[1] SHOR P. Algorithms for quantum computation: discrete logarithms and factoring[C/OL]// Proceedings 35th Annual Symposium on Foundations of Computer Science. 1994: 124-134. DOI: 10.1109/SFCS.1994.365700.
[2] SHOR P W, PRESKILL J. Simple Proof of Security of the BB84 Quantum Key Distribution Protocol[J/OL]. Phys. Rev. Lett., 2000, 85: 441-444. https://link.aps.org/doi/10.1103/PhysRev Lett.85.441.
[3] EKERT A K. Quantum cryptography based on Bell’s theorem[J/OL]. Phys. Rev. Lett., 1991, 67: 661-663. https://link.aps.org/doi/10.1103/PhysRevLett.67.661.
[4] GROVER L K. A fast quantum mechanical algorithm for database search[C]//Symposium on the Theory of Computing. 1996.
[5] FEYNMAN R P. Simulating physics with computers[J/OL]. International Journal of Theoretical Physics, 1982, 21(6): 467-488. https://doi.org/10.1007/BF02650179.
[6] SIMON J, BAKR W S, MA R, et al. Quantum Simulation of Antiferromagnetic Spin Chains in an Optical Lattice[J]. Nature, 2011, 472(7343): 307-312.
[7] BRAUMÜLLER J, KARAMLOU A H, YANAY Y, et al. Probing quantum information propagation with out-of-time-ordered correlators[J/OL]. Nature Physics, 2022, 18(2): 172-178. https://doi.org/10.1038/s41567-021-01430-w.
[8] JORDAN S P, LEE K S M, PRESKILL J. Quantum Algorithms for Quantum Field Theories [J/OL]. Science, 2012, 336(6085): 1130-1133. https://www.science.org/doi/abs/10.1126/scie nce.1217069.
[9] BENIOFF P. The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines[J/OL]. Journal of Statistical Physics, 1980, 22(5): 563-591. https://doi.org/10.1007/BF01011339.
[10] Feynman R P. Simulating Physics with Computers[J/OL]. International Journal of Theoretical Physics, 1982, 21(6-7): 467-488. DOI: 10.1007/BF02650179.
[11] FEYNMAN R P. Quantum mechanical computers[J/OL]. Foundations of Physics, 1986, 16(6): 507-531. https://doi.org/10.1007/BF01886518.
[12] DEUTSCH D, JOZSA R. Rapid Solution of Problems by Quantum Computation[J/OL]. Proceedings: Mathematical and Physical Sciences, 1992, 439(1907): 553-558
[2023-04-16]. http://www.jstor.org/stable/52182.
[13] SAGGIO V, ASENBECK B E, HAMANN A, et al. Experimental quantum speed-up in reinforcement learning agents[J/OL]. Nature, 2021, 591(7849): 229-233. https://doi.org/10.1038/ s41586-021-03242-7.
[14] CHUANG I L, GERSHENFELD N, KUBINEC M. Experimental Implementation of Fast Quantum Searching[J/OL]. Phys. Rev. Lett., 1998, 80: 3408-3411. https://link.aps.org/doi/10.1103 /PhysRevLett.80.3408.
[15] DIVINCENZO D P. The Physical Implementation of Quantum Computation[J/OL]. Fortschritte der Physik, 2000,48(9-11): 771-783. https://onlinelibrary.wiley.com/doi/abs/ 10.1002/1521-3978%28200009%2948%3A9/11%3C771%3A%3AAID-PROP771%3E3.0.CO%3B2-E. DOI:https://doi.org/10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E.
[16] CIRAC J I, ZOLLER P. Quantum Computations with Cold Trapped Ions[J/OL]. Phys. Rev. Lett., 1995, 74: 4091-4094. https://link.aps.org/doi/10.1103/PhysRevLett.74.4091.
[17] HARTY T P, ALLCOCK D T C, BALLANCE C J, et al. High-Fidelity Preparation, Gates, Memory, and Readout of a Trapped-Ion Quantum Bit[J/OL]. Phys. Rev. Lett., 2014, 113: 220501. https://link.aps.org/doi/10.1103/PhysRevLett.113.220501.
[18] MONROE C, MEEKHOF D M, KING B E, et al. Demonstration of a Fundamental Quantum Logic Gate[J/OL]. Phys. Rev. Lett., 1995, 75: 4714-4717. https://link.aps.org/doi/10.1103/Phy sRevLett.75.4714.
