZO D P. Quantum computation with quantum dots[J/OL]. Phys. Rev. A, 1998, 57: 120-126. https://link.aps.org/doi/10.1103/PhysRevA.57.120.
[21] HAYASHI T, FUJISAWA T, CHEONG H D, et al. Coherent Manipulation of Electronic States in a Double Quantum Dot[J/OL]. Phys. Rev. Lett., 2003, 91: 226804. https://link.aps.org/doi/1 0.1103/PhysRevLett.91.226804.
[22] VELDHORST M, YANG C H, HWANG J C C, et al. A two-qubit logic gate in silicon[J/OL]. Nature, 2015, 526(7573): 410-414. https://doi.org/10.1038/nature15263.
[23] KOCH J, YU T M, GAMBETTA J, et al. Charge-insensitive qubit design derived from the Cooper pair box[J/OL]. Phys. Rev. A, 2007, 76: 042319. https://link.aps.org/doi/10.1103/Phy sRevA.76.042319.
[24] PAIK H, SCHUSTER D I, BISHOP L S, et al. Observation of High Coherence in Josephson Junction Qubits Measured in a Three-Dimensional Circuit QED Architecture[J/OL]. Phys. Rev. Lett., 2011, 107: 240501. https://link.aps.org/doi/10.1103/PhysRevLett.107.240501.
[25] ORLANDO T P, MOOIJ J E, TIAN L, et al. Superconducting persistent-current qubit[J/OL]. Phys. Rev. B, 1999, 60: 15398-15413. https://link.aps.org/doi/10.1103/PhysRevB.60.15398.
[26] EARNEST N, CHAKRAM S, LU Y, et al. Realization of a Λ System with Metastable States of a Capacitively Shunted Fluxonium[J/OL]. Physical Review Letters, 2018, 120(15). DOI: 10.1103/PhysRevLett.120.150504.
[27] NI Z, LI S, DENG X, et al. Beating the break-even point with a discrete-variable-encoded logical qubit[J/OL]. Nature, 2023, 616(7955): 56-60. https://doi.org/10.1038/s41586-023-05784-4.
[28] BOUCHIAT V, VION D, JOYEZ P, et al. Quantum coherence with a single Cooper pair[J/OL]. Physica Scripta, 1998, 1998(T76): 165. https://dx.doi.org/10.1238/Physica.Topical.076a001 65.
[29] MARTINIS J M, NAM S, AUMENTADO J, et al. Rabi oscillations in a large Josephsonjunction qubit[J]. Phys Rev Lett, 2002, 89(11): 117901.
[30] BARENDS R, KELLY J, MEGRANT A, et al. Coherent Josephson Qubit Suitable for Scalable Quantum Integrated Circuits[J/OL]. Phys. Rev. Lett., 2013, 111: 080502. https://link.aps.org/d oi/10.1103/PhysRevLett.111.080502.
[31] BLAIS A, HUANG R S, WALLRAFF A, et al. Cavity Quantum Electrodynamics for Superconducting Electrical Circuits: An Architecture for Quantum Computation[J/OL]. Physical Review A, 2004, 69(6): 062320. DOI: 10.1103/PhysRevA.69.062320.
[32] LISENFELD J, BILMES A, USTINOV A V. Enhancing the coherence of superconducting quantum bits with electric fields[J/OL]. npj Quantum Information, 2023, 9(1): 8. https://doi.or g/10.1038/s41534-023-00678-9.
[33] CHANG J B, VISSERS M R, CóRCOLES A D, et al. Improved superconducting qubit coherence using titanium nitride[J/OL]. Applied Physics Letters, 2013, 103(1): 012602. https: //doi.org/10.1063/1.4813269.
[34] ARUTE F, ARYA K, BABBUSH R, et al. Quantum supremacy using a programmable superconducting processor[J/OL]. Nature, 2019, 574(7779): 505-510. https://doi.org/10.1038/s415 86-019-1666-5.
[35] WU Y, BAO W S, CAO S, et al. Strong Quantum Computational Advantage Using a Superconducting Quantum Processor[J/OL]. Phys. Rev. Lett., 2021, 127: 180501. https://link.aps.org/doi/10.1103/PhysRevLett.127.180501.
[36] GONG M, WANG S, ZHA C, et al. Quantum walks on a programmable two-dimensional 62- qubit superconducting processor[J/OL]. Science, 2021, 372(6545): 948-952. https://www.scie nce.org/doi/abs/10.1126/science.abg7812.