[19] MONROE C, CAMPBELL W C, DUAN L M, et al. Programmable quantum simulations of spin systems with trapped ions[J/OL]. Rev. Mod. Phys., 2021, 93: 025001. https://link.aps.org /doi/10.1103/RevModPhys.93.025001.
[20] LOSS D, DIVINCENZO D P. Quantum computation with quantum dots[J/OL]. Phys. Rev. A, 1998, 57: 120-126. https://link.aps.org/doi/10.1103/PhysRevA.57.120.
[21] HAYASHI T, FUJISAWA T, CHEONG H D, et al. Coherent Manipulation of Electronic States in a Double Quantum Dot[J/OL]. Phys. Rev. Lett., 2003, 91: 226804. https://link.aps.org/doi/1 0.1103/PhysRevLett.91.226804.
[22] VELDHORST M, YANG C H, HWANG J C C, et al. A two-qubit logic gate in silicon[J/OL]. Nature, 2015, 526(7573): 410-414. https://doi.org/10.1038/nature15263.
[23] KOCH J, YU T M, GAMBETTA J, et al. Charge-insensitive qubit design derived from the Cooper pair box[J/OL]. Phys. Rev. A, 2007, 76: 042319. https://link.aps.org/doi/10.1103/Phy sRevA.76.042319.
[24] PAIK H, SCHUSTER D I, BISHOP L S, et al. Observation of High Coherence in Josephson Junction Qubits Measured in a Three-Dimensional Circuit QED Architecture[J/OL]. Phys. Rev. Lett., 2011, 107: 240501. https://link.aps.org/doi/10.1103/PhysRevLett.107.240501.
[25] ORLANDO T P, MOOIJ J E, TIAN L, et al. Superconducting persistent-current qubit[J/OL]. Phys. Rev. B, 1999, 60: 15398-15413. https://link.aps.org/doi/10.1103/PhysRevB.60.15398.
[26] EARNEST N, CHAKRAM S, LU Y, et al. Realization of a Λ System with Metastable States of a Capacitively Shunted Fluxonium[J/OL]. Physical Review Letters, 2018, 120(15). DOI: 10.1103/PhysRevLett.120.150504.
[27] NI Z, LI S, DENG X, et al. Beating the break-even point with a discrete-variable-encoded logical qubit[J/OL]. Nature, 2023, 616(7955): 56-60. https://doi.org/10.1038/s41586-023-05784-4.
[28] BOUCHIAT V, VION D, JOYEZ P, et al. Quantum coherence with a single Cooper pair[J/OL]. Physica Scripta, 1998, 1998(T76): 165. https://dx.doi.org/10.1238/Physica.Topical.076a001 65.
[29] MARTINIS J M, NAM S, AUMENTADO J, et al. Rabi oscillations in a large Josephsonjunction qubit[J]. Phys Rev Lett, 2002, 89(11): 117901.
[30] BARENDS R, KELLY J, MEGRANT A, et al. Coherent Josephson Qubit Suitable for Scalable Quantum Integrated Circuits[J/OL]. Phys. Rev. Lett., 2013, 111: 080502. https://link.aps.org/d oi/10.1103/PhysRevLett.111.080502.
[31] BLAIS A, HUANG R S, WALLRAFF A, et al. Cavity Quantum Electrodynamics for Superconducting Electrical Circuits: An Architecture for Quantum Computation[J/OL]. Physical Review A, 2004, 69(6): 062320. DOI: 10.1103/PhysRevA.69.062320.
[32] LISENFELD J, BILMES A, USTINOV A V. Enhancing the coherence of superconducting quantum bits with electric fields[J/OL]. npj Quantum Information, 2023, 9(1): 8. https://doi.or g/10.1038/s41534-023-00678-9.
[33] CHANG J B, VISSERS M R, CóRCOLES A D, et al. Improved superconducting qubit coherence using titanium nitride[J/OL]. Applied Physics Letters, 2013, 103(1): 012602. https: //doi.org/10.1063/1.4813269.
[34] ARUTE F, ARYA K, BABBUSH R, et al. Quantum supremacy using a programmable superconducting processor[J/OL]. Nature, 2019, 574(7779): 505-510. https://doi.org/10.1038/s415 86-019-1666-5.
[35] WU Y, BAO W S, CAO S, et al. Strong Quantum Computational Advantage Using a Superconducting Quantum Processor[J/OL]. Phys. Rev. Lett., 2021, 127: 180501. https://link.aps.org/doi/10.1103/PhysRevLett.127.180501.