[37] CHEN Z. Metrology of Quantum Control and Measurement in Superconducting Qubits[C]// 2018.
[38] BRAVYI S B, KITAEV A Y. Quantum codes on a lattice with boundary[J]. Physics, 1998.
[39] NIELSEN M A, CHUANG I L. Quantum Computation and Quantum Information: 10th Anniversary Edition[M/OL]. Cambridge University Press, 2010. DOI: 10.1017/CBO978051197 6667.
[40] PRESKILL J. Fault-tolerant quantum computation[A]. 1997.
[41] LINKE N M, GUTIERREZ M, LANDSMAN K A, et al. Fault-tolerant quantum error detection [J/OL]. Science Advances, 2017, 3(10): e1701074. https://www.science.org/doi/abs/10.1126/ sciadv.1701074.
[42] BRUN T, DEVETAK I, HSIEH M H. Correcting Quantum Errors with Entanglement[J/OL]. Science, 2006, 314(5798): 436-439. https://www.science.org/doi/abs/10.1126/science.113156 3.
[43] BELL B A, HERRERA-MARTÍ D A, TAME M S, et al. Experimental demonstration of a graph state quantum error-correction code[J/OL]. Nature Communications, 2014, 5(1): 3658. https://doi.org/10.1038/ncomms4658.
[44] FOWLER A G, MARIANTONI M, MARTINIS J M, et al. Surface codes: Towards practical large-scale quantum computation[J/OL]. Phys. Rev. A, 2012, 86: 032324. https://link.aps.org /doi/10.1103/PhysRevA.86.032324.
[45] NADKARNI P J, GARANI S S. Quantum error correction architecture for qudit stabilizer codes [J/OL]. Phys. Rev. A, 2021, 103: 042420. https://link.aps.org/doi/10.1103/PhysRevA.103.04 2420.
[46] CHOW J M, GAMBETTA J M, MAGESAN E, et al. Implementing a strand of a scalable fault-tolerant quantum computing fabric[J/OL]. Nature Communications, 2014, 5(1): 4015. https://doi.org/10.1038/ncomms5015.
[47] STEPHENS A M, EVANS Z W E. Accuracy threshold for concatenated error detection in one dimension[J/OL]. Phys. Rev. A, 2009, 80: 022313. https://link.aps.org/doi/10.1103/PhysRev A.80.022313.
[48] PRESKILL J. Reliable quantum computers[J]. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 1997, 454: 385 - 410.
[49] ABRAMS D M, DIDIER N, CALDWELL S A, et al. Methods for Measuring Magnetic Flux Crosstalk Between Tunable Transmons[J/OL]. Physical Review Applied, 2019, 12(6): 064022. DOI: 10.1103/PhysRevApplied.12.064022.
[50] ALTOMARE F, CICAK K, SILLANPÄÄ M A, et al. Measurement Crosstalk between Two Phase Qubits Coupled by a Coplanar Waveguide[J/OL]. Physical Review B, 2010, 82(9): 094510. DOI: 10.1103/PhysRevB.82.094510.
[51] AGUNDEZ R, HILL C D, HOLLENBERG L C L, et al. Superadiabatic Quantum State Transfer in Spin Chains[J/OL]. Physical Review A, 2017, 95(1): 012317. DOI: 10.1103/PhysRevA.95. 012317.
[52] Arroyo-Camejo S, LAZARIEV A, HELL S W, et al. Room Temperature High-Fidelity Holonomic Single-Qubit Gate on a Solid-State Spin[J/OL]. Nature Communications, 2014, 5(1): 4870. DOI: 10.1038/ncomms5870.
[53] MOSKALENKO I N, BESEDIN I S, SIMAKOV I A, et al. Tunable coupling scheme for implementing two-qubit gates on fluxonium qubits[J/OL]. Applied Physics Letters, 2021, 119(19): 194001. https://doi.org/10.1063/5.0064800.
[54] YE Y, CAO S, WU Y, et al. Realization of High-Fidelity Controlled-Phase Gates in Extensible Superconducting Qubits Design with a Tunable Coupler[J/OL]. Chinese Physics Letters, 2021, 38(10): 100301. https://dx.doi.org/10.1088/0256-307X/38/10/100301.
[55] MARTINIS J M, GELLER M R. Fast adiabatic qubit gates using only control[J/OL]. Phys. Rev. A, 2014, 90: 022307. https://link.aps.org/doi/10.1103/PhysRevA.90.022307.
[56] BARENDS R, QUINTANA C M, PETUKHOV A G, et al. Diabatic Gates for FrequencyTunable Superconducting Qubits[J/OL]. Phys. Rev. Lett., 2019, 123: 210501. https://link.aps.o rg/doi/10.1103/PhysRevLett.123.210501.
[57] ZU H, DAI W, de Waele A. Development of dilution refrigerators—A review[J/OL]. Cryogenics, 2022, 121: 103390. https://www.sciencedirect.com/science/article/pii/S001122752100148 X. DOI: https://doi.org/10.1016/j.cryogenics.2021.103390.
[58] Ji Z, Fan J, Dong J, et al. Development of a cryogen-free dilution refrigerator[J/OL]. Chinese Physics B, 2022, 31(12): 120703. DOI: 10.1088/1674-1056/ac9042.
[59] KRINNER S, STORZ S, KURPIERS P, et al. Engineering cryogenic setups for 100-qubit scale superconducting circuit systems[J/OL]. EPJ Quantum Technology, 2019, 6(1): 2. https://doi.or g/10.1140/epjqt/s40507-019-0072-0.
[60] XU Y, HUANG G, BALEWSKI J, et al. QubiC: An Open-Source FPGA-Based Control and Measurement System for Superconducting Quantum Information Processors[J/OL]. IEEE Transactions on Quantum Engineering, 2021, 2: 1-11. DOI: 10.1109/TQE.2021.3116540.
[61] WITTLER N, ROY F, PACK K, et al. Integrated Tool Set for Control, Calibration, and Characterization of Quantum Devices Applied to Superconducting Qubits[J/OL]. Phys. Rev. Appl., 2021, 15: 034080. https://link.aps.org/doi/10.1103/PhysRevApplied.15.034080.
[62] LIU Y X, WEI L F, NORI F. Tomographic measurements on superconducting qubit states [J/OL]. Phys. Rev. B, 2005, 72: 014547. https://link.aps.org/doi/10.1103/PhysRevB.72.014547.
[63] HOWARD M, TWAMLEY J, WITTMANN C, et al. Quantum process tomography and Linblad estimation of a solid-state qubit[J/OL]. New Journal of Physics, 2006, 8(3): 33. https://dx.doi .org/10.1088/1367-2630/8/3/033.
[64] Song M, Lee J S, Lee S. Realization of a quantum process tomography in NMR by using quantum parallelism in entanglement[C]//APS Meeting Abstracts: volume 2003 APS March Meeting Abstracts. 2003: S19.005.
[65] O’BRIEN J L, PRYDE G J, GILCHRIST A, et al. Quantum Process Tomography of a Controlled-NOT Gate[J/OL]. Phys. Rev. Lett., 2004, 93: 080502. https://link.aps.org/doi/1 0.1103/PhysRevLett.93.080502.
[66] BIALCZAK R C, ANSMANN M, HOFHEINZ M, et al. Quantum Process Tomography of a Universal Entangling Gate Implemented with Josephson Phase Qubits[J/OL]. Nature Physics, 2010, 6(6): 409-413. DOI: 10.1038/nphys1639.
[67] NIELSEN E, GAMBLE J K, RUDINGER K, et al. Gate Set Tomography[J/OL]. Quantum, 2021, 5: 557. https://doi.org/10.22331/q-2021-10-05-557.
[68] EMERSON J, ALICKI R, ŻYCZKOWSKI K. Scalable noise estimation with random unitary operators[J/OL]. Journal of Optics B: Quantum and Semiclassical Optics, 2005, 7(10): S347. https://dx.doi.org/10.1088/1464-4266/7/10/021.
[69] MAGESAN E, GAMBETTA J M, EMERSON J. Scalable and Robust Randomized Benchmarking of Quantum Processes[J/OL]. Phys. Rev. Lett., 2011, 106: 180504. https://link.aps.o rg/doi/10.1103/PhysRevLett.106.180504.
[70] MAGESAN E, GAMBETTA J M, JOHNSON B R, et al. Efffficient Measurement of Quantum Gate Error by Interleaved Randomized Benchmarking[J/OL]. Phys. Rev. Lett., 2012, 109: 080505. https://link.aps.org/doi/10.1103/PhysRevLett.109.080505.
[71] RYAN C A, LAFOREST M, LAFLAMME R. Randomized benchmarking of single- and multiqubit control in liquid-state NMR quantum information processing[J/OL]. New Journal of Physics, 2009, 11(1): 013034. https://dx.doi.org/10.1088/1367-2630/11/1/013034.