[36] GONG M, WANG S, ZHA C, et al. Quantum walks on a programmable two-dimensional 62- qubit superconducting processor[J/OL]. Science, 2021, 372(6545): 948-952. https://www.scie nce.org/doi/abs/10.1126/science.abg7812.
[37] CHEN Z. Metrology of Quantum Control and Measurement in Superconducting Qubits[C]// 2018.
[38] BRAVYI S B, KITAEV A Y. Quantum codes on a lattice with boundary[J]. Physics, 1998.
[39] NIELSEN M A, CHUANG I L. Quantum Computation and Quantum Information: 10th Anniversary Edition[M/OL]. Cambridge University Press, 2010. DOI: 10.1017/CBO978051197 6667.
[40] PRESKILL J. Fault-tolerant quantum computation[A]. 1997.
[41] LINKE N M, GUTIERREZ M, LANDSMAN K A, et al. Fault-tolerant quantum error detection [J/OL]. Science Advances, 2017, 3(10): e1701074. https://www.science.org/doi/abs/10.1126/ sciadv.1701074.
[42] BRUN T, DEVETAK I, HSIEH M H. Correcting Quantum Errors with Entanglement[J/OL]. Science, 2006, 314(5798): 436-439. https://www.science.org/doi/abs/10.1126/science.113156 3.
[43] BELL B A, HERRERA-MARTÍ D A, TAME M S, et al. Experimental demonstration of a graph state quantum error-correction code[J/OL]. Nature Communications, 2014, 5(1): 3658. https://doi.org/10.1038/ncomms4658.
[44] FOWLER A G, MARIANTONI M, MARTINIS J M, et al. Surface codes: Towards practical large-scale quantum computation[J/OL]. Phys. Rev. A, 2012, 86: 032324. https://link.aps.org /doi/10.1103/PhysRevA.86.032324.
[45] NADKARNI P J, GARANI S S. Quantum error correction architecture for qudit stabilizer codes [J/OL]. Phys. Rev. A, 2021, 103: 042420. https://link.aps.org/doi/10.1103/PhysRevA.103.04 2420.
[46] CHOW J M, GAMBETTA J M, MAGESAN E, et al. Implementing a strand of a scalable fault-tolerant quantum computing fabric[J/OL]. Nature Communications, 2014, 5(1): 4015. https://doi.org/10.1038/ncomms5015.
[47] STEPHENS A M, EVANS Z W E. Accuracy threshold for concatenated error detection in one dimension[J/OL]. Phys. Rev. A, 2009, 80: 022313. https://link.aps.org/doi/10.1103/PhysRev A.80.022313.
[48] PRESKILL J. Reliable quantum computers[J]. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 1997, 454: 385 - 410.
[49] ABRAMS D M, DIDIER N, CALDWELL S A, et al. Methods for Measuring Magnetic Flux Crosstalk Between Tunable Transmons[J/OL]. Physical Review Applied, 2019, 12(6): 064022. DOI: 10.1103/PhysRevApplied.12.064022.
[50] ALTOMARE F, CICAK K, SILLANPÄÄ M A, et al. Measurement Crosstalk between Two Phase Qubits Coupled by a Coplanar Waveguide[J/OL]. Physical Review B, 2010, 82(9): 094510. DOI: 10.1103/PhysRevB.82.094510.
[51] AGUNDEZ R, HILL C D, HOLLENBERG L C L, et al. Superadiabatic Quantum State Transfer in Spin Chains[J/OL]. Physical Review A, 2017, 95(1): 012317. DOI: 10.1103/PhysRevA.95. 012317.
[52] Arroyo-Camejo S, LAZARIEV A, HELL S W, et al. Room Temperature High-Fidelity Holonomic Single-Qubit Gate on a Solid-State Spin[J/OL]. Nature Communications, 2014, 5(1): 4870. DOI: 10.1038/ncomms5870.
[53] MOSKALENKO I N, BESEDIN I S, SIMAKOV I A, et al. Tunable coupling scheme for implementing two-qubit gates on fluxonium qubits[J/OL]. Applied Physics Letters, 2021, 119(19): 194001. https://doi.org/10.1063/5.0064800.
[54] YE Y, CAO S, WU Y, et al. Realization of High-Fidelity Controlled-Phase Gates in Extensible Superconducting Qubits Design with a Tunable Coupler[J/OL]. Chinese Physics Letters, 2021, 38(10): 100301. https://dx.doi.org/10.1088/0256-307X/38/10/100301.