[72] MCKAY D C, SHELDON S, SMOLIN J A, et al. Three-Qubit Randomized Benchmarking [J/OL]. Phys. Rev. Lett., 2019, 122: 200502. https://link.aps.org/doi/10.1103/PhysRevLett.122 .200502.
[73] PROCTOR T J, CARIGNAN-DUGAS A, RUDINGER K, et al. Direct Randomized Benchmarking for Multiqubit Devices[J/OL]. Phys. Rev. Lett., 2019, 123: 030503. https://link.aps.o rg/doi/10.1103/PhysRevLett.123.030503.
[74] GAMBETTA J M, CÓRCOLES A D, MERKEL S T, et al. Characterization of Addressability by Simultaneous Randomized Benchmarking[J/OL]. Phys. Rev. Lett., 2012, 109: 240504. https: //link.aps.org/doi/10.1103/PhysRevLett.109.240504.
[75] FLAMMIA S T, LIU Y K. Direct Fidelity Estimation from Few Pauli Measurements[J/OL]. Phys. Rev. Lett., 2011, 106: 230501. https://link.aps.org/doi/10.1103/PhysRevLett.106.230501.
[76] LU D, LI H, TROTTIER D A, et al. Experimental Estimation of Average Fidelity of a Clifford Gate on a 7-Qubit Quantum Processor[J/OL]. Phys. Rev. Lett., 2015, 114: 140505. https: //link.aps.org/doi/10.1103/PhysRevLett.114.140505.
[77] ERHARD A, WALLMAN J J, POSTLER L, et al. Characterizing large-scale quantum computers via cycle benchmarking[J/OL]. Nature Communications, 2019, 10(1): 5347. https: //doi.org/10.1038/s41467-019-13068-7.
[78] PROCTOR T, RUDINGER K, YOUNG K, et al. Measuring the capabilities of quantum computers[J/OL]. Nature Physics, 2022, 18(1): 75-79. https://doi.org/10.1038/s41567-021-01409-7.
[79] CROSS A W, BISHOP L S, SHELDON S, et al. Validating quantum computers using randomized model circuits[J/OL]. Phys. Rev. A, 2019, 100: 032328. https://link.aps.org/doi/10.1103 /PhysRevA.100.032328.
[80] ARES N. Machine learning as an enabler of qubit scalability[J/OL]. Nature Reviews Materials, 2021, 6(10): 870-871. https://doi.org/10.1038/s41578-021-00321-z.
[81] GENOIS E, GROSS J A, DI PAOLO A, et al. Quantum-Tailored Machine-Learning Characterization of a Superconducting Qubit[J/OL]. PRX Quantum, 2021, 2: 040355. https: //link.aps.org/doi/10.1103/PRXQuantum.2.040355.
[82] CHIROLLI L, BURKARD G. Decoherence in solid-state qubits[J/OL]. Advances in Physics, 2008, 57(3): 225-285. https://doi.org/10.1080/00018730802218067.
[83] KHATRI S, SHARMA K, WILDE M M. Information-theoretic aspects of the generalized amplitude-damping channel[J/OL]. Phys. Rev. A, 2020, 102: 012401. https://link.aps.org/d oi/10.1103/PhysRevA.102.012401.
[84] FLAMMIA S T, O’DONNELL R. Pauli error estimation via Population Recovery[J/OL]. Quantum, 2021, 5: 549. https://doi.org/10.22331/q-2021-09-23-549.
[85] NIELSEN M A. A simple formula for the average gate fidelity of a quantum dynamical operation [J/OL]. Physics Letters A, 2002, 303(4): 249-252. https://www.sciencedirect.com/science/article/pii/S0375960102012720. DOI: https://doi.org/10.1016/S0375-9601(02)01272-0.
[86] GREENAWAY S, SAUVAGE F, KHOSLA K E, et al. Efffficient assessment of process fidelity [J/OL]. Phys. Rev. Res., 2021, 3: 033031. https://link.aps.org/doi/10.1103/PhysRevResearch.3 .033031.
[87] GILCHRIST A, LANGFORD N K, NIELSEN M A. Distance measures to compare real and ideal quantum processes[J/OL]. Phys. Rev. A, 2005, 71: 062310. https://link.aps.org/doi/10.11 03/PhysRevA.71.062310.
[88] BARENDS R, KELLY J, MEGRANT A, et al. Superconducting quantum circuits at the surface code threshold for fault tolerance[J/OL]. Nature, 2014, 508(7497): 500-503. https://doi.org/10 .1038/nature13171.
[89] EMERSON J, ALICKI R, ŻYCZKOWSKI K. Scalable noise estimation with random unitary operators[J/OL]. Journal of Optics B: Quantum and Semiclassical Optics, 2005, 7(10): S347. https://dx.doi.org/10.1088/1464-4266/7/10/021.
[90] LIU Y, OTTEN M, BASSIRIANJAHROMI R, et al. Benchmarking near-term quantum computers via random circuit sampling[A]. 2021. arXiv: 2105.05232.
[91] KRANTZ P, KJAERGAARD M, YAN F, et al. A quantum engineer’s guide to superconducting qubits[J/OL]. Applied Physics Reviews, 2019, 6(2): 021318. https://doi.org/10.1063/1.508955 0.
[92] HU C K, QIU J, SOUZA P J P, et al. Optimal charging of a superconducting quantum battery [J/OL]. Quantum Science and Technology, 2022, 7(4): 045018. https://dx.doi.org/10.1088/205 8-9565/ac8444.
[93] JOSEPHSON B D. Coupled Superconductors[J/OL]. Rev. Mod. Phys., 1964, 36: 216-220. https://link.aps.org/doi/10.1103/RevModPhys.36.216.
[94] BARENDS R, KELLY J, MEGRANT A, et al. Coherent Josephson Qubit Suitable for Scalable Quantum Integrated Circuits[J/OL]. Phys. Rev. Lett., 2013, 111: 080502. https://link.aps.org/d oi/10.1103/PhysRevLett.111.080502.
[95] MCKAY D C, WOOD C J, SHELDON S, et al. Efffficient gates for quantum computing[J/OL]. Phys. Rev. A, 2017, 96: 022330. https://link.aps.org/doi/10.1103/PhysRevA.96.022330.
[96] BLAIS A, HUANG R S, WALLRAFF A, et al. Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation[J/OL]. Phys. Rev. A, 2004, 69: 062320. https://link.aps.org/doi/10.1103/PhysRevA.69.062320.
[97] HE Y, LIU J, ZHAO C, et al. Control System of Superconducting Quantum Computers[J/OL]. Journal of Superconductivity and Novel Magnetism, 2022, 35(1): 11-31. https://doi.org/10.100 7/s10948-021-06104-5.
[98] GAMBETTA J M, MOTZOI F, MERKEL S T, et al. Analytic control methods for high-fidelity unitary operations in a weakly nonlinear oscillator[J/OL]. Phys. Rev. A, 2011, 83: 012308. https://link.aps.org/doi/10.1103/PhysRevA.83.012308.
[99] KELLY J, O’MALLEY P, NEELEY M, et al. Physical qubit calibration on a directed acyclic graph[A]. 2018. arXiv: 1803.03226.
[100] ACHARYA R, ALEINER I, ALLEN R, et al. Suppressing quantum errors by scaling a surface code logical qubit[J/OL]. Nature, 2023, 614(7949): 676-681. https://doi.org/10.1038/s41586 -022-05434-1.
[101] CHU J, HE X, ZHOU Y, et al. Scalable algorithm simplification using quantum AND logic [J/OL]. Nature Physics, 2023, 19(1): 126-131. https://doi.org/10.1038/s41567-022-01813-7.
[102] O’MALLEY P J J, KELLY J, BARENDS R, et al. Qubit Metrology of Ultralow Phase Noise Using Randomized Benchmarking[J/OL]. Phys. Rev. Appl., 2015, 3: 044009. https://link.aps .org/doi/10.1103/PhysRevApplied.3.044009.
[103] 付柏山, 廖奕, 周俊. 稀释制冷机及其中的热交换问题[J]. 物理学报, 2021, 70(23): 88-91.
[104] 付柏山, 杨祖盛, 韩旭东. 一种电脑程控自动脉冲管制冷机配气系统及配气方法[Z]. 2022.

所在学位评定分委会
电子科学与技术
国内图书分类号
O469
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544129
专题量子科学与工程研究院
推荐引用方式
GB/T 7714
杨祖盛. 多量子比特的表征与标定[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032697-杨祖盛-量子科学与工程(12831KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[杨祖盛]的文章
百度学术
百度学术中相似的文章
[杨祖盛]的文章
必应学术
必应学术中相似的文章
[杨祖盛]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。