[55] MARTINIS J M, GELLER M R. Fast adiabatic qubit gates using only control[J/OL]. Phys. Rev. A, 2014, 90: 022307. https://link.aps.org/doi/10.1103/PhysRevA.90.022307.
[56] BARENDS R, QUINTANA C M, PETUKHOV A G, et al. Diabatic Gates for FrequencyTunable Superconducting Qubits[J/OL]. Phys. Rev. Lett., 2019, 123: 210501. https://link.aps.o rg/doi/10.1103/PhysRevLett.123.210501.
[57] ZU H, DAI W, de Waele A. Development of dilution refrigerators—A review[J/OL]. Cryogenics, 2022, 121: 103390. https://www.sciencedirect.com/science/article/pii/S001122752100148 X. DOI: https://doi.org/10.1016/j.cryogenics.2021.103390.
[58] Ji Z, Fan J, Dong J, et al. Development of a cryogen-free dilution refrigerator[J/OL]. Chinese Physics B, 2022, 31(12): 120703. DOI: 10.1088/1674-1056/ac9042.
[59] KRINNER S, STORZ S, KURPIERS P, et al. Engineering cryogenic setups for 100-qubit scale superconducting circuit systems[J/OL]. EPJ Quantum Technology, 2019, 6(1): 2. https://doi.or g/10.1140/epjqt/s40507-019-0072-0.
[60] XU Y, HUANG G, BALEWSKI J, et al. QubiC: An Open-Source FPGA-Based Control and Measurement System for Superconducting Quantum Information Processors[J/OL]. IEEE Transactions on Quantum Engineering, 2021, 2: 1-11. DOI: 10.1109/TQE.2021.3116540.
[61] WITTLER N, ROY F, PACK K, et al. Integrated Tool Set for Control, Calibration, and Characterization of Quantum Devices Applied to Superconducting Qubits[J/OL]. Phys. Rev. Appl., 2021, 15: 034080. https://link.aps.org/doi/10.1103/PhysRevApplied.15.034080.
[62] LIU Y X, WEI L F, NORI F. Tomographic measurements on superconducting qubit states [J/OL]. Phys. Rev. B, 2005, 72: 014547. https://link.aps.org/doi/10.1103/PhysRevB.72.014547.
[63] HOWARD M, TWAMLEY J, WITTMANN C, et al. Quantum process tomography and Linblad estimation of a solid-state qubit[J/OL]. New Journal of Physics, 2006, 8(3): 33. https://dx.doi .org/10.1088/1367-2630/8/3/033.
[64] Song M, Lee J S, Lee S. Realization of a quantum process tomography in NMR by using quantum parallelism in entanglement[C]//APS Meeting Abstracts: volume 2003 APS March Meeting Abstracts. 2003: S19.005.
[65] O’BRIEN J L, PRYDE G J, GILCHRIST A, et al. Quantum Process Tomography of a Controlled-NOT Gate[J/OL]. Phys. Rev. Lett., 2004, 93: 080502. https://link.aps.org/doi/1 0.1103/PhysRevLett.93.080502.
[66] BIALCZAK R C, ANSMANN M, HOFHEINZ M, et al. Quantum Process Tomography of a Universal Entangling Gate Implemented with Josephson Phase Qubits[J/OL]. Nature Physics, 2010, 6(6): 409-413. DOI: 10.1038/nphys1639.
[67] NIELSEN E, GAMBLE J K, RUDINGER K, et al. Gate Set Tomography[J/OL]. Quantum, 2021, 5: 557. https://doi.org/10.22331/q-2021-10-05-557.
[68] EMERSON J, ALICKI R, ŻYCZKOWSKI K. Scalable noise estimation with random unitary operators[J/OL]. Journal of Optics B: Quantum and Semiclassical Optics, 2005, 7(10): S347. https://dx.doi.org/10.1088/1464-4266/7/10/021.
[69] MAGESAN E, GAMBETTA J M, EMERSON J. Scalable and Robust Randomized Benchmarking of Quantum Processes[J/OL]. Phys. Rev. Lett., 2011, 106: 180504. https://link.aps.o rg/doi/10.1103/PhysRevLett.106.180504.
[70] MAGESAN E, GAMBETTA J M, JOHNSON B R, et al. Efffficient Measurement of Quantum Gate Error by Interleaved Randomized Benchmarking[J/OL]. Phys. Rev. Lett., 2012, 109: 080505. https://link.aps.org/doi/10.1103/PhysRevLett.109.080505.
[71] RYAN C A, LAFOREST M, LAFLAMME R. Randomized benchmarking of single- and multiqubit control in liquid-state NMR quantum information processing[J/OL]. New Journal of Physics, 2009, 11(1): 013034. https://dx.doi.org/10.1088/1367-2630/11/1/013034.
[72] MCKAY D C, SHELDON S, SMOLIN J A, et al. Three-Qubit Randomized Benchmarking [J/OL]. Phys. Rev. Lett., 2019, 122: 200502. https://link.aps.org/doi/10.1103/PhysRevLett.122 .200502.
[73] PROCTOR T J, CARIGNAN-DUGAS A, RUDINGER K, et al. Direct Randomized Benchmarking for Multiqubit Devices[J/OL]. Phys. Rev. Lett., 2019, 123: 030503. https://link.aps.o rg/doi/10.1103/PhysRevLett.123.030503.
[74] GAMBETTA J M, CÓRCOLES A D, MERKEL S T, et al. Characterization of Addressability by Simultaneous Randomized Benchmarking[J/OL]. Phys. Rev. Lett., 2012, 109: 240504. https: //link.aps.org/doi/10.1103/PhysRevLett.109.240504.
[75] FLAMMIA S T, LIU Y K. Direct Fidelity Estimation from Few Pauli Measurements[J/OL]. Phys. Rev. Lett., 2011, 106: 230501. https://link.aps.org/doi/10.1103/PhysRevLett.106.230501.
[76] LU D, LI H, TROTTIER D A, et al. Experimental Estimation of Average Fidelity of a Clifford Gate on a 7-Qubit Quantum Processor[J/OL]. Phys. Rev. Lett., 2015, 114: 140505. https: //link.aps.org/doi/10.1103/PhysRevLett.114.140505.
[77] ERHARD A, WALLMAN J J, POSTLER L, et al. Characterizing large-scale quantum computers via cycle benchmarking[J/OL]. Nature Communications, 2019, 10(1): 5347. https: //doi.org/10.1038/s41467-019-13068-7.
[78] PROCTOR T, RUDINGER K, YOUNG K, et al. Measuring the capabilities of quantum computers[J/OL]. Nature Physics, 2022, 18(1): 75-79. https://doi.org/10.1038/s41567-021-01409-7.
[79] CROSS A W, BISHOP L S, SHELDON S, et al. Validating quantum computers using randomized model circuits[J/OL]. Phys. Rev. A, 2019, 100: 032328. https://link.aps.org/doi/10.1103 /PhysRevA.100.032328.
[80] ARES N. Machine learning as an enabler of qubit scalability[J/OL]. Nature Reviews Materials, 2021, 6(10): 870-871. https://doi.org/10.1038/s41578-021-00321-z.
[81] GENOIS E, GROSS J A, DI PAOLO A, et al. Quantum-Tailored Machine-Learning Characterization of a Superconducting Qubit[J/OL]. PRX Quantum, 2021, 2: 040355. https: //link.aps.org/doi/10.1103/PRXQuantum.2.040355.
[82] CHIROLLI L, BURKARD G. Decoherence in solid-state qubits[J/OL]. Advances in Physics, 2008, 57(3): 225-285. https://doi.org/10.1080/00018730802218067.
[83] KHATRI S, SHARMA K, WILDE M M. Information-theoretic aspects of the generalized amplitude-damping channel[J/OL]. Phys. Rev. A, 2020, 102: 012401. https://link.aps.org/d oi/10.1103/PhysRevA.102.012401.
[84] FLAMMIA S T, O’DONNELL R. Pauli error estimation via Population Recovery[J/OL]. Quantum, 2021, 5: 549. https://doi.org/10.22331/q-2021-09-23-549.
[85] NIELSEN M A. A simple formula for the average gate fidelity of a quantum dynamical operation [J/OL]. Physics Letters A, 2002, 303(4): 249-252. https://www.sciencedirect.com/science/article/pii/S0375960102012720. DOI: https://doi.org/10.1016/S0375-9601(02)01272-0.
[86] GREENAWAY S, SAUVAGE F, KHOSLA K E, et al. Efffficient assessment of process fidelity [J/OL]. Phys. Rev. Res., 2021, 3: 033031. https://link.aps.org/doi/10.1103/PhysRevResearch.3 .033031.
[87] GILCHRIST A, LANGFORD N K, NIELSEN M A. Distance measures to compare real and ideal quantum processes[J/OL]. Phys. Rev. A, 2005, 71: 062310. https://link.aps.org/doi/10.11 03/PhysRevA.71.062310.
[88] BARENDS R, KELLY J, MEGRANT A, et al. Superconducting quantum circuits at the surface code threshold for fault tolerance[J/OL]. Nature, 2014, 508(7497): 500-503. https://doi.org/10 .1038/nature13171.
[89] EMERSON J, ALICKI R, ŻYCZKOWSKI K. Scalable noise estimation with random unitary operators[J/OL]. Journal of Optics B: Quantum and Semiclassical Optics, 2005, 7(10): S347. https://dx.doi.org/10.1088/1464-4266/7/10/021.
[90] LIU Y, OTTEN M, BASSIRIANJAHROMI R, et al. Benchmarking near-term quantum computers via random circuit sampling[A]. 2021. arXiv: 2105.05232.
[91] KRANTZ P, KJAERGAARD M, YAN F, et al. A quantum engineer’s guide to superconducting qubits[J/OL]. Applied Physics Reviews, 2019, 6(2): 021318. https://doi.org/10.1063/1.508955 0.
[92] HU C K, QIU J, SOUZA P J P, et al. Optimal charging of a superconducting quantum battery [J/OL]. Quantum Science and Technology, 2022, 7(4): 045018. https://dx.doi.org/10.1088/205 8-9565/ac8444.
[93] JOSEPHSON B D. Coupled Superconductors[J/OL]. Rev. Mod. Phys., 1964, 36: 216-220. https://link.aps.org/doi/10.1103/RevModPhys.36.216.
[94] BARENDS R, KELLY J, MEGRANT A, et al. Coherent Josephson Qubit Suitable for Scalable Quantum Integrated Circuits[J/OL]. Phys. Rev. Lett., 2013, 111: 080502. https://link.aps.org/d oi/10.1103/PhysRevLett.111.080502.
[95] MCKAY D C, WOOD C J, SHELDON S, et al. Efffficient gates for quantum computing[J/OL]. Phys. Rev. A, 2017, 96: 022330. https://link.aps.org/doi/10.1103/PhysRevA.96.022330.
[96] BLAIS A, HUANG R S, WALLRAFF A, et al. Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation[J/OL]. Phys. Rev. A, 2004, 69: 062320. https://link.aps.org/doi/10.1103/PhysRevA.69.062320.
[97] HE Y, LIU J, ZHAO C, et al. Control System of Superconducting Quantum Computers[J/OL]. Journal of Superconductivity and Novel Magnetism, 2022, 35(1): 11-31. https://doi.org/10.100 7/s10948-021-06104-5.
[98] GAMBETTA J M, MOTZOI F, MERKEL S T, et al. Analytic control methods for high-fidelity unitary operations in a weakly nonlinear oscillator[J/OL]. Phys. Rev. A, 2011, 83: 012308. https://link.aps.org/doi/10.1103/PhysRevA.83.012308.
[99] KELLY J, O’MALLEY P, NEELEY M, et al. Physical qubit calibration on a directed acyclic graph[A]. 2018. arXiv: 1803.03226.
[100] ACHARYA R, ALEINER I, ALLEN R, et al. Suppressing quantum errors by scaling a surface code logical qubit[J/OL]. Nature, 2023, 614(7949): 676-681. https://doi.org/10.1038/s41586 -022-05434-1.
[101] CHU J, HE X, ZHOU Y, et al. Scalable algorithm simplification using quantum AND logic [J/OL]. Nature Physics, 2023, 19(1): 126-131. https://doi.org/10.1038/s41567-022-01813-7.
[102] O’MALLEY P J J, KELLY J, BARENDS R, et al. Qubit Metrology of Ultralow Phase Noise Using Randomized Benchmarking[J/OL]. Phys. Rev. Appl., 2015, 3: 044009. https://link.aps .org/doi/10.1103/PhysRevApplied.3.044009.
[103] 付柏山, 廖奕, 周俊. 稀释制冷机及其中的热交换问题[J]. 物理学报, 2021, 70(23): 88-91.
[104] 付柏山, 杨祖盛, 韩旭东. 一种电脑程控自动脉冲管制冷机配气系统及配气方法[Z]. 2022.
修改评论